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Abstract

English mathematics Professor, Sir Andrew John
Wiles of the University of Cambridge finally and
conclusively proved in 1995 Fermat’s Last Theo-
rem which had for 358 years notoriously resisted
all efforts to prove it. Sir Professor Andrew Wiles’s
proof employs very advanced mathematical tools
and methods that were not at all available in the
known World during Fermat’s days. Given that Fer-
mat claimed to have had the ‘truly marvellous’
proof, this fact that the proof only came after 358
years of repeated failures by many notable math-
ematicians and that the proof came from mathe-
matical tools and methods which are far ahead of
Fermat’s time, this has led many to doubt that Fer-
mat actually did possess the ‘truly marvellous’ proof
which he claimed to have had. In this short reading,
via elementary arithmetic methods which make use
of Pythagoras theorem, we demonstrate conclusively
that Fermat’s Last Theorem actually yields to our
efforts to proving it.
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1 Introduction

This is our second version of a simpler, much more
general and truly marvellous proof of Fermat’s Last
Theorem. As already highlighted in the first instal-
ments: the pre-eminent French lawyer and amateur
mathematician, the late Advocate – Pierre de Fermat
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(1607−1665) in 1637, famously in the margin of a copy
of the famous book Arithmetica which was written by
Diophantus of Alexandria (∼ 201− 215 AD), wrote:

“It is impossible to separate a cube into two cubes,
or a fourth power into two fourth powers, or in gen-
eral, any power higher than the second, into two like
powers. I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”

In the parlance of mathematical symbolism, this can
be written succinctly as:

6 ∃ (x, y, z, n) ∈ Z+ : xn+yn = zn for (n > 2), (1)

where the triple (x, y, z) 6= 0, is piecewise coprime, and
Z+ is the set of all positive integer numbers. This the-
orem is classified among the most famous theorems in
all History of Mathematics and prior to 1995, prov-
ing it was – and is; ranked in the Guinness Book of
World Records as one of the “most difficult mathemat-
ical problems” known to humanity. Fermat’s Last The-
orem is now a true theorem since it has been proved by
Sir Professor Andrew Wiles’s proof[1] employs highly
advanced mathematical tools and methods that were
not at all available in the known World during Fer-
mat’s days. Actually, these tools and methods were
invented (discovered) in the relentless effort to solve
this very problem. Herein, we supply a very simple
proof of Fermat’s Last Theorem, but prior to 1995 it
was only a conjecture. Before it was proved in 1995, it
is only for historic reasons that it was known by the
title “Fermat’s Last Theorem”. As highlighted in the
first instalent, our aim is to give a simper proof that
makes use of methods that where available in Fermat’s
days. In this way, we seek to validate Fermat’s claim
that he had the proof.

Before we proceed to the main business of the day,
we write down the well known method for generating

[1]The proof by Sir Professor Wiles is well over 100 pages
long and consumed about seven years of his research time.
For this notable achievement of solving Fermat’s Last The-
orem, he was Knighted Commander of the Order of the
British Empire in 2000 by Her Majesty Queen Elizabeth
(II), and received many other honours around the World.
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primitive Pythagorean triples. This method is key to
our proof. Thereafter, we give a key Lemma which is
vital for our proof. In §(4) we briefly discuss notable
attempts at proving Fermat’s Last Theorem. There-
after, we go to the main business of the day where
we supply our simpler, much more general and truly
marvellous proof of Fermat’s Last Theorem.

