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Abstract

We argue that the main reason of crisis in quantum physics is that na-
ture, which is fundamentally discrete, is described by continuous mathematics.
Moreover, no ultimate physical theory can be based on continuous mathematics
because, as follows from Gödel’s incompleteness theorems, that mathematics
is not self-consistent. In the first part of the paper we discuss inconsistencies
in standard approach to quantum theory and reformulate the theory such that
it can be naturally generalized to a formulation based on discrete mathemat-
ics. Then the cosmological acceleration and gravity can be treated simply as
kinematical manifestations of de Sitter symmetry on quantum level (i.e. for
describing those phenomena the notions of dark energy, space-time background
and gravitational interaction are not needed). In the second part of the paper
we describe motivation, ideas and main results of a quantum theory over a Ga-
lois field (GFQT). In contrast to standard quantum theory, GFQT is based on
a solid mathematics and therefore can be treated as a candidate for ultimate
quantum theory. The presentation is descriptional and should be understand-
able by a wide audience of physicists and philosophers.
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1 What is the main reason of crisis in physics?

The discovery of atoms and elementary particles indicates that at the very funda-
mental level nature is discrete. As a consequence, any description of macroscopic
phenomena using continuity and differentiability can be only approximate. For ex-
ample, in macroscopic physics it is assumed that spatial coordinates and time are
continuous measurable variables. However, this is obviously an approximation be-
cause coordinates cannot be measured with the accuracy better than atomic sizes
and time cannot be measured with the accuracy better than 10−18s, which is of the
order of atomic size over c. As a consequence, distances less than atomic ones do
not have a physical meaning and in real life there are no strictly continuous lines
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and surfaces. As an example, the water in the ocean can be described by differential
equations of hydrodynamics but we know that this is only an approximation since
matter is discrete.

It is also obvious that standard division and the notion of infinitely small
are based on our everyday experience that any macroscopic object can be divided by
two, three and even a million parts. But is it possible to divide by two or three the
electron or neutrino? It seems obvious that the very existence of elementary particles
indicates that standard division has only a limited meaning. Indeed, consider, for
example, the gram-molecule of water having the mass 18 grams. It contains the
Avogadro number of molecules 6 · 1023. We can divide this gram-molecule by ten,
million, billion, but when we begin to divide by numbers greater than the Avogadro
one, the division operation loses its meaning.

Note that even the name ”quantum theory” reflects a belief that nature is
quantized, i.e. discrete. Nevertheless, when quantum theory was created it was based
on continuous mathematics developed mainly in the 19th century when people did
not know about atoms and elementary particles and believed that every macroscopic
object could be divided by any number of parts. One of the greatest successes of the
early quantum theory was the discovery that energy levels of the hydrogen atom can
be described in the framework of continuous mathematics because the Schrödinger
differential operator has a discrete spectrum. This and many other successes of quan-
tum theory were treated as indications that all problems of the theory can be solved
by using continuous mathematics. As a consequence, even after almost 90 years of the
existence of quantum theory it is still based on continuous mathematics. Although
the theory contains divergencies and other inconsistencies, physicists persistently try
to resolve them in the framework of continuous mathematics.

The mathematical formalism of Quantum Field Theory (QFT) is based
on continuous space-time background and it is assumed that this formalism works at
distances much smaller than atomic ones. The following problem arises: should we
pose a question on whether such distances have any physical meaning? One might say
that this question does not arise because if a theory correctly describes experiment
then, by definition, mathematics used in this theory does have a physical meaning.
In other words, such an approach can be justified only a posteriori.

However, even if we forget for a moment that QFT has divergencies and
other inconsistencies (see Sec. 3), the following question arises. On macroscopic level
space-time coordinates are not only mathematical notions but physical quantities
which can be measured. Even in the Copenhagen formulation of quantum theory
measurement is an interaction with a classical object. If we know from our macro-
scopic experience that space-time coordinates are continuous only with the accuracy
of atomic sizes then why do we use continuous space-time at much smaller distances
and here we treat space-time coordinates only as mathematical objects?

