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English mathematics Professor, Sir Andrew John Wiles of the University of Cambridge finally and conclusively proved in
1995 Fermat’s Last Theorem which had for 358 years notoriously resisted all gallant and spirited efforts to prove it even
by three of the greatest mathematicians of all time – such as Euler, Laplace and Gauss. Sir Professor Andrew Wiles’s
proof employs very advanced mathematical tools and methods that were not at all available in the known World during
Fermat’s days. Given that Fermat claimed to have had the ‘truly marvellous’ proof, this fact that the proof only came
after 358 years of repeated failures by many notable mathematicians and that the proof came from mathematical tools
and methods which are far ahead of Fermat’s time, this has led many to doubt that Fermat actually did possess the ‘truly
marvellous’ proof which he claimed to have had. In this short reading, via elementary arithmetic methods which make use
of Pythagoras theorem, we demonstrate conclusively that Fermat’s Last Theorem actually yields to our efforts to prove it.
This proof is so elementary that anyone with a modicum of mathematical prowess in Fermat’s days and in the intervening
358 years could have discovered this very proof. This brings us to the tentative conclusion that Fermat might very well
have had the ‘truly marvellous’ proof which he claimed to have had and his ‘truly marvellous’ proof may very well have
made use of elementary arithmetic methods.
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“Subtle is the Lord.
Malicious He is not.”

Albert Einstein (1879− 1955).

1. Introduction
The pre-eminent French lawyer and amateur mathemati-
cian, Advocate – Pierre de Fermat (1607− 1665) in 1637,
famously in the margin of a copy of the famous book
Arithmetica which was written by Diophantus of Alexan-
dria (∼ 201− 215 AD), Fermat wrote:

“It is impossible to separate a cube into two cubes,
or a fourth power into two fourth powers, or in
general, any power higher than the second, into
two like powers. I have discovered a truly marvel-
lous proof of this, which this margin is too narrow
to contain.”

In the parlance of mathematical symbolism, this can be
written succinctly as:

6 ∃ (x, y, z, n) ∈ N+ : xn + yn = zn for (n > 2), (1)

where the triple (x, y, z) 6= 0, is piecewise coprime, and
N+ is the set of all positive integer numbers. This theorem

is classified among the most famous theorems in all His-
tory of Mathematics and prior to 1995, proving it was –
and is; ranked in the Guinness Book of World Records as
one of the “most difficult mathematical problems” known
to humanity. Fermat’s Last Theorem is now a true theo-
rem since it has been proved, but prior to 1995 it was only
a conjecture. Before it was proved in 1995, it is only for
historic reasons that it was known by the title “Fermat’s
Last Theorem”.

Rather notoriously, it stood as an unsolved riddle in
mathematics for well over three and half centuries. Many
amateur and great mathematicians tried but failed to prove
the conjecture in the intervening years 1637 − 1995;
including three of the World’s greatest mathematicians
such as Italy’s Leonhard Euler (1707 − 1783), France’s
Pierre-Simon, marquis de Laplace (1749 − 1827), and
the celebrated genius and Crown Prince of Mathematics,
Germany’s Johann Carl Friedrich Gauss (1777 − 1855),
amongst many other notable and historic figures of math-
ematics.
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Without any doubt, the conjecture or Fermat’s Last
Theorem is in-itself – as it stands as a bare statement, de-
ceptively simple mathematical statement which any agile
10 year old mathematical prodigy can fathom with relative
ease. Fermat famously – via his bare marginal note; stated
he had solved the riddle around 1637. His claim was dis-
covered some 30 years later, after his death in 1665, as an
overly simple statement in the margin of the famous copy
Arithmetica. Fermat wrote many notes in the margins and
most of these notes were ‘theorems’ he claimed to have
solved himself. Some of the proofs of his assertions were
found. For those that were not found, all the proofs save
for one resisted all intellectually spirited efforts to prove
it and this was the marginal note pertaining the so-called
Fermat’s Last Theorem.

