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Abstract: Edge detection is one of the basic operation carried out in image processing and object identification .In this paper, we 

present a distributed Canny edge detection algorithm that results in significantly reduced memory requirements, decreased latency and 

increased throughput with no loss in edge detection performance as compared to the original Canny algorithm. The new algorithm uses a 

low-complexity 8-bin non-uniform gradient magnitude histogram to compute block-based hysteresis thresholds that are used by the Canny 

edge detector. Furthermore, an FPGA-based hardware architecture of our proposed algorithm is presented in this paper and the 

architecture is synthesized on the Xilinx Spartan-3E FPGA. Simulation results are presented to illustrate the performance of the proposed 

distributed Canny edge detector. The FPGA simulation results show that we can process a 512×512 image in 0.28ms at a clock rate of 100 

MHz. 
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1. Introduction 
Edge detection serves as a pre-processing step for many image processing algorithms such as image enhancement, image 

segmentation, tracking and image/video coding. Typically, edge detection algorithms are implemented using software. With advances in 

Very Large Scale Integration (VLSI) technology. 

Some approaches have been proposed for real-time edge detection. Alzahrani and Chen present an absolute different mask 

(ADM) edge detection algorithm and its pipelined VLSI architecture but the edge detector in [1] offers a trade-off between precision, cost 

and speed, and its capability to detect edges is not as good as the Canny algorithm(complex than other edge detection algorithms, such as 

Roberts, Prewitt and Sobel algorithms). There is another set of work on Deriche filters that have been derived using Canny’s criteria. For 

instance, it was stated in [2] that a network with four transputers takes 6s to detect edges in a 256×256 image using the Canny- Deriche 

algorithm, far from the requirement for real-time applications .The approach of [3] operates on two rows of pixels at a time. This reduces 

the memory requirement at the expense of a decrease in the throughput. Furthermore, it is known that the original Canny edge detection 

algorithm needs two adaptive image-dependent high and low thresholds to remove false edges. However, the algorithm in [3] just fixes 

high and low thresholds in order to overcome the dependency between the blocks, which results in a decreased edge detection 

performance. 

The hysteresis threshold calculation is a key element that greatly affects the edge detection results. However, the original Canny 

algorithm computes the high and low thresholds for edge detection based on the entire image statistics,which prevents the processing of  

individual blocks  independently. 

 
Fig.1. Block diagram of the Canny edge detection algorithm. 

In [4], we proposed a new threshold selection algorithm based on the distribution of pixel gradients in a block of pixels to 

overcome the dependency between the blocks. However, in [4], the hysteresis thresholds calculation is based on a very finely and 

uniformly quantized 64-bin gradient magnitude histogram, which is computationally expensive and, thereby, hinders the real-time 
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implementation. In this paper, a method based on non-uniform and coarse quantization of the gradient magnitude histogram is proposed. 

In addition, the proposed algorithm is mapped onto a  reconfigurable hardware architecture.  

2. CANNY EDGE DETECTION ALGORITHM 

Canny developed an approach to derive an optimal edge detector based on three criteria related to the detection performance. The 

model was based on a step edge corrupted by additive white Gaussian noise. A block diagram of the Canny edge detection algorithm is 

shown in Fig. 1. The original Canny algorithm [5] consists of the following steps:  

1. Smoothing the input image by Gaussian mask. The output smoothed image is denoted as I(x, y).  

2. Calculating the horizontal gradient Gx(x, y) and vertical gradient Gy(x, y) at each pixel location by convolving the image I(x, y) with 

partial derivatives of a 2D Gaussian function. 

3. Computing the gradient magnitude G(x, y) and direction θG(x, y) at each pixel location. 

4. Applying non-maximum suppression (NMS) to thin edges. 

5. Computing the hysteresis high and low thresholds based on the histogram of the magnitudes of the gradients of the entire image. 

6. Performing hysteresis thresholding to determine the edge map. 

 

3. PROPOSED DISTRIBUTED CANNY EDGE DETECTION ALGORITHM 
The Canny edge detection algorithm operates on the whole image and has a latency that is proportional to the size of the 

image. While performing the original Canny algorithm at the block-level would speed up the operations, it would result in loss of 

significant edges in high-detailed regions and excessive edges in texture regions. Natural images consist of a mix of smooth regions, 

texture regions and high-detailed regions and such a mix of regions may not be available locally in every block of the entire image. In [4], 

we proposed a distributed Canny edge detection algorithm, which removes the inherent dependency between the various blocks so that the 

image can be divided into blocks and each block can be processed in parallel. 