In particle physics distances are never measured directly and the phrase
that the physics of some process is defined by characteristic distances l means only
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that if q is a characteristic momentum transfer in this process then l = h̄/q. This
conclusion is based on the assumption that coordinate and momentum representations
in quantum theory are related to each other by the Fourier transform. However, as
noted in Ref. [1], this assumption is based neither on strong theoretical arguments
nor on experimental data.

Many physicists believe that M theory or string theory will become ”the
theory of everything”. In those theories physics depends on topology of continuous
and differentiable manifolds at Planck distances lP ≈ 10−35m. The corresponding
value of q is q ≈ 1019Gev/c, i.e. much greater than the momenta which can be
achieved at modern accelerators. Nevertheless, the above theories are initially formu-
lated in coordinate representation and it is assumed that at Planck distances physics
still can be described by continuous mathematics. Meanwhile lessons of quantum the-
ory indicate that it is highly unlikely that at such distances (and even much greater
ones) any continuous topology or geometry can describe physics.

Another example is the discussion of the recent results [2] of the BICEP2
collaboration on the B-mode polarization in CMB. In the literature those results are
widely discussed in view of the problem of whether or not those data can be treated
as a manifestation of gravitational waves in the inflationary period of our World (we
use the word ”World” rather than ”Universe” because there are theories where the
Universe consists not only of our World). Different pros and cons are made on the
basis of inflationary models combining QFT or string theory with General Relativity
(GR). The numerical results are essentially model dependent but it is commonly
believed that the inflationary period lasted in the range (10−36s, 10−32s) after the Big
Bang. For example, according to Ref. [3], the inflationary period lasted within about
10−35s during which the size of the World has grown from a patch as small as 10−26m
to macroscopic scales of the order of a meter.

The inflationary models are based on the assumption that space-time man-
ifolds at such distances can be treated as continuous and differentiable. However, in
addition to the above reservations, the following problem arises. As noted above,
measurement is understood as an interaction with a classical object. However, at this
stage of the World there can be no classical objects and therefore the very meaning
of space and time is problematic. In addition, the problem of time is one of the fun-
damental unsolved problems of quantum theory, GR is a pure classical theory and its
applicability at such time intervals is highly questionable (see Sec. 2). Inflationary
models are based on the hypothesis that there exists an inflaton field; its charac-
teristics are fitted for obtaining observable cosmological quantities. In view of these
remarks, statements that the BICEP2 results indicate to the existence of primordial
gravitational waves are not based on strong theoretical arguments.

Discussions about the role of space-time in quantum theory were rather
popular till the beginning of the 1970s. As stated in Ref. [4], local quantum fields and
Lagrangians are rudimentary notions which will disappear in the ultimate quantum
theory. My observation is that now physicists usually cannot believe that such words
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could be written in such a known textbook. The reason is that in view of successes
of QCD and electroweak theory those ideas have become almost forgotten. However,
although those successes are rather impressive, they do not contribute to resolving
inconsistencies in QFT.

It is also very important to note that even continuous mathematics by itself
has its own foundational problems. Indeed, as follows from Gödel’s incompleteness
theorems, no system of axioms can ensure that all facts about natural numbers can be
proved. Moreover, the system of axioms in standard mathematics cannot demonstrate
its own consistency. The theorems demonstrate that any mathematics involving the
set of all natural numbers is not self-consistent. Therefore one might expect that the
ultimate quantum theory will be based on mathematics which is not only discrete
but even finite. Additional arguments in favor of this statement are given in Secs. 7
and 8.

The reason why modern quantum physics is based on continuity, differ-
entiability etc. is probably historical: although the founders of quantum theory and
many physicists who contributed to it were highly educated scientists, discrete math-
ematics was not (and still is not) a part of standard physics education.