This marginal note dubbed Fermat’s Last Theorem,
was the last of the assertions made by Fermat whose proof
was needed, and for this reason that it was the last of Fer-
mat’s statement that stood unproven, it naturally found it-
self under the title ‘Fermat’s Last Theorem’. Because all
of the many of Fermat’s assertions were eventually proved,
most people believed that this last assertion must – too; be
correct as Fermat had claimed. Few – if any; doubted the
assertion may be false, hence the confidence to call it a
theorem. Simple, the proof Fermat claimed to have had,
had to be found!

Did Fermat actually posses the so-called ‘truly marvel-
lous’ proof which he claimed to have had? This is the
question many have justly and rightly asked over the years
and this reading makes the temerarious endeavour to vin-
dicate Fermat, that he very well might have had the ‘truly
marvellous’ proof he claimed to have had and this we ac-
complish by providing a proof that employs elementary
arithmetic methods that were available in Fermat’s day.

Surely, there are just reasons to doubt Fermat actually
had the proof and this is so given the great many notable
mathematicians that tried and monumentally failed and as-
well, given the number of years it took to find the first
correct proof. The first correct proof was supplied only
358 years later by the English Professor of mathematics
at the University of Cambridge – Sir Andrew John Wiles
(1953−), in 1995 [? ].

To add salt to injury i.e. add onto the doubts on whether
or not Fermat actually had his so-called ‘truly marvel-
lous’ proof is that Sir Professor Andrew Wiles’s proof∗

employs highly advanced mathematical tools and methods
that were not at all available in the known World during
Fermat’s days. Actually, these tools and methods were
invented (discovered) in the relentless effort to solve this
very problem. Herein, we supply a very simple proof of
Fermat’s Last Theorem.

That said, we must hasten to say that, as a difficult
mathematical problem that so far yielded only to the diffi-
cult, esoteric and advanced mathematical tools and meth-

ods of Sir Professor Andrew Wiles – Fermat’s Last The-
orem, as any other difficult mathematical problem in the
History of Mathematics, it has had a record number of in-
correct proofs of which the present may very well be an
addition to this long list of incorrect proofs. In the words
of historian of mathematics – Howard Eves [? ]:

“Fermat’s Last Theorem has the peculiar distinc-
tion of being the mathematical problem for which
the greatest number of incorrect proofs have been
published.”

With that in mind, allow us to say, we are confident the
proof we supply herein is water-tight and most certainly
correct and that, it will stand the test of time and experi-
ence.

As stated in the ante penultimate above is that, in this
rather short reading, we make the temerarious endeavour
to answer this question – of whether or not Fermat actually
possessed the proof he claimed to have had. This we ac-
complish by supplying a simple and elementary proof that
does not require any advanced mathematics but mathemat-
ics that was available in the days of Fermat. Sir Professor
Andrew Wiles’s acclaimed proof, is at best very difficult
and to the chagrin of they that seek a simpler understand-
ing – the proof is nothing but highly esoteric. The question
thus ‘forever’ hangs in there to the searching and inquisi-
tive mind: “Did Fermat really possess the proof he claimed
to have had?” The proof that we supply herein leads us to
strongly believe that Fermat might have had the proof and
this proof most certainly employed elementary methods of
arithmetics!

2. Primitive Pythagorean Triples
Euclid (b.300BC) of Alexandria, Egypt, provided a fun-
damental formula for generating primitive Pythagorean
triples given an arbitrary pair of positive integers p and
q with p > q such that p − q is odd. The formula states
that the integers X , Y and Z:

X = p2 − q2

Y = 2pq
Z = p2 + q2

, (2)

constituent a primitive Pythagorean triple. A primitive
Pythagorean triple is one in which X , Y and Z are piece-
wise co-prime. By piecewise co-prime, we mean that any
combination of the triple X , Y and Z has no common fac-
tor other than unity. Below is the proof that the numbers
X,Y and Z do yield Pythagoras’s formula:

(
p2 + q2

)2 ≡
(
p2 − q2

)2
+ (2pq)

2

⇓ ⇓ ⇓
Z2 = X2 + Y 2

. (3)