2 Primitive Pythagorean Triples

The great Euclid (b.300 BC) of Alexandria – Egypt;
provided a fundamental formula for generating primi-
tive Pythagorean triples given an arbitrary pair of pos-
itive integers p and q with (p > q) such that (p− q) is
odd. The formula states that the integers (X ∈ O+),
(Y ∈ E+) and (Z ∈ O+):

X = p2 − q2 ∈ O+

Y = 2pq ∈ E+

Z = p2 + q2 ∈ O+
, (2)

constituent a primitive Pythagorean triple. A primi-
tive Pythagorean triple is one in which X, Y and Z are
piecewise co-prime. By piecewise co-prime, we mean
that any combination of the triple X, Y and Z has
no common factor other than unity. Below is the proof
that the numbers X,Y and Z do yield Pythagoras’s
formula:

∈O+︷ ︸︸ ︷(
p2 + q2

)2 ≡

∈O+︷ ︸︸ ︷(
p2 − q2

)2
+

∈E+︷ ︸︸ ︷
(2pq)

2

⇓ ⇓ ⇓
Z2 = X2 + Y 2

. (3)

Clearly, there are infinitely many primitive Pythagorean
triples. Invariably – this means that, there must exist
infinitely many piecewise co-prime triples (X,Y, Z) ∈
Z+ where Z+ is the set of all positive integers. An
important fact to note, a fact directly emergent from
the foregoing is that all primitive Pythagorean triples
yield to Euclid’s formula and further, Euclid’s set of
primitive Pythagorean triples comprises all the prim-
itive Pythagorean triples that exist in Nature.

2.1 Corollary

We will strongly emphasis here that if (X,Y, Z) con-
stitute a primitive Pythagorean triple satisfying the
Pythagoras equation (Z2 = X2 +Y 2), then (Z ∈ O+),
while (X ∈ E+ &Y ∈ O+) or (X ∈ O+ &Y ∈ E+). It
is impossible to have a primitive Pythagorean triple for
which (Z ∈ E+). This condition will is the sole-root to
the proof in §(5.1.2) and (5.2). In these sections (5.1.2
and 5.2), we will generate a primitive Pythagorean
triple for which (Z ∈ E+).

3 Lemma

If [(a, b) ∈ Z+] such that:

a
√
b = c+ d, (4)

for some numbers (c, d), then, insofar as whether or
not
√
b is an integer or not, there are two conditions,

and these are:
1 (
√
b ∈ Z+).

2 (
√
b /∈ Z+). That is, (

√
b ∈ Q+) is an irrational

number: Q+ is the set of all positive irrational
numbers.

—
1 If, (

√
b ∈ Z+), then, one can always find some

(c, d) such that [(c, d) ∈ Z+].

2 If, (
√
b /∈ Z+), then

√
b is a surd – it is an irrational

number and [(c, d) /∈ Z+]; and there must exist
some [[(c1 < c) & (d1 < d)] ∈ Z+] such that (c =
c1
√
b) and (d = d1

√
b) so that (a

√
b = c1

√
b +

d1
√
b), which implies that:

a = (c1 + d1) ∈ Z+. (5)

While (c1, d1) are not necessarily integers, one can al-
ways find some (c1, d1) such that [(c1, d1) ∈ Z+] for as
long as [(a > 1) ∈ Z+]. The above stated Lemma §(3)
is a self evident truth which is not only necessary but
vital and pivotal for the proof that we now give below.
Before that – using this Lemma §(3), we shall set-up
a Theorem that is necessary for this proof.

4 Fermat’s Proofs for the Case (n = 4)

Fermat was the first to provide a proof for the case
(n = 4) which stated that for all non-zero piecewise
coprime triple (x, y, z) ∈ Z+, the equation x4+y4 = z4

admits no solutions. This proof by Fermat is the only
surviving proof of Fermat’s Last Theorem and as is the
case with Euler’s proof for the case (n = 3), Fermat’s
proof makes use of the technique of infinite descent.
Further, as is the case with Euler’s proof for (n = 3),
Fermat’s proof is not the only proof possible as other
authors have published their independent proofs [see
e.g. Refs. 3, 5–8, amongst many others]. Even after
Sir Professor Andrew Wiles’s 1995 breakthrough [10],
researchers are still publishing variants of the proof for
the case (n = 4) [cf. 1, 2, 4].