The input image is divided into m x m overlapping blocks. The adjacent blocks overlap by (L − 1)/2 pixels for a L×L gradient 

mask. However, for each block, only edges in the central n× n (where n = m + L − 1) non-overlapping region are included in the final 

edge map. Steps 1 to 4 and Step 6 of the distributed Canny algorithm are the same as in the original Canny algorithm except that these are 

now applied at the block level. Step 5, which is the hysteresis high and low thresholds calculation, is modified to enable parallel 

processing. In [4], a parallel hysteresis thresholding algorithm was proposed based on the observation that a pixel with a gradient 

magnitude of 2, 4 and 6 corresponds to blurred edges, psychovisually significant edges and very sharp edges, respectively. In order to 

compute the high and low hysteresis thresholds, very finely and uniformly quantized 64-bin gradient magnitude histograms are computed 

over overlapped blocks. If the 64-bin uniform discrete histogram is used for the high threshold calculation, this entails performing 64 

multiplications and 64×Np comparisons. 

             
(a)                                                 (b) 

Fig.2.(a) Original 512×512 House image; (b) Histogram of the gradient magnitude after non-maximal suppression of the House image. 

As in [6], it was observed that the largest peak in the gradient magnitude histograms after NMS of the Gaussian smoothed natural 

images occurs near the origin and corresponds to low-frequency content, while edge pixels form a series of smaller peaks where each peak 

corresponds to a class of edges having similar gradient magnitudes. Consequently, the high threshold should be selected between the 

largest peak and the second largest edge peak. 
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Fig 3.  Reconstruction values and quantization levels; min and max representation. 

A sample gradient magnitude histogram is shown in Fig. 2(b) for the 512×512 House image (Fig. 2(a)). Based on the above 

observation, we propose a non-uniform quantizer to discretize the gradient magnitude histogram. Specifically, the quantizer needs to have 

more quantization levels in the region between the largest peak A and the second largest peak B and few quantization levels in other parts. 

Fig. 3 shows the schematic diagram of the designed quantizer. Accordingly, n reconstruction levels can be computed as follows: 

R1 = (min + max)/2,                                                                                                (1) 

Ri+1 = (min + Ri)/2, i = 2, ..., n                                                                                 (2) 

where min and max represent, respectively, the minimum and maximum values of the gradient magnitude after NMS, and Ri is the 

reconstruction level. The proposed distributed thresholds selection algorithm is shown in Fig. 4. Let Gt be the set of pixels with gradient 

magnitudes greater than a threshold t, and let NGt for t = 2, 4, 6, be the number of corresponding gradient elements in the set Gt. Using NGt, 

an intermediate classification threshold C is calculated to indicate whether the considered block is high-detailed, moderately edged, 

blurred or textured, as shown in Fig. 4. Consequently, the set Gt = Gt=c can be selected for computing the high and low thresholds. The 

high threshold is calculated based on the histogram of the set Gc such that 20% of the total pixels of the block would be identified as 

strong edges. The lower threshold is the 40% percentage of the higher threshold as in the original Canny algorithm. 

We compared the high threshold value that is calculated using the proposed distributed algorithm based on an 8-bin non-uniform 

gradient magnitude histogram with the value obtained when using a 16-bin non-uniform gradient magnitude histogram. These two high 

thresholds have similar values. Therefore, we use the 8-bin non-uniform gradient magnitude histogram in our implementation. 

4. PROPOSED DISTRIBUTED CANNY ALGORITHM   IMPLEMENTATION ON FPGA 
In this section, we describe the hardware implementation of our proposed distributed Canny edge detection algorithm on the 

Xilinx Spartan-3E FPGA. 

4.1. Architecture Overview 

Depending on the available FPGA resources, the image needs to be partitioned into q sub-images and each sub-image is further 

divided into p m x m blocks. The proposed architecture, shown in Fig.4, consists of q processing units in the FPGA and some Static 

RAMs (SRAM) organized into q memory banks to store the image data, where q equals to the image size divided by the SRAM size. Each 

processing unit processes a sub-image and reads/writes data from/to the SRAM through ping -pong buffers, which are implemented with 

dual port Block RAMs (BRAM) on the FPGA. As shown in Fig.4, each processing unit (PU) consists of p computing engines (CE), where 

each CE detects the edge map of an m ×m block image. Thus, p × q blocks can be processed at the same time and the processing time for 

an N×N image is reduced, in the best case, by a factor of p x q. 

 
Fig.4. The architecture of the proposed distributed Canny algorithm. 
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Fig.5. Block diagram of the CE (compute engine) for the proposed distributed Canny edge detection. 

The specific values of p and q depend on the processing time of each PE, the data loading time from the SRAM to the local 

memory and the interface between FPGA and SRAM, such as total pins on the FPGA, the data bus width, the address bus width and the 

maximum system clock of the SRAM. In our application, we choose p = 2 and q = 8. In the proposed architecture, each CE consists of the 

following units, as shown in Fig.5: 

4.2. Image Smoothening 

The input image is smoothened using a 3×3 Gaussian mask, as shown in Fig. 6(a). The Gaussian filter (Fig. 6(a))is separable and, 

thus, the implementation of the 2-D convolution with the 3×3 Gaussian mask is achieved using row and column 1- D convolutions. The 

proposed architecture for the smoothening unit is shown in Fig. 6(b).  

                                                             
(a)                                                                           (b)  

Fig6.(a) Mask for the low pass Gaussian filter with p = 0.0437; q = 0.9947; (b) Pipelined Image Smoothening Unit. 