∗ The proof by Sir Professor Wiles is well over 100 pages long and consumed about seven years of his research time. For this notable achievement of
solving Fermat’s Last Theorem, he was Knighted Commander of the Order of the British Empire in 2000 by Her Majesty Queen Elizabeth (II), and
received many other honours around the World.
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There are infinitely many primitive Pythagorean triples.
Invariably – this means that, there must exist infinitely
many piecewise co-prime triples (X,Y, Z) ∈ N+ where
N+ is the set of all positive integers. An important fact to
note, a fact directly emergent from the foregoing is that
all primitive Pythagorean triples yield to Euclid’s formula
and further, Euclid’s set of primitive Pythagorean triples
comprises all the primitive Pythagorean triples that exist
in Nature.

3. Lemma
If (a, b) ∈ N+ such that:

a
√
b = c+ d, (4)

for some numbers (c, d), then, insofar as whether or not√
b is an integer or not, there are two conditions, and these

are:

1.
√
b ∈ N+.

2.
√
b /∈ N+. That is,

√
b is an irrational number.

—

1. If,
√
b ∈ N+, then, one can always find some (c, d)

such that (c, d) ∈ N+.

2. If,
√
b /∈ N+, then

√
b is a surd – it is an irrational

number and (c, d) /∈ N+; and there must exist some
[(c1 < c) & (d1 < d)] ∈ N+ such that c = c1

√
b

and d = d1
√
b so that a

√
b = c1

√
b+ d1

√
b, which

implies that:

a = (c1 + d1) ∈ N+. (5)

While (c1, d1) are not necessarily integers, one can al-
ways find some (c1, d1) such that (c1, d1) ∈ N+. The
above stated Lemma is a self evident truth which is not
only necessary but vital and pivotal for the proof that we
now give below. Before that – using this Lemma, we shall
set-up a Theorem that is necessary for this proof.

4. Theorem
Theorem. For any piecewise coprime triple of integers
each greater than unity i.e. (x > 1; y > 1; z > 1) ∈ N+

such that z is not a perfect square i.e.
√
z ∈ I+, the equa-

tion:

zn = x2 + y2, (6)

admits no solutions for (n > 2) ∈ O+.

Proof. As a starting point, let us assume that (??) has
a solution for the stated conditions. Since (n > 2) ∈ O+,

we can write n = 2k + 1 where (k > 0) ∈ N+. With
n = 2k + 1, (??) can be rewritten as:(

zk
√
z
)2

= x2 + y2. (7)

From the decomposition method used in the method of ob-
taining Pythagorean triples, we know that we can always
find some numbers (p, q) with are not necessarily integers
such that:  x

y
zk
√
z

 =

 p2 − q2

2pq
p2 + q2

 . (8)

Since
√
z ∈ I+, from the z-component of (??) i.e.

zk
√
z = p2 + q2, we know from Lemma §(??) that

there must exist some integer numbers (a, b) such that
p2 = a

√
z and q2 = b

√
z and this implies p =

√
a
√
z

and q =
√

b
√
z. Substituting this into (??), we will have: x

y
zk
√
z

 =

 (a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z

 . (9)

The x-component of (??) is telling us that the rational
number x; actually, the integer number x must equal the
irrational number (a − b)

√
z since x = (a − b)

√
z. We

know very well that this is an impossibility, hence, by way
of contradiction, we conclude that our supposition that this
equation has a solution is wrong, hence the initial state-
ment is true.

5. Proof of Fermat’s Last Theorem
The proof that we are going to provide is a proof by con-
tradiction. We assume that the statement:

∃ (x, y, z, n) ∈ N+ : xn + yn = zn, for (n > 2),
(10)

to be true. The triple (x, y, z) is piecewise coprime, the
meaning of which is that the greatest common divisor
[gcd()] of this triple or any arbitrary pair of the triple is
unity.

That is, for our proof, by way of contradiction, we as-
sert that there exists a set of positive integers (x, y, z, n)
that satisfies the simple relation xn + yn = zn for all
(n > 2). Having made this assumption, if we can show
that just one of the numbers of the quadruplet (x, y, z, n)
can not belong to the set of integers, we will have proved
Fermat’s Last Theorem. In our approach to the problem
(proof), we split it into two parts, i.e.:

1. Case (I) : This case proves for all powers of
(n > 2) ∈ E+ where E+ is the set of all posi-
tive even integer numbers.