General Relativity is usually treated as the ultimate classical theory of
gravity. A common opinion is that the ultimate quantum theory should combine
a quantized version of GR with quantum field theories of electromagnetic, strong
and weak interactions and that string theory or M theory can be treated as possible
candidates of such a theory. A detailed discussion of pros and cons of this point of
view can be found e.g. in Ref. [5]. In Secs. 2 and 3 we note that both, GR and
QFT have fundamental inconsistencies and so a program of combining those theories
probably will not be successful. In Secs. 7 and 8 we describe an approach based on
Galois fields. This approach gives a new look on fundamental problems of quantum
theory.

2 Is General Relativity the Ultimate Classical

Theory of Gravity?

The majority of physicists believe that the results of all gravitational ex-
periments clearly demonstrate that GR outperforms all the alternative classical the-
ories of gravity. However, even if this is the case, this does not mean yet that GR
should be treated as the ultimate classical theory of gravity. The history of physics
knows examples when a theory which perfectly described experimental data turned
out to be inconsistent with the new knowledge (e.g. the theory of heat and Bohr’s
theory of atomic levels). Only those theories have a chance to become ultimate ones
which are based on solid physical principles. Below we argue that GR does not satisfy
this criterion. In the first subsection we consider the most fundamental experimental
confirmations of GR and in the second one we discuss theoretical problems in GR.
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2.1 Experimental confirmations of General Relativity

Consider first the three classical effects of GR: gravitational red shift of light, deflec-
tion of light by the Sun and precession of Mercury’s perihelion.

A standard experiment illustrating the gravitational red shift of light is
as follows. Consider a case when a photon travels in the radial direction from the
Earth surface. Let E1 be the photon kinetic energy on the Earth surface and E2 be its
kinetic energy on the the height h. Then, as explained in textbooks (see e.g. Ref. [6]),
according to GR, ∆E1 = E2 − E1 ≈ −E1gh/c

2 where g is the free fall acceleration.
The usual statement is that this effect has been measured in the famous Pound-Rebka
experiment. However, as argued by Okun [7], the Pound-Rebka experiment confirms
GR not because E1 6= E2 but because the differences between the atomic energy
levels on the height h are greater than on the Earth surface. This explanation poses
problems (see a discussion in Ref. [8]) but in any case the differences between the
atomic energy levels should be taken into account and this effect is model dependent.
Hence the explanation of the Pound-Rebka experiment is not unambiguous.

The effect of deflection of light by the Sun is that when a photon from
a distant star travels to the Earth such that its trajectory grazes the Solar surface
then the trajectory deflects from the straight line by the angle ∆ϕ = (1 + γ)rg/R�
where R� is the radius of the Sun, rg is its Schwarzschild (gravitational) radius and
γ is a parameter depending on the theory. The result with γ = 0 was obtained
by von Soldner in 1801 and by Einstein in 1911. The known historical facts are
that in 1915 when Einstein created GR he obtained γ = 1 and in 1919 this result
was confirmed in observations of the full Solar eclipse. Originally the accuracy of
measurements was not high but now the quantity γ is measured with a high accuracy
in experiments using the Very Long Base Interferometry (VLBI) technique and the
result γ = 1 has been confirmed with the accuracy better than 1%. In GR it is
assumed that in the propagation of light in the interstellar medium the interaction
of light with the medium is not significant and the propagation can be described in
the framework of geometrical optics. However, the density of the Solar atmosphere
near the Solar surface is rather high and the assumption that the photon passes this
atmosphere practically without interaction with the particles of the atmosphere seems
to be problematic.

As seen from Earth the precession of Mercury’s orbit is measured to be
5600” per century while the contribution of GR is 43” per century. Hence the lat-
ter is less than 1% of the total contribution. The main contribution to the total
precession arises as a consequence of the fact that Earth is not an inertial reference
frame and when the precession is recalculated with respect to the International Ce-
lestial Reference System the value of the precession becomes (574.10 ± 0.65)” per
century. Celestial mechanics states that the gravitational tugs of the other planets
contribute (531.63± 0.69)” while all other contributions are small. Therefore there is
a discrepancy of 43” per century and the result of GR gives almost exactly the same
value. Hence the conclusion that GR fully explains the data is based on additional
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assumptions.
The Shapiro time delay is often treated as the fourth classical test of GR.