The main components of the architecture consists of a 1-D finite impulse filter (FIR) to process the data and the on-chip Block 

RAM (BRAM) to store the data. In our design, we adopt the Xilinx’s pipelined FIR IP core, which provides a highly parameterizable , 

area-efficient, high-performance FIR filter utilizing the structure characteristics in the coefficient set, such as symmetry and conjugacy 

.By exploiting the symmetry of the Gaussian filter, the architecture uses two multipliers to perform the 1-D convolution using a 3-tap 

filter. The address controller fetches the input image data from the local memory into the FIR core and, after the computation, it stores the 

results back in the BRAM. 

4.3. Gradients and Gradient Magnitude Calculation 

This stage calculates the vertical and horizontal gradients using convolution kernels. The kernels vary in size from 3×3 to 9×9, 

depending on the sharpness of the image. The Xilinx FIR IP core, which can support up to 256 sets of coefficients with 2 to 1024 

coefficients per set, is used to implement the kernels. The whole design is pipelined, and thus the output is generated every clock cycle. 

This is input to the magnitude calculation unit which computes, at each pixel location, the gradient magnitude from the pixel’s horizontal 

and vertical gradients. 
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Fig7.Gradient and Magnitude Calculation Unit. 

The architecture of this unit is shown in Fig.7. The gradient calculation architecture consists of two 1-D FIR models and the 

corresponding local memory. The filters for computing the horizontal and vertical gradient elements can process data in parallel. The 

magnitude computation consists of two multipliers and one square- root computation module, which are implemented by the Xilinx Math 

Function IP cores. 

4.4. Directional Non Maximum Suppression 

Fig. 8 shows the architecture of the directional non-maximum suppression unit. In order to access all the pixels’ gradient 

magnitudes in the 3×3 window at the same time, two FIFO buffers are employed. 

 
Fig8.Directional Non Maximum Suppression Unit. 

 The horizontal gradient Gx and the vertical gradient Gy control the selector which delivers the gradient magnitude (marked as 

M(x, y) in Fig.8) of neighbours along the direction of the gradient, into the arithmetic unit. 

4.5. Calculation of the hysteresis thresholds 

Since the low and high thresholds are calculated based on the gradient histogram, we need to compute the histogram of the image 

after it has undergone directional non-maximum suppression .As discussed in Section 3, an 8-step non-uniform quantizer is employed to 

obtain the discrete histogram for each processed block.  

 
Fig 9.The architecture of the Threshold Calculation Unit. 

4.6. Thresholding with hysteresis 

Since the output of the non-maximum suppression unit contains some spurious edges, the method of thresholding with hysteresis 

is used. Two thresholds, high threshold ThH and low threshold ThL , which are obtained from the threshold calculation unit, are employed. 

Let f(x, y) be the image obtained from the non maximum suppression stage, f1(x, y) be the strong edge image and f2(x, y) be the weak 

edge image. 

 
Fig 10.Pipelined architecture of the Thresholding unit 

 

5. SIMULATION RESULTS 
The algorithm performance was tested using a variety of512×512 natural images. 

5.1. Mat lab Simulation Results 
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We conducted the following experiments to investigate the effectiveness of the new distributed Canny edge detector that is proposed in 

this paper.  

             
(a)                                                     (b)                                                                            (c) 

Fig.11. Floating-point Mat lab simulation results for the 512×512 House image: (a) Edge map of the original Canny edge detector; (b) Edge map of the 

algorithm of [4] with a 3×3 gradient mask and a block size of 64; (c) Edge map of our proposed algorithm with a 3×3 gradient mask and a block-size of 

64. 

                  
                (a)                                                                                 (b) 

Fig.12. (a)Edge map of Mat lab implementation; (b) Edge map of FPGA implementation. 

5.2. Fixed-point Mat lab and FPGA Simulation Results 

Fig.12 shows the fixed-point Mat lab implementation software result and the FPGA implementation generated result for the 512×512 

House image using the proposed distributed Canny edge detector with block size of 64×64 and a 3×3gradient mask. The FPGA result is 

obtained using Model Sim .It is clear that the hardware implementation of our proposed algorithm can successfully detect significant 

edges and results in edge maps that are similar to the ones that are obtained using the fixed-point Mat lab simulation. Furthermore, for a 

100MHz clock rate, the total processing running time using the FPGA implementation is 0.28ms for a 512×512 image. 

6. CONCLUSION 
We presented a novel distributed Canny edge detection algorithm that results in a significant speed up without sacrificing the edge 

detection performance. We proposed a novel non uniform quantized histogram calculation method in order to reduce the 

computational cost of the hysteresis threshold selection .As a result, the computational cost of the proposed algorithm is very low 

compared to the original Canny edge detection algorithm. The algorithm is mapped to onto a Xilinx Spartan-3E FPGA platform and 

tested using Model Sim. It is capable of supporting fast real-time edge detection for images and videos with various spatial and temporal 

resolutions including full-HD content.     
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