2. Case (II) : This case proves for all powers of
(n > 2) ∈ O+ where O+ is the set of all posi-
tive odd integer numbers.
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Since the set (n > 2) ∈ N+ contains only odd and
even values of n, to prove that there does not exist an
even and odd (n > 2) ∈ N+ that satisfies (??) is
a proof that there does not exist (x, y, z, n) ∈ N+ :
xn + yn = zn, (n > 2). This is a proof of the
original statement (??).

5.1. Proofs for the Cases (n = 3,4&5)

As is well known, the case for (n = 3), for all non-zero
(x, y, z) and (x, y, z) ∈ N+, the equation x3 + y3 = z3

admits no solutions. This was first proved by the great
Italian mathematician Leonhard Euler in 1770 [? ], that is,
133 years after Fermat set into motion Fermat’s Last The-
orem. Euler used the technique of infinite descent. Euler’s
proof is not the only proof possible as other authors have
published their independent proofs [see e.g. Refs. ? ? ? ?
? , amongst many others].

Fermat was the first to provide a proof for the case
(n = 4) which stated that for all non-zero piecewise co-
prime triple (x, y, z) ∈ N+, the equation x4 + y4 = z4

admits no solutions. This proof by Fermat is the only sur-
viving proof of Fermat’s Last Theorem and as is the case
with Euler’s proof for the case (n = 3), Fermat’s proof
makes use of the technique of infinite descent. Further, as
is the case with Euler’s proof for (n = 3), Fermat’s proof
is not the only proof possible as other authors have pub-
lished their independent proofs [see e.g. Refs. ? ? ? ? ?
, amongst many others]. Even after Sir Professor Andrew
Wiles’s 1995 breakthrough [? ], researchers are still pub-
lishing variants of the proof for the case (n = 4) [see e.g.
? ? ? ].

The case (n = 5) was first proved independently by
the French mathematician Adrien-Marie Legendre (1752 -
1833) and the German mathematician Johann Peter Gustav
Lejeune Dirichlet (1805 - 1859) around 1825 and alterna-
tive and independent proofs were developed in the later
years by others [see e.g. Refs. ? ? ? ? ? ? ? ? ? , amongst
many others].

5.2. Case (I): Even Powers of (n > 2)

If (n > 2) ∈ E+, then we can write n = 2`k where
(` = 2, 3, 4, . . . etc) and (k = 1, 3, 5, 7, . . . etc). In the
event that (k = 1), then (??) becomes x2` + y2

`

= z2
`

,
and this can be rewritten as:(

x2`−2
)4

+
(
y2

`−2
)4

=
(
z2

`−2
)4

, (11)

where (`− 2 ≥ 0). We know from Fermat’s proof for the
case (n = 4) and the other subsequent proofs by others
for (n = 4) [see e.g. ? ? ? ], that (??) admits no solution,
therefore, we conclude from this that the case (k = 1)
admits no solution for the given conditions.

Now that we have demonstrated that the case (k = 1)
admits no solution, we proceed to demonstrate for the

remainder of the cases which are (k > 1) i.e. k =
3, 5, 7, . . . etc. With n = 2`k under the given conditions,
we know that (??) can be written:

x2`k + y2
`k = z2

`k, (12)

and this can be rewritten as:(
x2`−1k

)2
+
(
y2

`−1k
)2

=
(
z2

`−1k
)2

, (13)

where (x2`−1k, y2
`−1k, z2

`−1k) is a piecewise coprime
triple. As long as (` − 1 ≥ 0), all the membebrs of the
piecewise coprime triple (x2`−1k, y2

`−1k, z2
`−1k) are all

positive integers thus, the triple (x2`−1k, y2
`−1k, z2

`−1k),
is a Pythagorean triple in the true sense of a Pythagorean
triple.

