The least eigenvalues of the signless Laplacian of non-bipartite graphs with fixed diameter

Min Zhu, Yihao Guo, Fenglei Tian, Lingfei Lu

College of Science, China University of Mining and Technology, Xuzhou, Jiangsu, P. R. China

Abstract. Let $\zeta_n(d)$ ($\mu_n(d)$) be the set of connected non-bipartite (unicyclic) graphs with n vertices and diameter d. In this paper, we first determine the graph whose least eigenvalue of the signless Laplacian attains the minimum in $\mu_n(d)$, then by the eigenvalue interlacing property, the problem of determining the minimizing graph in $\zeta_n(d)$ can be transformed to that of determining the minimizing graph in $\mu_n(d)$. Thus we obtain a lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph in terms of the diameter d.

Keywords: non-bipartite graph; signless Laplacian; Least eigenvalue; diameter

1 Introduction

Let G be a simple graph with vertices $1, 2, \cdots, n$, of degrees d_1, d_2, \cdots, d_n, respectively. Let $A(G)$ be the $(0, 1)$-adjacency matrix of G, and let $D(G)$ be the diagonal matrix $\text{diag}(d_1, d_2, \cdots, d_n)$. The matrix $L(G) = D(G) - A(G)$ is the Laplacian of G, while $Q(G) = D(G) + A(G)$ is called the signless Laplacian of G. We call the eigenvalues of $Q(G)$ the Q-eigenvalues of graph G, it is known that $Q(G)$ is nonnegative, symmetric and positive semidefinite. So its eigenvalues are all nonnegative real numbers and can be arranged as $q_1(G) \geq q_2(G) \geq \cdots \geq q_n(G) \geq 0$. The least Q-eigenvalue is
$q_n(G)$, and the eigenvectors corresponding to $q_n(G)$ are called the first Q-eigenvectors of G. For the properties of the least Q-eigenvalue, we refer the readers to [1-6]. A graph is called minimizing in a class of graphs if its least Q-eigenvalue attains the minimum among all graphs in the class. Denote by $\zeta_n(d)$ $(\mu_n(d))$ the set of connected non-bipartite (unicyclic) graphs with n vertices and diameter d. Let $\mu_n(g,d)$ denote the set of unicyclic graphs of order n with odd girth g and diameter d, $(d \geq \frac{g-1}{2})$.

If G is connected, then $q_n(G) = 0$ if and only if G is bipartite. So, connected non-bipartite graphs are considered here. The investigation on the lower bound of the least Q-eigenvalue of a graph is an important topic in the theory of Q-spectra. M. Desai, V. Rao discuss the relationship between the least Q-eigenvalue and the bipartiteness of graphs in [8]. Cardoso et al. [3] and Fan et al. [10] investigate the least Q-eigenvalue of non-bipartite unicyclic graphs. Liu et al. [11] give some bounds for the clique number and independence number of graphs in terms of the least Q-eigenvalue. Lima et al. [7] survey the known results and present some new ones for the least Q-eigenvalue. Wang et al. [13] investigated how the least Q-eigenvalue of a graph changes by relocating a bipartite branch.
from one vertex to another vertex, and minimized the least \(Q \) – eigenvalue among the connected graphs of fixed order which contain a given non-bipartite graph as an induced subgraph. Fan et al. [14] determine the minimizing graph of non-partite graphs in terms of the number of pendant vertices.

In this paper, we first show that \(U_n(g,d) \) (see Fig.1) is the unique minimizing graph in \(\mu_n(g,d) \), and then determine that \(U_n(3,d) \) is the unique minimizing graph in \(\mu_n(d) \). At last, by the eigenvalue interlacing property (see following Lemma 2.6), the problem of determining the minimizing graph in \(\zeta_n(d) \) can be transformed to that of determining the minimizing graph in \(\mu_n(d) \).

2. Preliminaries

We first introduce some notations. Let \(C_n \) and \(P_n \) to denote the cycle and the path, on \(n \) vertices, respectively. We also use \(P = v_1, v_2, \ldots, v_n \) to denote a path on vertices \(v_1, v_2, \ldots, v_n \) with edges \(v_iv_{i+1} \) for \(i = 1, 2, \ldots, n-1 \). Let \(N_G(v) \) be the set of the neighborhood of the vertex \(v \) in graph \(G \). Let \(G \) be a graph, \(G \) is called trivial if it contains only one vertex; otherwise, it is called nontrivial.