Below, we present Fermat’s proof. We present this
proof for nothing other than instructive purposes.
There lies in this proof for (n = 4) something which
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when combined with what we have stated in the penul-
timate of §(2) i.e., on the impossibility of (Z ∈ E+), a
solution to FLTs is achieved.

Now, the equation (x4 + y4 = z4) – with coprime
[{(x, y, z) > 1} ∈ Z+]; can be written equivalently as:

Z2 = X4 − Y 4, (6)

where [{(X,Y, Z) > 1} ∈ Z+] is a set of coprime num-
bers; and further, this equation can be rewritten as:

Z2 = (X2 + Y 2)(X2 − Y 2). (7)

Since X and Y are coprime, the greatest common di-
visor of (X2 +Y 2) and (X2−Y 2) is either 2 (Case A)
or 1 (Case B). The theorem is proven separately for
these two cases.

4.0.1 Case A

In this case, both X and Y can only be odd with Z
being even. Since the coprime triple (X2, Y 2, Z) form
a primitive Pythagorean triple (remember X4 = Y 4 +
Z2), they can be decomposed into:

Y 2 = p2 − q2
Z = 2pq
X2 = p2 + q2

(8)

where p and q are coprime integers and (p > q > 1)
with [(p− q) ∈ O+]. From (8), it follows that:

(XY )2 = p4 − q4. (9)

In (9) we have produced another solution (XY, p, q)
which is such that (0 < p < X). The triple (XY, p, q)
is another solution to the original equation – albeit,
smaller than the original solution i.e. (0 < p < q < X).
Applying the same procedure to (XY, p, q) would pro-
duce another solution, still smaller, and so on. But this
is impossible, since natural numbers cannot be shrunk
indefinitely. Therefore, the original solution (X,Y, Z)
is impossible.

4.0.2 Case B

In this case, the two factors [(X2+Y 2) and (X2−Y 2)]
are coprime. Since their product is a square, that is to

say, [ (X2 + Y 2)(X2 − Y 2) = Z2], they must each be
a squares, i.e.:

p2 = X2 + Y 2

q2 = X2 − Y 2 (10)

The numbers (p, q) are both odd, since (p2+q2 = 2X2)
is an even number, and since X and Y cannot both be
even. Therefore, the sum and the difference of p and
q are likewise even numbers, one can define integers u
and v as:

u = 1
2 (p+ q)

v = 1
2 (p− q) (11)

Since (p, q) are coprime, so are (u, v); only and only
one of them can be even. Since (p2 − q2 = 2Y 2), it
follows that (Y 2 = 2uv), hence, exactly one of them
(u, v) is even. For illustration, let u be even; then the
numbers may be written as (u = 2m2) and (v = k2).
Since (u, v,X) form a primitive Pythagorean triple,
i.e.:

1

2
(p2 + q2) = u2 + v2 = X2 (12)

they can be expressed in terms of smaller integers g
and h using Euclid’s formula

v = g2 − h2
u = 2gh
X = g2 + h2

(13)

Since u = 2m2 = 2gh, and since g and h are coprime,
they must be squares themselves, g = r2 and h = s2.
From this we obtain the equation:

v = g2 − h2 = r4 − s4 = k2 (14)

The triple (r, s, k) is another solution to the original
equation – albeit, smaller than the original solution
i.e. (0 < g < h < X). Applying the same procedure to
(r, s, k) would produce another solution, still smaller,
and so on. But this is impossible, since natural num-
bers cannot be shrunk indefinitely. Therefore, the orig-
inal solution (X,Y, Z) is impossible.
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5 Proof of Fermat’s Last Theorem (II)

As with the previous proofs in the presiding chapter,
the proof that we are going to provide of FLT is a proof
by contradiction. We assume the statement:

∃ {[(x, y, z) > 1], n} ∈ Z+ : xn+yn = zn, (∀n > 2),

(15)

to be true. Throughout this reading, we shall take
(z ∈ O+), (y ∈ E+) and (x ∈ O+). The triple
(x, y, z) is piecewise coprime, the meaning of which is
that the greatest common divisor [gcd()] of this triple
or any arbitrary pair of the triple is unity.