In this effect the parameter γ is measured and it is now believed that the most
accurate result γ−1 = (2.1±2.3) ·10−5 has been obtained in the experiment with the
Cassini spacecraft when it was 7AU away from the Earth [9]. However, as discussed
in Ref. [1], the interpretation of the Shapiro time delay crucially depends on the
model of wave packet spreading for the photon wave function.

Note that the above effects of GR are extremely small because they are
obtained in situations where the main gravitational effects are defined by standard
Newtonian gravity. It is believed that data on binary pulsars give a confirmation
of GR in situations when the effects of GR are strong. The most famous case is
the binary pulsar PSR B1913+16 discovered by Hulse and Taylor in 1974. A model
with eighteen fitted parameters for this binary system has been described in Refs.
[10, 11] and references therein. The most striking effect of the model is that it
predicts that the energy loss due to gravitational radiation can be extracted from
the data. As noted in Ref. [10], comparison of the measured and theoretical values
requires a small correction for relative acceleration between the Solar System and
binary pulsar system, projected onto the line of sight. The correction term depends
on several rather poorly known quantities, including the distance and proper motion
of the pulsar and the radius of the Sun’s galactic orbit. However, with best currently
available values the agreement between the data and the Einstein quadrupole formula
for the gravitational radiation is better than 1%. The rate of decrease of orbital period
is 76.5 microseconds per year (i.e. one second per 14000 years).

As noted by the authors of Ref. [10], ”Even with 30 years of observations,
only a small portion of the North-South extent of the emission beam has been observed.
As a consequence, our model is neither unique nor particularly robust. The North-
South symmetry of the model is assumed, not observed, since the line of sight has
fallen on the same side of the beam axis throughout these observations. Nevertheless,
accumulating data continue to support the principal features noted above.”

The size of the invisible component is not known. The arguments that
this component is a compact object are as follows [12]: ”Because the orbit is so close
(1 solar radius) and because there is no evidence of an eclipse of the pulsar signal
or of mass transfer from the companion, it is generally agreed that the companion is
compact. Evolutionary arguments suggest that it is most likely a dead pulsar, while
B1913+16 is a recycled pulsar. Thus the orbital motion is very clean, free from tidal
or other complicating effects. Furthermore, the data acquisition is clean in the sense
that by exploiting the intrinsic stability of the pulsar clock combined with the ability
to maintain and transfer atomic time accurately using GPS, the observers can keep
track of pulse time-of-arrival with an accuracy of 13µs , despite extended gaps between
observing sessions (including a several-year gap in the middle 1990s for an upgrade
of the Arecibo radio telescope). The pulsar has shown no evidence of glitches in its
pulse period.”
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However, even if the model indeed describes a binary system it is not clear
whether or not there exist other reasons for substantial energy losses. For example,
since the bodies have large velocities and are moving in the interstellar medium, it is
not clear whether their interaction with the medium can be neglected. Nevertheless,
the above results are usually treated as a strong indirect confirmation of the existence
of gravitational waves. Those results have given a motivation for building powerful
facilities where the gravitational waves are expected to be detected directly. However,
after more than ten years of observations no unambiguous detections of gravitational
waves have been reported.

Our conclusion is that there are no experimental data which confirm GR
without any model assumptions.

2.2 Theoretical problems of General Relativity

The existence of singularities in GR is often treated as an indication that self-
consistency of GR is broken at small distances where quantum effects should be
taken into account. In our opinion, this does not contradict a possibility that GR
can be the ultimate classical theory. The situation is analogous to that in classical
electrodynamics which also has consistency problems at small distances. Below we
argue that GR has more serious foundational problems.