Graph \(G \) is called unicyclic if it is connected and has the same number of vertices and edges (or \(G \) contains exactly one cycle). The girth of \(G \) is the minimum of the lengths of all cycles in \(G \). A pendant vertex of \(G \) is a vertex of degree 1. A path \(P = v_0, v_1, \ldots, v_{t-1}, v_t \) in \(G \) is called a pendant path if \(d_{v_0} \geq 3 \), \(d_{v_1} = d_{v_2} = \cdots = d_{v_{t-1}} = 2 \) and \(d_{v_t} = 1 \). If \(t = 1 \), then \(v_0v_t \) is a pendant edge of \(G \).

Let \(x = (x_1, x_2, \ldots, x_n)' \) be a column vector, and let \(G \) be a graph on vertices \(V(G) = \{v_1, v_2, \ldots, v_n\} \). The vector \(x \) can be viewed as a function defined
on $V(G)$; that is, any vertex v_i is given by the value $x_i = x_{v_i}$. Thus the quadratic form $x'Qx$ can be written as

$$x'Qx = \sum_{uv \in E(G)} [x_u + x_v]^2.$$

One can find that q is a Q-eigenvalue of G corresponding to an eigenvector x if and only if $x \neq 0$ and

$$[q - d_v]x_v = \sum_{u \in N_G(v)} x_u,$$

for each $v \in V(G)$. In addition, for an arbitrary unit vector x,

$$q_n(G) \leq x'Q(G)x,$$

with equality if and only if x is a first Q-eigenvector of G.

Let G_1 and G_2 be two vertex-disjoint graphs, and let $v \in G_1$, $u \in G_2$. The coalescence of G_1 and G_2 with respect to v and u, denoted by $G_1 \bullet G_2$, is obtained from G_1 and G_2 by identifying v with u and forming a new vertex. Let G be a connected graph, and let v be a cut vertex of G. Then G can be expressed in the form $G = H(v) \bullet F(v)$, where H and F are subgraphs of G both containing v. Here, we call H (or F) a branch of G with root v. With respect to a vector x defined on G, the branch H is called a zero branch if $x_v = 0$ for all $v \in V(H)$; otherwise, H is called a nonzero branch.

Let $G = G_1(v_2) \bullet G_2(u)$, $G^* = G_1(v_1) \bullet G_2(u)$, where v_1 and v_2 are two distinct vertices of G_1 and u is a vertex of G_2. We say that G^* is obtained from G by relocating G_2 from v_2 to v_1. Then, we give some lemmas that will be used in the proof of our result.

Lemma 2.1 ([13]) Let H be a bipartite branch of a connected graph G with root u. Let x be a first Q-eigenvector of G.
(1) If $x_u = 0$, then H is a zero branch of G with respect to x.

(2) If $x_u \neq 0$, then $x_p \neq 0$ for every vertex p of H. Furthermore, for every vertex p of H, $x_p x_u$ is positive or negative, depending on whether p is or is not in the same part of bipartite graph H as u; consequently, $x_p x_q < 0$ for each edge $pq \in E(H)$.

Lemma 2.2 ([13]) Let G be a connected non-bipartite graph, and let x be a first Q-eigenvector of G. Let T be a tree with root u, which is a nonzero branch with respect to x. Then $|x_q| < |x_p|$ whenever p and q are vertices of T such that q lies on the unique path from u to p.

Lemma 2.3 ([13]) Let G_1 be a connected graph containing at least two vertices v_1, v_2, and let G_2 be a connected bipartite graph containing a vertex u. Let $G = G_1(v_2) \cdot G_2(u)$ and $G' = G_1(v_1) \cdot G_2(u)$. If there exists a first Q-eigenvector x of G such that $|x_{v_1}| \geq |x_{v_2}|$, then $q_n(G') \leq q_n(G)$, with equality only if $|x_{v_1}| = |x_{v_2}|$ and $d_{G_1(v_1)} x_u = -\sum_{v \in N_{G_2}(u)} x_v$.