That is, for our proof, by way of contradiction,
we assert that there exists a set of positive integers
(x, y, z, n) that satisfies the simple relation (xn + yn =
zn) for all (n > 2). Having made this assumption, if we
can show that just one of the numbers of the quadru-
plet (x, y, z, n) can not belong to the set of integers,
we will have proved Fermat’s Last Theorem. In our
approach to the problem (proof), we split it into two
parts, i.e.:

• Case (I) : This case proves for all powers of
[(n > 2) ∈ O+] where O+ is the set of all positive
odd integer numbers.

• Case (II) : This case proves for all powers of
[(n > 4) ∈ E+] where E+ is the set of all pos-
itive even integer numbers. The case (n = 4) is
considered to have been proved by Fermat as pre-
sented in §(4). Actually, in-order for us to prove
FLT for even indices, the present proof requires
us to make a separate proof for (n = 4). Given
that Fermat did provide a proof for (n = 4) and
claimed to have discovered a general proof for
FLT, these simple facts strongly point to the idea
that the proof that we here provide may very well
be the proof Fermat claimed to have discovered.

Since the set [(n > 2) ∈ Z+] contains only odd and
even values of n, to prove that there does not exist
an even and odd [(n > 2) ∈ Z+] that satisfies (15) is
a proof that there does not exist [(x, y, z, n) ∈ Z+ :
(xn + yn = zn), (n > 2)]. This is a proof of the
original statement (1).

5.1 Case (I): Odd Powers of (n > 2)

Now, we have to prove for the case [(n > 2) ∈ O+]. The
fact that [(n > 2) ∈ O+], this implies that we can set
(n = 2k + 1) where [k = 2, 3, 4, 5, . . . , etc ⇒ (k > 1)]

if n is to be greater than 2. With (n = 2k + 1), the
equation (xn + yn = zn) can now be rewritten
as (x2k+1 + y2k+1 = z2k+1) and this can further be
rewritten as:

(
xk
√
x
)2

+
(
yk
√
y
)2

=
(
zk
√
z
)2
. (16)

The three numbers (xk
√
x, yk

√
y, zk
√
z) are not nec-

essarily integers, thus this triple is not a Pythagorean
triple in the traditional parlance of mathematics. How-
ever, this handicap does not stop us (or anyone for that
matter) from finding real numbers (p, q : p > q) which
are not necessarily integers, where these numbers (p, q)
are such that:

 xk
√
x

yk
√
y

zk
√
z

 =

 p2 − q2
2pq

p2 + q2

 . (17)

Our focal point here is the z-component of (17). For z,
we have two and only two cases (conditions) and these
are:

• Case (A): (
√
z ∈ Q+). That is,

√
z, is an irrational

number. The set Q+ is the set of positive irrational
numbers.

• Case (B): (
√
z ∈ Z+).

We will provide proofs for the two cases as stated
above.

5.1.1 Case (A): Proof for the Case (
√
z ∈ Q+)

In the case where (
√
z ∈ Q+), it follows that in general

we must have:

p2 = α1z
k
√
z + β

q2 = α2z
k
√
z − β , (18)

where the α’s are not integers but are positive real
numbers and β may or may not be an integer and is
such that it is positive number.

With the definition of p and q as given in (18), there
are two routes to be taken, and these are:
1 Route (1): For which (β = 0).
2 Route (2): For which (β 6= 0).

Below, we will consider the two routes.