Classical field theories work with fields defined on a space-time background
characterized by four-dimensional coordinates x = (r, t). For example, we know
that the electromagnetic field is a collection of photons but classical electrodynamics
does not work with individual photons. The classical fields E(x) and B(x) describe
the mean effect of all the photons in the field, namely how the photons act on a
macroscopic test body having the position r at the moment of time t. Analogously,
it is believed that the gravitational field is a collection of gravitons but in GR this
field is described by the Ricci tensor Rµν(x) (µ, ν = 0, 1, 2, 3) which shows how the
field acts on macroscopic test bodies.

In classical theory it is assumed that test bodies can be made practically
weightless and at each moment of time t the spatial coordinates r can be measured
with the absolute accuracy. Moreover, in GR the reference frame is understood as a
collection of weightless bodies characterized by three spatial coordinates and supplied
by weightless clocks [6]. However, in view of the remarks in Sec. 1, weightless bodies
can exist only if matter can be divided by any number of parts. In real situations,
since the quantities x refer to macroscopic bodies, they can have a physical meaning
only with the accuracy discussed in Sec. 1. In particular, there is no reason to believe
that GR is valid at distances of the order of 10−26m and times of the order of 10−35s.
Note also that from the point of view of the measurability principle (see Sec. 1),
the space-time background has a physical meaning only as a space of events for real
particles while if particles are absent, the notion of empty space-time background has
no physical meaning. Indeed, there is no way to measure coordinates of a space which
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exists only in our imagination.
In GR the range of the coordinates x and the geometry of space-time are

defined by the Einstein equations

Rµν +
1

2
gµνRc + Λgµν = (8πG/c4)Tµν (1)

where Rc is the scalar curvature, Tµν is the stress-energy tensor of matter, gµν is the
metric tensor, G is the gravitational constant and Λ is the cosmological constant (CC).
In modern quantum theory space-time in GR is treated as a description of quantum
gravitational field in classical limit. As noted above, Rµν is a classical gravitational
field and it is believed that its quantized version describes the gravitational field as
a collection of gravitons. Then the following question arises: why does Tµν describe
the contribution of electrons, protons, photons and other particles but gravitons are
not included into Tµν and are described separately by a quantized version of Rµν? It
is believed that gravitons are particles with mass zero and spin 2 and it is not clear
what makes gravitons so special.

In any case, quantum theory of gravity has not been constructed yet and
gravity is known only at macroscopic level. Here the coordinates and the curvature
of space-time are the physical quantities since the information about them can be
obtained from measurements using macroscopic test bodies. Since matter is treated
as a source of the gravitational field, in the formal limit when matter disappears, the
gravitational field should disappear too. Meanwhile, in this limit the solutions of the
Einstein equations are Minkowski space when Λ = 0, de Sitter (dS) space when Λ > 0
and anti-de Sitter (AdS) space when Λ < 0. Hence in GR Minkowski, dS or AdS
spaces can be only empty spaces, i.e. they are not physical because the argument x of
classical fields can refer only to macroscopic test bodies. This shows that the formal
limit of GR when matter disappears is nonphysical since in this limit the space-time
background survives.

This inconsistency of GR has far reaching consequences in view of the
discovery [13] that Λ > 0. In textbooks on gravity written before 1998 (when the
cosmological acceleration was discovered) it is often claimed that Λ is not needed since
its presence contradicts the philosophy of GR: matter creates curvature of space-time,
so in the absence of matter space-time should be flat (i.e. Minkowski) while empty
dS space is not flat. Such a philosophy has no physical meaning since the notion of
empty space is unphysical. Nevertheless, in view of this philosophy, the discovery of
the fact that Λ 6= 0 has ignited many discussions.