As is well known from Euclid’s formula for generat-
ing primitive Pythagorean triples that, if (p1, q1) ≥ 1, are
some integers that are such that (p1 > q1) where p1 and q1
are coprime and p1−q1 is odd with p1 ∈ E+ and q1 ∈ O+,
the triple (x2`−1k, y2

`−1k, z2
`−1k) is such that: x2`−1k

y2
`−1k

z2
`−1k

 =

 p21 − q21
2p1q1
p21 + q21

 . (14)

From (??), we extract the z-component of this equation,
i.e. z2

`−1k = p21 + q21 , and we will write this equation as:

(z2
`−2k)2 = p21 + q21 . (15)

Now, as long as (` − 2 > 0), the triple (p1, q1, z
2`−2k)

is a set comprised of piecewise coprime positive integers
thus, this triple (p1, q1, z

2`−2k) is a Pythagorean triple in
the true sense of a Pythagorean triple.

As before, we known from Euclid’s formula for gen-
erating primitive Pythagorean triples that, if (p2, q2) ≥ 1,
are some integers that are such that (p2 > q2) where p2
and q2 are coprime and p2 − q2 is odd with p2 ∈ E+ and
q2 ∈ O+, the triple(p1, q1, z2

`−2k) is such that: p1
q1

z2
`−2k

 =

 p22 − q22
2p2q2
p22 + q22

 . (16)

Notice that (p1 > p2) and (q1 > q2).
Now, from the z-component of (??), that is to say

z2
`−2k = p22 + q22 , we can rewrite this as:

(z2
`−3k)2 = p22 + q22 . (17)

As before, we know that for as long as (` − 3 > 0), the
triple (p2, q2, z

2`−3k) is a set comprised of piecewise co-
prime positive integers thus, this triple is a Pythagorean
triple in the true sense of a Pythagorean triple.

Again, we known from Euclid’s formula for generat-
ing primitive Pythagorean triples that, if (p3, q3) ≥ 1, are
some integers that are such that (p3 > q3) where p3 and
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q3 are coprime and (p3 − q3) is odd with (p3 ∈ E+) and
(q3 ∈ O+), the triple (p2, q2, z

2`−3k) is such that: p2
q2

z2
`−3k

 =

 p23 − q23
2p3q3
p23 + q23

 . (18)

Again, notice that (p1 > p2 > p3) and (q1 > q2 > q3).
If (` − 3 > 0), then, as before, we shall have to take the
z-component of (??) and go over this same process as hap-
pened when (`−2 > 0) and (`−1 > 0). This same process
will go on and going up until the `th-time where we will
have:  p`−1

q`−1

zk

 =

 p2` − q2`
2p`q`
p2` + q2`

 , (19)

where (p`, q`) ≥ 1, are some integers that are such that
(p` > q`) where p` and q` are coprime and p` − q` is odd
with p` ∈ E+ and q` ∈ O+ and the triple (p`, q`, z

k) is
coprime.

Just as before, we have to take the z-component of (??)
i.e.:

zk = p2` + q2` . (20)

Having done this, we must realise that (1) k ∈ O+, (2)
the triple (p` > 1; q` > 1; z > 1) is a triple comprised
of piecewise coprime integers, (3) there can only be two
scenarios for the integer z is these scenarios:

1. Scenario (I): We have that (
√
z ∈ I+).

2. Scenario (II): We have that (
√
z ∈ N+).

We shall tackle these two scenarios below.

Scenario (I)

If
√
z ∈ I+, and given that (p`, q`, zk) are piecewise co-

prime integers greater than unity and that (k > 2) ∈ O+, it
follows from Theorem §(??) that there will be no solution
for this case where

√
z ∈ I+.