5.1.1.1 Route (1)

In this case where (
√
z ∈ Q+) and (β = 0), it

follows from Lemma §(3) that for the z-component
of (17), there must exist some (a > b > 1) ∈ Z+,
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such that (p2 = a
√
z) and (q2 = b

√
z), i.e.,

(zk
√
z = a

√
z + b

√
z). Thus, from, (p2 = a

√
z)

and (q2 = b
√
z), it follows that (p =

√
a
√
z) and

(q =
√
b
√
z). Substituting all this into (17), we will

have:

 xk
√
x

yk
√
y

zk
√
z

 =

 (a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z

 . (19)

Clearly, from (19), it follows that (
√
x /∈ Z+) be-

cause (z ∝ x), that is to say (z = s2x) for some
[(s > 1) ∈ Z+]. To see this is not difficult a thing
at all. We know that (xk ∈ Z+) but (19) is telling us
that [xk = (a − b)

√
z/x]. Since [(a − b) ∈ Z+], for

[xk = (a − b)
√
z/x ∈ Z+], we must have [

√
z/x =

s ∈ Z+] i.e. (z = s2x). This means that x and z share
a common factor (s2 > 1), the meaning of which is
that the triple (x, y, z) is not piecewise coprime. Since
our initial assertion runs contrary to our final conclu-
sion, hence, by way of contradiction, it follows that
our initial assertion is wrong as it has lead us to an
illogical conclusion. Hence, for [(x, y, z) ∈ Z+] (15) ad-
mits no solutions under the given conditions since the
piecewise coprime triple (x, y, z) can not be piecewise
coprime as initially assumed.

5.1.1.2 Route (2)

In this case where (
√
z ∈ Q+) and (β 6= 0), then, by

substituting p and q as given in (18) into (17), from
the z-component, we have (α1 +α2 = 1) and from the
x-component, we have (α1 − α2 = 0); from these two
equations, we will have (α1 = α2 = 1/2), therefore,
for p and q, we will have:

p2 = 1
2z

k
√
z + β

q2 = 1
2z

k
√
z − β , (20)

thus substituting this into (17), we will have:

 xk
√
x

yk
√
y

zk
√
z

 =

 2β
2
(
z2k+1/4− β2

)
zk
√
z

 . (21)

From the x-component of equation (21), we have
(x2k+1 = 4β2 ∈ Z+) – hence, it follows that
(β2 ∈ Z+); from the foregoing, clearly 2 is a fac-
tor of x. Going back to our initial assertion, y is an
even number the meaning of which that it is divisible
by 2. At this point, we will have to stop as we have
arrived at our desired contradiction since (x, y) have

a common factor 2, thus, by way of contradiction, our
initial assertion is certainly wrong. Both routes (1) and
(2) have led us to a contradiction. We shall now move
to Case (B).

5.1.2 Case (B): Proof for the Case (
√
z ∈ Z+)

If (
√
z = w ∈ Z+), clearly (p, q) ∈ Z+. If (p, q) ∈ Z+,

it follows that (
√
x = u) ∈ Z+ and (

√
y = v) ∈ Z+.

From this, it follows that (16) will now become:

[u(2k+1)]2 + [v(2k+1)]2 = [w(2k+1)]2. (22)

The above equation is equivalent to the Fermat’s orig-
inal equation where (n ∈ E+). Further, the triple
[u(2k+1), v(2k+1), w(2k+1)] is a primitive Pythagorean
triple. It follows that (17) can now be written as:

 u(2k+1)

v(2k+1)

w(2k+1)

 =

 p2 − q2
2pq

p2 + q2

 . (23)

We shall not prove that this equation has no solution
here – we shall do this §(5.2) below.

Summary

Combining the two proofs for the case [(n > 2) ∈ O+];
for the sub-cases (

√
z ∈ Z+) and (

√
z ∈ Q+), it follows

that, equation (15) admits no integer solutions for any
non-zero piecewise coprime triple [(x, y, z) ∈ Z+] for
all [(n > 2) ∈ O+].