The most popular approach is as follows. One can move the term with Λ
in the Einstein equations from the left-hand side to the right-hand one:

Rµν −
1

2
gµνRc = (8πG/c4)Tµν − Λgµν (2)

Then the term with Λ is treated as the stress-energy tensor of a hidden matter which
is called dark energy: (8πG/c4)TDEµν = −Λgµν . With the observed value of Λ this
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dark energy contains more than 70% of the energy of the World. In this approach G
is treated as a fundamental constant, the goal of the theory is to express Λ in terms
of G and to explain why Λ is as it is. Hence a problem arises whether G is indeed a
fundamental physical quantity. This problem is discussed in Sects. 3 and 6.

3 Does quantum theory need space-time back-

ground?

The phenomenon of QFT has no analogs in the history of science. There is
no branch of science where so impressive agreements between theory and experiment
have been achieved. At the same time, the level of mathematical rigor in QFT is very
poor and, as a result, QFT has several known difficulties and inconsistencies. The
absolute majority of physicists believe that agreement with experiment is much more
important than the lack of mathematical rigor, but not all of them think so. For
example, Dirac wrote in Ref. [14]: ”The agreement with observation is presumably
by coincidence, just like the original calculation of the hydrogen spectrum with Bohr
orbits. Such coincidences are no reason for turning a blind eye to the faults of the
theory. Quantum electrodynamics is rather like Klein-Gordon equation. It was built
up from physical ideas that were not correctly incorporated into the theory and it has
no sound mathematical foundation.” In addition, QFT fails in quantizing gravity since
the gravitational constant has the dimension (length)2 (in units where c = h̄ = 1),
and as a result, quantum gravity is not renormalizable.

The fact that the standard approach to QFT has mathematical problems
is well-known. Theories aiming to construct QFT on a solid mathematical basis are
often called Axiomatic Quantum Field Theory or Algebraic Quantum Field Theory
(AQFT) while the theory used by a majority of physicists is called Conventional
Quantum Field Theory (CQFT). Efforts to reconcile AQFT and CQFT are discussed
in a wide literature (see e.g. Ref. [15] and references therein). Below we use for
CQFT the standard notation QFT. We first describe problems of QFT and then
make remarks on AQFT.

In the framework of QFT any theory is constructed according to the fol-
lowing scheme. For definiteness we discuss the case of Poincare invariant quantum
theory and the construction in the cases of dS and AdS invariance is similar.

First one chooses a space-time background, which in the case of Poincare
invariance is Minkowski space. Then one constructs local fields Ψ(x) which depend
on the space-time coordinates x, possibly on spin variables and satisfy a covariant
equation (e.g. Klein-Gordon, Dirac etc.). Here the following question arises. Accord-
ing to principles of quantum theory, every physical quantity can be discussed only
in conjunction with the operator of this quantity. Meanwhile, as it has become clear
even from the beginning of quantum theory (see e.g. p. 63 of Ref. [16]), there is no
operator corresponding to time. This poses a problem why the principle of quantum
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theory that every physical quantity is defined by an operator does not apply to time,
and this is a fundamental problem of quantum theory. On the other hand, a position
operator must exist (see the discussion in Ref. [1]). Hence in contrast to classical
theory, in quantum one spatial and temporal coordinates are not on equal footing.

The next problem is that the fields Ψ(x) do not have a probabilistic inter-
pretation because they are described by non-unitary representations of the Poincare
group induced from the Lorentz group. As it has been shown for the first time by
Pauli [17], in the case of fields with an integer spin it is not possible to construct a
positive definite charge operator and in the case of fields with a half-integer spin it is
not possible to construct a positive definite energy operator. So in the framework of
quantum theory neither x nor Ψ have a clear physical meaning, and a problem arises
why we need local fields at all.

There are two major reasons for that. The first one is that Ψ(x) can have a
physical meaning in approximations when creation of particle-antiparticle pairs can be
neglected. A known example is that in the approximation (v/c)2 the Dirac equation
correctly reproduces the fine structure of the hydrogen energy levels. On the other
hand it cannot reproduce the Lamb shift because for that purpose the approximation
(v/c)3 should be correctly taken into account.