Lemma 2.4 ([13]) Let G_1 be a connected non-bipartite graph containing two vertices v_1, v_2, and let P be a nontrivial path with u as an end vertex. Let $G = G_1(v_2) \cdot P(u)$, and let $G' = G_1(v_1) \cdot P(u)$. If there exists a first Q-eigenvector x of G such that $|x_{v_1}| > |x_{v_2}|$ or $|x_{v_1}| = |x_{v_2}| > 0$, then $q_n(G') \leq q_n(G)$.

Lemma 2.5 ([14]) Let $U_g(g, d)$ be the graph with some vertices labeled as in Fig.1, where $v_1, v_2, \cdots v_g$ are the vertices of the unique cycle C_g labeled in an
anticlockwise way. Let x be a first $Q-$eigenvector of $U_n(g,d)$. Then, the following hold:

1. $x_v = x_{v+1}$ for $i = 1,2,\ldots, \frac{n-1}{2}$.

2. $x_v > 0$, and $x_v x_w < 0$ for every edges vw of $U_n(g,d)$ except $v_{\frac{n}{2}}, v_{\frac{n}{2}+1}$.

3. $x_1 > x_2 > \cdots > x_{\frac{n}{2}} > 0$.

Lemma 2.6 ([3]) Let G be a graph of order n containing an edge e. Let q_1, q_2, \cdots, q_n ($q_1 \geq q_2 \geq \cdots \geq q_n$) and s_1, s_2, \cdots, s_n ($s_1 \geq s_2 \geq \cdots \geq s_n$) be the $Q-$eigenvalues of G and $G - e$. Then

$$0 \leq s_n \leq q_n \leq \cdots \leq s_2 \leq q_2 \leq s_1 \leq q_1.$$

3. Characterization of the extremal graph

Lemma 3.1 Let U be the minimizing graph in $\mu_n(g,d)$ and P be a diameter-path of U , then P must encounters the unique cycle C, and $|V(P) \cap V(C)| = \frac{n+1}{2}$.

Proof. Let $P = u_1, u_2, \cdots, u_{d+1}$ be a diameter-path of U and $C = v_1, v_2, \cdots, v_g, v_1$ be the unique cycle of U. Suppose that $|V(P) \cap V(C)| = \phi$. Since U is connected, then suppose that there exists a shortest path $v_g, w_1, w_2, \cdots, w_k, u_1$ connecting C and P, where $w_1, w_2, \cdots, w_k \in V(U) \setminus (V(P) \cup V(C))$. Let x be an eigenvector of $Q(U)$ corresponding to $q_n(U)$ and define graph U_1.

The corresponding author. E-mail address: 741856964@qq.com
Then in either case (indeed, they are isomorphic, without loss of generality, we choose U_1 be the graph with vertices labels as the latter), P is still a diameter-path of U_1, $U_1 \in \mu_n(g,d)$ and $|V(P) \cap V(C)| = 1$. And by Lemma 2.2, $q_n(U) \geq q_n(U_1)$, a contradiction. Hence, $|V(P) \cap V(C)| \neq \phi$, so, the diameter-path P encounters the cycle C in U.

Then we continue to define graph U_i, ($i = 1, 2, \ldots, \frac{\varepsilon+1}{2}$)

$$U_i = \begin{cases} U_{i-1} - \{u_{k+i}, v_{k+i}\} + \{v_{2-i}u_{k+i}\}, & \text{if } x_{v_{2-i}} \geq x_{u_{k+i}}; \\ U_{i-1} - \{v_{2-i}, v_{1-i}\} + \{u_{k+i}, v_{k+i}\}, & \text{if } x_{v_{2-i}} < x_{u_{k+i}}. \end{cases}$$

In the graph U_i, we can easily see that P is still a diameter-path of U_i, $U_i \in \mu_n(g,d)$ and $|V(P) \cap V(C)| = i$. And by Lemma 2.2, $q_n(U_1) \geq q_n(U_2) \geq q_n(U_3) \geq \cdots \geq q_n(U_{\frac{\varepsilon+1}{2}})$.

It doesn't continue to define graphs according to the above method, otherwise, it contradicts to that P is the diameter-path, so P must encounters the unique cycle C in U, and $|V(P) \cap V(C)| = \frac{\varepsilon+1}{2}$.

Lemma 3.2 Among all graphs in $\mu_n(g,d)$, $U_n(g,d)$ is the unique minimizing graph.