5.2 Case (II): Even Powers of (n > 4)

If [(n > 4) ∈ E+], it is not difficult to see
that we can always write (n = 2`k) where [(` =
1, 2, 3, 4, . . . etc) ∈ Z+] and [(k = 3, 5, 7, . . . etc) ∈
O+] is an odd number greater than two. For example,
for the numbers (n = 6, . . . , 24), we have:

n ` k
6 1 3 21 × 3
8 3 1 23 × 1
10 1 5 21 × 5
12 2 3 22 × 3
14 1 7 21 × 7
16 4 1 24 × 1
18 1 9 21 × 9
20 2 5 21 × 3
22 1 11 21 × 11
24 3 3 23 × 3

Now, with (n = 2`k), then, under the given condi-
tions, we know that (15) can be rewritten as:

x2
`k + y2

`k = z2
`k, (24)
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and this can further be rewritten as:

(
x2

`−1k
)2

+
(
y2

`−1k
)2

=
(
z2

`−1k
)2
, (25)

where (x2
`−1k, y2

`−1k, z2
`−1k) is a piecewise coprime

triple and they constitute a primitive Pythagorean
triple.

Now, as is well known from §(2), namely Euclid’s
formula for generating primitive Pythagorean triples,

is that, since (x2
`−1k, y2

`−1k, z2
`−1k), is a primitive

Pythagorean triple, there must exist a pair of coprime
integers [(p > q) > 1], which are such that (p − q) is
odd, such that:

 x2
`−1k

y2
`−1k

z2
`−1k

 =

 p2 − q2
2pq

p2 + q2

 . (26)

From (26), we extract the x-component of this equa-

tion, i.e. (x2
`−1k = p2 + q2), and we will write this

equation as:

x2
`−1k = p2 − q2 = (p+ q)(p− q). (27)

The numbers (p+q) and (p−q) are both odd and have
no common factor greater than, unity, that is to say,
they are coprime. Because of this, it follows that they
must be such that:

(
p+ q
p− q

)
=

(
a2

`−1k

b2
`−1k

)
. (28)

Notice that (a, b) are coprime and (a, b, p, q) are co-
prime as-well.

Now, by addition of these two numbers [i.e. (p + q)
and (p− q)] as defined in (28), it follows that:

2p = a2
`−1k + b2

`−1k. (29)

Now, we need to go to the y-component of (26), that

is, (y2
`−1k = 2pq). We know that (p, q) are coprime and

one of them is odd and the other is even. Let us chose
that p is even and q is odd. It follows that the num-
bers 2p and q must have a (2`−1k)-th root, that is to

say, we must have q = s2
`−1k and p = 22

`−1gk−1r2
`−1k

where [{(r, s) > 1 : g ≥ 1} ∈ Z+], so that (y = 2grs).

From this, is follows that (2p = 22
`−1gkr2

`−1k): thus,
substituting this into (29), we will have:

22
`−1gkr2

`−1k = a2
`−1k + b2

`−1k. (30)

Notice that since the triple (a, b, p) is coprime, the

triple (22
`−1gkr2

`−1k, a, b) is coprime as-well.
If (` = 1), we will have:

(2gr)
k

= ak + bk. (31)

In (31) we have produced another solution (2gr, a, b),
i.e., the triple (2gr, a, b) is another solution to the origi-
nal equation – albeit, smaller than the original solution.
Applying the same procedure to (2gr, a, b) would pro-
duce another solution, still smaller, and so on. But this
is impossible, since natural numbers cannot be shrunk
indefinitely. Therefore, the original solution (x, y, z) is
impossible.

Now, if (` > 1), we will have:

(
22

`−2gkr2
`−2k

)2
︸ ︷︷ ︸

∈E+

=
(
a2

`−2k
)2

︸ ︷︷ ︸
∈O+

+
(
b2

`−2k
)2

︸ ︷︷ ︸
∈O+

. (32)

Notice that the triple (22
`−2gkr2

`−2k, a2
`−2k, b2

`−2k) is
not only coprime, it is a primitive Pythagorean triple.
According to the corollary presented in §(2.1), the

number 22
`−2gkr2

`−2k ought to be an odd number and
not an even number, while one of the two numbers

(a2
`−2k, b2

`−2k) is odd and the other is even. Such prim-

itive Pythagorean triple (22
`−2gkr2

`−2k, a2
`−2k, b2

`−2k)
satisfying (32), is impossible. We thus here arrive at
our desired contradiction.