Scenario (II)

In this scenario we have
√
z ∈ N+. Since

√
z ∈ N+,

it therefore follows that z is a perfect square. Since z is
perfect square, clearly we can in general write z = w2`

where (w > 1; ` > 0) ∈ N+ and
√
w ∈ I+. Substituting

z = w2` into (??), we will have:

w2`k = p2` + q2` . (21)

Let us rewrite the above equation (??) as:(
w2`−1k

)2
= p2` + q2` . (22)

We know that the triple (p`, q`, w
2`−1k), is a piecewise

coprime triple of integers greater than unity – this triple

is a Pythagorean triple. Therefore, from the method
Pythagorean triples, we know that there exists coprime in-
tegers (r, s) > 1 such that (r > s) and r − s ∈ O+ with
r ∈ E+ and s ∈ O+ such that: p`

q`
w2`−1k

 =

 r2 − s2

2rs
r2 + s2

 . (23)

From this equation (??), we take the w-component i.e.
w2`−1k = r2 + s2 and we rewrite this as:(

w2(`−2)k
)2

= r2 + s2. (24)

We should take note of the fact that the triple
(r, s, w2(`−2)k) is a piecewise coprime prime triple of in-
tegers all greater than unity – this triple is a Pythagorean
triple.

Having written down this equation (??), according
to the method of generating Pythagorean triples, we
know that there must exist some coprime integer numbers
(r1 > 1 , s1 > 1 ) : r1 > s1 : r1 − s1 ∈ O+, and
these numbers (r1, s1) are such that: r

s

w2(`−2)k

 =

 r21 − s21
2r1s1
r21 + s21

 . (25)

As before, let us take the w-component of (??), which is
w2(`−2)k = r21 + s21, and realise that this equation can be
rewritten as: (

w2(`−3)k
)2

= r21 + s21. (26)

It should be noted that the triple (r1, s1, w
2(`−3)k) is a

piecewise coprime triple of integers greater than unity –
this triple is a Pythagorean triple.

We begin the process again. According to the
method of generating Pythagorean triples, we know
that there must exist some coprime integer numbers
(r2 > 1 , s2 > 1 ) : r2 > s2 : r2 − s2 ∈ O+, and
these numbers (r2, s2) are such that: r1

s1
w2(`−3)k

 =

 r22 − s22
2r2s2
r22 + s22

 . (27)

As before, let us take the w-component of (??), which is
w2(`−3)k = r22 + s22, and realise that this equation can be
rewritten as: (

w2(`−4)k
)2

= r22 + s22. (28)

Again, it should be noted that the triple (r2, s2, w
2(`−4)k)

is a piecewise coprime triple of integers greater than unity,
actually, this triple is a Pythagorean triple thus accord-
ing to the method of generating Pythagorean triples, we
know that there must exist some coprime integer numbers



6

(r3 > 1 , s3 > 1 ) : r3 > s3 : r3 − s3 ∈ O+, and
these numbers (r3, s3) are such that: r2

s2
w2(`−4)k

 =

 r23 − s23
2r3s3
r23 + s23

 . (29)

At this point, one thing must be clear to the reader and this
is the fact that this process can not go on forever – it can
only go on `th times before we arrive at: r`−2

s`−2

wk

 =

 r2`−1 − s2`−1

2r`−1s`−1

r2`−1 + s2`−1

 , (30)

where the integer numbers (r`−1, s`−1) are such that
(r`−1 > 1 , s`−1 > 1 ), (r`−1 > s`−1) and
r`−1 − s`−1 ∈ O+. The w-component of (??) now
reads:

wk = r2`−1 + s2`−1. (31)

Since
√
w ∈ I+ and k ∈ O+ it follows from Theorem

§(??) that there is no solution to (??). We here have ar-
rived a contradiction. Therefore, by way of contradiction,
we conclude that under these conditions, the statement
(??) can not be true as initially supposed.

Summary

From the foregoing, we clearly have demonstrated that
for (n > 2) ∈ E+ the statement (??) can not be true as
initially supposed, hence Fermat’s Last Theorem is true
for (n > 2) ∈ E+.