The second reason is that after second quantization local fields are used
for constructing interacting Lagrangians. In contrast to classical theories which do
not work with individual particles comprising the corresponding fields (see Sec. 2),
the secondly quantized fields Ψ(x) are operators in the Fock space and therefore the
contribution of each particle in the field is explicitly taken into account. Therefore
each particle in the field can be described by its own coordinates (in the approximation
when the position operator exists - see Sec. 5). In view of this fact the following
natural question arises: why do we need an extra coordinate x which does not belong
to any particle? This coordinate does not have a clear physical meaning and is simply
a parameter arising from the second quantization of the non-quantized field Ψ(x).
Hence quantized local fields are only auxiliary notions. In this approach the problem
of the physical meaning of the quantities x and Ψ does not arise because they enter
the theory only under integration signs for representation operators. As noted in Sec.
1, in this case the need for having those quantities can be justified only a posteriori.
After the representation operators and the S-matrix has been constructed, one can
safely forget about local fields and calculate observables in momentum space.

It is known (see e.g. the textbook [18]) that quantum interacting local
fields can be treated only as operatorial distributions. A known fact from the theory
of distributions is that their products at the same point are poorly defined. Hence if
Ψ1(x) and Ψ2(x) are two local operatorial fields then the product Ψ1(x)Ψ2(x) is not
well defined. This is known as the problem of constructing composite operators. A
typical approach discussed in the literature is that the arguments of the field operators
Ψ1 and Ψ2 should be slightly separated and the limit when the separation goes to
zero should be taken only at the final stage of calculations. However, no universal

10



way of separating the arguments is known and it is not clear whether any separation
can resolve the problems of QFT. Physicists often ignore this problem and use such
products to preserve locality (although the operator of the quantity x does not exist).

As a consequence, the representation operators of interacting systems con-
structed in QFT are not well defined and the theory contains anomalies and infinities.
While in renormalizable theories the problem of infinities can be somehow circum-
vented at the level of perturbation theory, in quantum gravity infinities cannot be
excluded even in lowest orders of perturbation theory. One of the ideas of the string
theory is that if products of fields at the same points (zero-dimensional objects)
are replaced by products where the arguments of the fields belong to strings (one-
dimensional objects) then there is hope that infinities will be less singular. However,
a similar mathematical inconsistency exists in string theory as well and here the prob-
lem of infinities has not been solved yet. In summary, the situation with infinities
in quantum theory can be characterized such that first people create problems by
introducing operators which mathematically are poorly defined and then great efforts
are made for resolving those problems.

An additional problem in Lagrangian interacting theories (classical an
quantum) is that symmetry conditions do not define the form of the interaction
Lagrangian unambiguously, to say nothing about the fact that the values of interac-
tion constants are fully arbitrary. As an example, consider the question whether the
gravitational constant G in GR can be treated as a fundamental physical quantity.

The quantity G defines the gravitational force in the Newton law of gravity.
Numerous experimental data show that this law works with a very high accuracy.
However, this only means that G is a good phenomenological parameter. At the level
of the Newton law one cannot prove that G is the exact constant which does not
change with time, does not depend on masses, distances etc.

In GR G is the coefficient of proportionality between the left-hand-side and
rihgt-hand-side of Eq. (1). GR cannot calculate G or give a theoretical explanation
why this value should be as it is. A problem arises whether the quantity G should be
treated as a fundamental or phenomenological constant.