5.3 Summary of the Two Proofs

In §(5.2) and (5.1), we have proved that (15) ad-
mits no integer solutions for any [(x, y, z) > 1] and
[(x, y, z) ∈ Z+] for all powers of [(n > 2) ∈ E+] and for
all powers (n > 2) ∈ O+. Combining these two proofs,
it follows from the foregoing as stated and outlined at
the beginning of this section, that (15) admits no inte-
ger solutions for any [(x, y, z) > 1] and [(x, y, z) ∈ Z+]
for all powers of [(n > 2) ∈ Z+]. Hence, Fermat’s Last
Theorem is here proved in a simpler, much more gen-
eral and truly marvellous manner.

6 General Discussion

If the proof we have provided herein stands the test of
time and experience, then, it is without a shred or dot
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of doubt that Fermat’s claim to have had a ‘truly mar-
vellous’ proof may very well resonate with truth. Our
reasons for thinking this are justified by the fact that
Fermat himself provided a proof for the case (n = 4).
The question is “Why did he provide this proof for the
case (n = 4)?” As in the proof that we have provided,
was not Fermat’s proof for the case (n = 4) part of a
general proof for the case [(n > 2) ∈ O+]? Our proof
here requires a separate proof for the case (n = 4) and
there-after a more general proof for (n > 4) is possible.
One can not thus rule out that Fermat provided the
proof for the case (n = 4) as part of a more general
proof for the case [(n > 2) ∈ O+].

The second reason for strongly siding with Fer-
mat is that the present proof employs the method of
Pythagorean triples which Fermat knew very well and
he used this in the proof for the case (n = 4). The sub-
tlety in finding a more general and elegant proof lies in
Lemma §(3); a fact that Fermat (as one of the greatest
number theorists) must have known. Off cause, we can
never know for sure whether the present proof is what
Fermat had at hand, or whether his claimed proof con-
tained as flaw. But, with the present proof in place, it
is difficult to now dismiss that Fermat’s claim may very
well be true because our proof employs mathematical
tools available in Fermat’s days.

As to ourself – given the present light, we do not
want to take away the fact that ‘Fermat’s claim may
very well be true’. He most certainly had the proof,
the problem is that the bare mathematical truth in the
form of Lemma §(3) may not have crossed the minds
of mathematicians in search of Fermat’s claimed proof
– it simply was overlooked. Clearly, for any book, the
standard ‘margin is [certainly] too narrow ’ to contain
the present proof, the meaning of which is that Fermat
was most certainly right in his famous claim.

Clearly, the problem with the proof is not that it
is difficult and only accessible to the highly esoteric,
no! We ourselves (i.e., amateur and seasoned mathe-
maticians alike) have made this problem appear very
difficult, highly esoteric and only accessible to the fore-
most and advanced mathematical minds. Given that
an arithmetic proof is very easy to judge as either
correct or wrong using 16th century arithmetic, few
– if any; would believe that this is possible for one
to obtain an arithmetic proof of Fermat’s Last Theo-
rem. The level difficulty and esoteric nature associated
with this problem has been – until the present reading,
placed very high and beyond the intellectual reach of
mortals of modest means. In the reading [9], we have
provided an even much simpler proofs of Fermat’s Last
Theorem and as well Beal’s Conjecture.