5.3. Case (II): Odd Powers of (n > 2)

Now, we have to prove for the case were (n > 2) ∈ O+.
The fact that (n > 2) ∈ O+, this implies that we can set
n = 2k + 1 where k = 2, 3, 4, 5, . . . , etc ⇒ (k > 1)
if n is to be greater than 2. With n = 2k + 1, the
equation xn + yn = zn can now be rewritten as
x2k+1 + y2k+1 = z2k+1 and this can further be rewrit-
ten as: (

xk
√
x
)2

+
(
yk
√
y
)2

=
(
zk
√
z
)2

. (32)

The triplet, trio or the three numbers (xk
√
x, yk

√
y, zk
√
z)

are not necessarily integers, thus this triple is not a
Pythagorean triple in the traditional parlance of mathemat-
ics. However, this handicap does not stop us (or anyone
for that matter) from finding real numbers (p, q : p > q)
which are not necessarily integers, where these numbers
(p, q) are such that: xk

√
x

yk
√
y

zk
√
z

 =

 p2 − q2

2pq
p2 + q2

 . (33)

As in the case for the proof for even powers of (n > 2),
our focal point here is the z-component of (??). For z, we
have two and only two cases (conditions) and these are:

• Case (1):
√
z ∈ N+.

• Case (2):
√
z /∈ N+. That is,

√
z, is an irrational number.

We will provide proofs for the two cases as stated above.

Case (1): Proof for the Case
√
z ∈ N+

If
√
z = w ∈ N+, clearly (p, q) ∈ N+. If (p, q) ∈ N+,

then (
√
x = u) ∈ N+ and (

√
y = v) ∈ N+. From this, it

follows that (??) will now become:

u2(2k+1) + v2(2k+1) = w2(2k+1). (34)

According to the proof we have given in §(??) for even
n i.e. for (n > 2) ∈ E+, it follows that (??) admits no
solutions.

Case (2): Proof for the Case
√
z /∈ I+

In the case where
√
z /∈ I+, it follows from Lemma §(??)

that for the z-component of (??), there must exist some
(a, b : a > b) ∈ N+, such that p2 = a

√
z and q2 = b

√
z,

i.e., zk
√
z = a

√
z + b

√
z. Thus, from, p2 = a

√
z and

q2 = b
√
z, it follows that p =

√
a
√
z and q =

√
b
√
z.

Substituting all this into (??), we will have: xk
√
x

yk
√
y

zk
√
z

 =

 (a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z

 . (35)

Clearly, from (??), it follows that
√
x /∈ N+. In the wis-

dom of the fact that (
√
x,
√
z) /∈ N+, what does equation

(??) as a whole mean?
Well, we know that xk ∈ N+ but (??) is telling us

that xk = (a − b)
√
z/x. Since (a − b) ∈ N+, for

xk = (a− b)
√

z/x ∈ N+,
√
z/x = s ∈ N+ i.e. z = s2x.

This means that x and z share a common factor s2, the
meaning of which is that the triple (x, y, z) is not piece-
wise coprime. Since our initial assertion runs contrary to
our final conclusion, hence, by way of contradiction, it
follows that our initial assertion is wrong as it has lead
us to an illogical conclusion. Hence, for (x, y, z) ∈ N+

(??) admits no solutions under the given conditions since
the piecewise coprime triple (x, y, z) can not be piecewise
coprime as initially assumed.

Summary

Combining the two proofs for the case (n > 2) ∈ O+

for
√
z ∈ N+ and

√
z ∈ I+, it follows that, equation (??)

admits no integer solutions for any non-zero piecewise
coprime triple (x, y, z) ∈ N+.
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5.4. Summary of the Two Proofs

In §(??) and (??), we have proved that (??) admits no
integer solutions for any (x, y, z) > 0 and (x, y, z) ∈ N+

for all powers of (n > 2) ∈ E+ and for all powers
(n > 2) ∈ O+. Combining these two proofs, it follows
from the foregoing as stated and outlined at the beginning
of this section, that (??) admits no integer solutions for
any (x, y, z) > 0 and (x, y, z) ∈ N+ for all powers of
(n > 2) ∈ N+. Hence, Fermat’s Last Theorem is here
proved in a simpler, much more general and truly marvel-
lous manner.

6. Discussion and Conclusion

If the proof we have provided herein stands the test of
time and experience, then, it is without a doubt that Fer-
mat’s claim to have had a ‘truly marvellous’ proof may
very well resonate with truth. If this proof employed the
use of Pythagoras theorem as in the present case, then, for
any book, the standard ‘margin is [certainly] too narrow’
to contain the present proof, the meaning of which is that
Fermat was most certainly right in his famous claim.