Proof. Let G be a minimizing graph in $\mu_n(g,d)$, and let C_g be the unique cycle of G on vertices $v_1, v_2, \cdots v_k$. Graph G can be considered as one obtained from C_g by identifying each v_i with one vertex of some tree T_i of

The corresponding author. E-mail address: 741856964@qq.com
order \(n_i \) for each \(i = 1,2,\cdots,g \), where \(\sum_{i=1}^{d} n_i = n \). Note that some trees \(T_i \) may be trivial.

Let \(x \) be a unit first \(Q \)-eigenvector of \(G \), then there exists at least one \(i \), \((1 \leq i \leq g)\), such that \(x_{v_i} \neq 0 \). Otherwise, by Lemma 2.1(1), each \(T_i \), \((1 \leq i \leq g)\), is a zero branch of \(G \) with respect to \(x \), and it follows that \(x \) is the zero vector, a contradiction. We claim that each nontrivial tree \(T_j \) is a nonzero branch with respect to \(x \). Otherwise, there exists a nontrivial tree \(T_j \) attached at \(v_j \), \((1 \leq j \leq g)\), such that \(x_{v_j} = 0 \). By Lemma 2.3, relocating the tree \(T_j \) from \(v_j \) to \(v_i \) for some \(i \) for which \(x_{v_i} \neq 0 \), we obtain a graph in \(\mu_n(g,d) \) with smaller least \(Q \)-eigenvalue, a contradiction. We also claim that there is only one nontrivial tree \(T \). If not, there exist two nontrivial trees, say \(T_i \), \(T_j \) attached at \(v_i \), \(v_j \), respectively. By Lemma 2.2 and 2.4, relocating the tree \(T_j \) from \(v_j \) to one vertex of tree \(T_i \) (if \(\left| x_{v_j} \right| \geq \left| x_{v_i} \right| \)), or relocating the tree \(T_i \) from \(v_i \) to one vertex of tree \(T_j \), (if \(\left| x_{v_i} \right| \geq \left| x_{v_j} \right| \)), we can obtain a graph in \(\mu_n(g,d) \) with smaller least \(Q \)-eigenvalue, it contradicts to the minimum of \(G \).

We assume that \(P' = u_0, u_1, \cdots, u_{d'} \) (let \(u_0 = v_g \) and \(d' = d - \frac{s-1}{2} \)) is the diameter-path of the only nontrivial tree \(T \). We claim that any vertex \(x \in V(G \setminus \{C_g \cup P'\}) \) is a pendant vertex, and if exists, it attached to the unique vertex \(u_{d'-1} \). First, we suppose that there exits a pendant path \(P'' = w_0, w_1, \cdots, w_s \) \((2 \leq s \leq d')\) attached to the path \(P' \).

Case 1. \(s = d' \), then we can see that \(w_0 = u_0 \).
If $|x_{u_{r+1}}| \geq |x_{u_{r-1}}|$, then replacing edge $w_{r-1}w_s$ by $u_{d'-1}w_s$, (otherwise, replacing $u_{d'-1}w_s$ by $w_{r-1}u_{d'}$). We can obtain a new graph G', and $G' \in \mu_n(g,d)$, by lemma 2.4, it followed that G' has smaller least Q-eigenvalue, a contradiction.

Case 2. $2 \leq s < d'$, then $w_0 \in \{u_0, u_1, \cdots u_{d'-1}\}$, as the P' is the diameter-path of T. As the assumption that G is a minimizing graph and $|x_{u_{d'-1}}| \geq |x_{u_0}|$ (by lemma 2.2), by lemma 2.4, we can see that $w_0 = u_{d'-1}$. Then we compare $|x_{u_{d'-1}}|$ with $|x_{u_{d'-1}}|$, by the same discussion as the Case 1, We can obtain a new graph G', and $G' \in \mu_n(g,d)$, by lemma 2.4, it followed that G' has smaller least Q-eigenvalue, a contradiction.

So, any vertex $x \in V(G \setminus C \cup P')$ is a pendant vertex.

Now, suppose that G contains at least one such star S_{u_k}, which has center u_k, $(k = 0, 1, 2, \cdots, d'-2)$, as $|x_{u_{d'-1}}| \geq |x_{u_k}|$ (by lemma 2.2), denote by G' the graph

$$G - \sum_{w \in N_{S_{u_k}}(u_k)} wu_k + \sum_{w \in N_{S_{u_k}}(u_k)} wu_{d'-1}$$

and $G' \in \mu_n(g,d)$, by lemma 2.4, G' has smallest least Q-eigenvalue, a contradiction.