What could have happened leading to the elevation
of this problem to a point where it came to become one

of the most difficult problems in all History of Math-
ematics is that – perhaps; the plethora of maiden fail-
ures to provide a proof must have led people to think
that this problem must be very difficult. Failure after
failure and especially so by great mathematicians must
then have led to it [Fermat’s Last Theorem] achieving
‘international, worldwide and historic notoriety’ as a
very difficult problem that eluded even great minds
like Euler, Laplace and Gauss. With this kind of back-
ground, certainly, when people approached this prob-
lem, they most probably did so with in mind that it
was a very difficult problem probably to be solved by
‘real super geniuses’ and not mortals of modest means
e.g. ourself.

If someone told you that a given problem is so diffi-
cult, so much that it has thus far eluded the finest, ad-
vanced and most esoteric minds that have attempted
to find its solution, one naturally tries to use higher ad-
vanced methods to prove it. Further, if someone told
you that a given problem is so difficult, so much that
it have eluded the finest, advanced and most esoteric
minds that have attempted to find its solution, one
naturally is discouraged from using simple elementary
methods to prove it because the feeling one has is that,
if it can be solved via a simple method, surely, ad-
vanced minds before me must have discovered this,
thus leading one to try and climb higher than those
before them. If what we have presented stands the test
of time and experience, then, the way we approach dif-
ficult problems may need recourse, especially the way
the public media projects and posts the level difficulty
and the supposed esoteric effort required in-order to
solve these problems.

As we anxiously await the World to pass its judge-
ment on our proof, effort and work, we must — if this
be permitted at this point of closing, say that, we are
confident that – simple as it is or may appear, this
proof is flawless, it will stand the test of time and ex-
perience. Further, allow us to that that, it strongly ap-
pears that the great physicist and philosopher – Albert
Einstein (1879 − 1955), was probably right in saying
that “Subtle is the Lord. Malicious He is not.” because
in Lemma §(3), there exists deeply embedded therein,
a subtlety that resolves and does away with the malice
and notoriety associated with Fermat’s Last Theorem
in a simpler and truly marvellous and general manner.

7 Conclusion

We hereby put forward the following conclusion:

1 By use of the method of ‘Pythagorean triples’, we
have demonstrated that a solution to Fermat’s Last
Theorem exists in the realm of elementary arithmetic.
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2 This proof employs elementary arithmetic tools and
methods that were certainly accessible to Fermat, thus
making it highly likely that Fermat’s claim that he
possessed a ‘truly marvellous’ proof may very be true.

Acknowledgments: We are grateful to the National Uni-

versity of Science & Technology (NUST)’s Research &

Innovation Department and Research Board for their un-

remitting support rendered toward our research endeav-

ours; of particular mention, Prof. Dr. P. Mundy, Dr. P.

Makoni. Dr. D. J. Hlatswayo, and Prof. Dr. Y. S. Naik’s

unwavering support. We must make mention of the fact

that this work was inspired some twenty two years ago by

Marist Brothers Secondary School, Dete, Zimbabwe;’s then

mathematical prodigy and now medical practitioner DR.

Charles Muzondi. This reading is dedicated to my mother

Setmore Nyambuya and to the memory of departed father

Nicholas Nyambuya (27.10.1947− 23.09.1999).

References
1. Barbara, R. [2007], ‘Fermat’s Last Theorem in the Case n = 4’,

Mathematical Gazette 91, 260–262.

2. Dolan, S. [2011], ‘Fermat’s Method of Descente Infinie’, Mathematical

Gazette 95, 269–271.

3. Gambioli, D. [1901], ‘Memoria Bibliographica Sull’ultimo Teorema di

Fermat’, Period. Mat. 16, 145–192.

4. Grant, M. and Perella, M. [1999], ‘Descending to the Irrational’,

Mathematical Gazette 83, 263–267.

5. Hilbert, D. [1897], Die Theorie der Algebraischen Zahlkörper, Vol. 4,

Jahresbericht der Deutschen Mathematiker-Vereinigung. Reprinted in

1965 in Gesammelte Abhandlungen, Vol. I by New York: Chelsea.

6. Kronecker, L. [1901], ‘Vorlesungen Über Zahlentheorie’, Leipzig:
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