Clearly, the problem with the proof is not that it is diffi-
cult and only accessible to the highly esoteric, no! We our-
selves (i.e., amateur and seasoned mathematicians alike)
have made this problem appear very difficult, highly es-
oteric and only accessible to the foremost and advanced
mathematical minds. Without the historic and personal
encodes that will soon follow, this proof (i.e., the morass
substance of the present reading) can be typed using a stan-
dard font size of between 10−12, back-to-back on a single
standard a4-page. Few – if any; would believe that this is
possible. The level difficulty and esoteric nature associ-
ated with this problem has been – until the present read-
ing, placed very high and beyond the intellectual reach of
mortals of modest means. In the readings [? ? ], we have
provided much simpler proofs of Fermat’s Last Theorem
and as well Beal’s Conjecture.

What could have happened leading to the elevation of
this problem to a point where it came to become one of
the most difficult problems in all History of Mathematics
is that – perhaps; the plethora of maiden failures to pro-
vide a proof must have led people to think that this prob-
lem must be very difficult. Failure after failure and espe-
cially so by great mathematicians must then have led to it
[Fermat’s Last Theorem] achieving ‘international, world-
wide and historic notoriety’ as a very difficult problem that
eluded even great minds like Euler, Laplace and Gauss.
With this kind of background, certainly, when people ap-
proached this problem, they most probably did so with in
mind that it was a very difficult problem probably to be
solved by ‘real super geniuses’ and not mortals of modest
means e.g. ourself.

If someone told you that a given problem is so difficult,
so much that it has thus far eluded the finest, advanced
and most esoteric minds that have attempted to find its so-
lution, one naturally tries to use higher advanced methods
to prove it. Further, if someone told you that a given prob-
lem is so difficult, so much that it have eluded the finest,
advanced and most esoteric minds that have attempted to
find its solution, one naturally is discouraged from using
simple elementary methods to prove it because the feeling
one has is that, if it can be solved via a simple method,
surely, advanced minds before me must have discovered
this, thus leading one to try and climb higher than those
before them. If what we have presented stands the test
of time and experience, then, the way we approach diffi-
cult problems may need recourse, especially the way the
public media projects and posts the level difficulty and the
supposed esoteric effort required in-order to solve these
problems.

Our approach to solving so-called outstanding prob-
lems is that one must not be let down by the public media
projections of the level difficult and the supposed esoteric
effort required in-order to solve the problem. First, as we
climb the ladder of level difficultly, we tackle it [problem]
from a level simplicity accessible to the ‘layman’ and step-
by-step as we move up the ladder. To us, we have come to
realise that this has helped us in understanding the problem
at a much deeper level. At each level, we make sure we ex-
haust ‘all’ the possible avenues. As to how one knows they
have exhausted all the possible avenues, this is a difficult
question to answer but the most potent and virile tool for
us has been a deep and strong inner intuition, unshakable
confidence in the solubility of the problem and singular
conviction that victory is certain if one persists.

As we anxiously await the World to judge our proof,
effort and work, we must — if this be permitted at this
point of closing, say that, we are confident that – sim-
ple as it is or may appear, this proof is flawless, it will
stand the test of time and experience. It strongly appears
that the great physicist and philosopher – Albeit Einstein
(1879 − 1955), was probably right in saying that “Sub-
tle is the Lord. Malicious He is not.” because in Lemma
§(??), there exists deeply embedded therein, a subtlety
that resolves and does away with the malice and notoriety
associated with Fermat’s Last Theorem in a simpler and
truly marvellous and general manner.

Conclusion
We hereby make the following conclusion:

1. By use of the method of ‘Pythagorean triples’, we have
demonstrated that a solution to Fermat’s Last Theorem
exists in the realm of elementary arithmetic.

2. This proof employs elementary arithmetic tools and meth-
ods that were certainly accessible to Fermat, thus making
it highly likely that Fermat’s claim that he possessed a
‘truly marvellous’ proof may very be true.
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