So, we can easily conclude that $U_n(g,d)$ is the unique minimizing graph.

Denote by $t_n(g,d)$ the minimum of the least Q-eigenvalues of graphs in \(\mu_n(g,d)\), that is, the least Q-eigenvalue of $U_n(g,d)$.
Lemma 3.3 \(t_n(g,d) \) is strictly increasing with respect to odd \(g \), \(g \geq 3 \).

Proof. Let \(U_n(g,d) \) with some vertices labeled as in Fig.1, and \(x \) be a unit first \(Q \)-eigenvector of \(U_n(g,d) \). Suppose that \(g \geq 5 \), as \(x_{v_{g+1}} = x_{v_{g+1}} \) by lemma 2.5, replacing edge \(v_{g-2}v_{g-1} \) by edge \(v_{g-2}v_{g+1} \), we obtain a new graph \(G' \in \mu_n(g-2,d) \), which satisfies that \(x'Q(G')x = x'Q(U_n(g,d))x = t_n(g,d) \). So, \(q_n(G') \leq t_n(g,d) \), and hence, \(t_n(g-2,d) \leq q_n(G') \leq t_n(g,d) \). The result follows.

Corollary 3.4 Among all graphs in \(\mu_n(d) \), \(U_n(3,d) \) is the unique minimizing graph.

By the lemma 2.6 and lemma 3.1-3.4, we arrive at the main Theorem of this paper.

Theorem 3.5 Among all graphs in \(\zeta_n(d) \), \(U_n(3,d) \) is the unique minimizing graph.

Proof. Let \(G \) be a minimizing graph in \(\zeta_n(d) \). Then \(G \) contains at least an induced odd cycle, say \(C_g \). Let \(G' \) be a unicyclic spanning subgraph of \(G \), which obtained by deleting an edge in every cycle except for \(C_g \) and maintain that \(G' \in \mu_n(g,d) \). By lemma 2.6 and Corollary 3.4, we can see that

\[
q_n(U_n(3,d)) = t_n(3,d) \leq t_n(g,d) \leq q_n(G') \leq q_n(G)
\]

(3.1)

As \(G \) is a minimizing graph in \(\zeta_n(d) \), all inequalities in (3.1) hold as equalities, by Lemma 3.2 and 3.3, which implies that \(g = 3 \), \(G' = U_n(3,d) \) and \(q_n(G) = q_n(U_n(3,d)) \).

The corresponding author. E-mail address: 741856964@qq.com
Now, we prove that \(G = U_n(3,d) \). Suppose that \(E(G) \setminus E(U_n(3,d)) \neq \emptyset \).

Recalling the definition of \(G' \) and \(G' = U_n(3,d) \), the set \(E(G) \setminus E(U_n(3,d)) \) consists of some edges joining the vertices of \(C_3 \) and the vertices of \(T \) or some edges within the vertices of \(T \). So, for each edge \(uv \in E(G) \setminus E(U_n(3,d)) \), if \(x \) is a first \(Q \) - eigenvector of \(U_n(3,d) \), then by Lemma 2.2 and Lemma 2.5(3) we can see that \(x_u + x_v \neq 0 \).

Let \(x \) be a unit first \(Q \) - eigenvector of \(G \). Then

\[
q_n(G) = \sum_{uv \in E(G)} [x_u + x_v]^2 = \sum_{uv \in E(U_n(3,d))} [x_u + x_v]^2 + \sum_{uv \in E(G) \setminus E(U_n(3,d))} [x_u + x_v]^2 \\
\geq \sum_{uv \in E(U_n(3,d))} [x_u + x_v]^2 \geq q_n(U_n(3,d))
\]

Since \(q_n(G) = q_n(U_n(3,d)) \), \(x \) is also a first \(Q \) - eigenvector of \(U_n(3,d) \), so for each edge \(uv \in E(G) \setminus E(U_n(3,d)) \), \(x_u + x_v = 0 \), a contradiction. Hence, \(E(G) \setminus E(U_n(3,d)) = \emptyset \), the result follows.

4. Acknowledgements

This work is jointly supported by “the Fundamental Research Funds for the Central Universities (No.2012LWA08)”, and “the National Natural Science Foundation of China (No. 11171343)”.

References