For example, the quantity h̄ is the fundamental constant from the following
consideration. Quantum theory shows that each projection of the angular momentum
in dimensionless units can take only the values±1/2,±1, .... Therefore if the minimum
magnitude is denoted as h̄/2 then h̄ = 1 by definition. However, for historical reasons,
people want to measure the angular momentum in kg ·m/s. Then the question why h̄
is as it is does not arise because the value of h̄ is fully defined by the choice of the units.
Analogously, c is the fundamental constant because instead of measuring velocity in
dimensionless units v/c (in which case c = 1 by definition) people measure it in m/s.
One might think that the quantity G can be treated analogously and its value is as
it is simply because we wish to measure masses in kilograms and distances in meters
(in the spirit of Planck units). However, treating G as a fundamental constant can
be justified only if there are strong reasons to believe that the Lagrangian of GR is
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the only possible Lagrangian. Let us consider whether this is the case.
The Lagrangian of GR should be invariant under general coordinate trans-

formations and the simplest way to satisfy this requirement is a choice when it is
proportional to the scalar curvature Rc. In this case the Newton gravitational law is
recovered in the nonrelativistic approximation and the theory is treated as successful
in explaining several known phenomena (see, however the discussion in Sec. 2). Nev-
ertheless, the argument that this choice is simple and agrees with the data, cannot be
treated as a fundamental requirement. Another reason for choosing the linear case is
that here equations of motions are of the second order while in quadratic, cubic cases
etc. they will be of higher orders. However, this reason also cannot be treated as fun-
damental. It has been argued in the literature that GR is a low energy approximation
of a theory where equations of motion contain higher order derivatives. In particular,
a rather popular approach is when the Lagrangian contains a function f(Rc) which
should be defined from additional considerations. In that case the constant G in the
Lagrangian is not the same as the standard gravitational constant. It is believed that
the nature of gravity will be understood in the future quantum theory of gravity but
efforts to construct this theory has not been successful yet. Hence there are no solid
reasons to treat G as a fundamental constant.

In quantum theory of gravity constructed by quantizing standard GR, G
is treated as a fundamental constant and Λ is treated as a quantity which is defined
by the contribution of vacuum diagrams. The existing quantum theory of gravity
cannot calculate Λ unambiguously since the theory contains strong divergences. With
a reasonable cutoff parameter, the result for Λ is such that in units h̄ = c = 1, GΛ is
of the order of unity. This result is expected from dimensionful considerations since
in these units, the dimension of G is length2 while the dimension of Λ is 1/length2.
However, this value of Λ is greater than the observed one by 122 orders of magnitude.
This problem is called the CC problem or dark energy problem.

In summary, in quantum theory the space-time background does not have
a logical foundation and creates fundamental foundational problems. In addition, in
local Lagrangian quantum theories the notion of interaction is also problematic since
introducing interaction makes the theory mathematically inconsistent.

Those problems of QFT have been known for a long time. As noted above,
the goal of AQFT is to solve the problems in the framework of solid mathematics
(see e.g. Ref. [18]). However, here Poincare invariance is associated with Minkowski
space-time background and the theory is constructed in terms of local operatorial dis-
tributions on this background. In view of the above discussion, on quantum level the
meaning of this background is highly problematic. Another approach is the Heisen-
berg S-matrix program. Here the theory does not contain space-time coordinates at
all and considers only transitions of systems of free particles from the infinite past
when t→ −∞ to the distant future when t→ +∞. However, since quantum theory
is treated as more general than classical one, in this theory it is not possible to fully
avoid space-time description of real bodies at least in semiclassical approximation.
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Indeed, quantum theory should explain how photons from distant stars travel to the
Earth and even how one can recover the motion of macroscopic bodies along classical
trajectories (see Ref. [1] for a more detailed discussion).

In subsequent sections we consider an approach when quantum theory
does not contain space-time background and interactions. Nevertheless, as we argue,
this approach is realistic and can be a basis for the ultimate quantum theory.

4 Symmetry on quantum level

In relativistic quantum theory the usual approach to symmetry on quantum level
follows. Since Poincare group is the group of motions of Minkowski space, quantum
states should be described by representations of the Poincare group. In turn, this
implies that the representation generators should commute according to the commu-
tation relations of the Poincare group Lie algebra:

[P µ, P ν ] = 0 [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ)

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (3)

where P µ are the operators of the four-momentum and Mµν are the operators of
Lorentz angular momenta. This approach is in the spirit of Klein’s Erlangen pro-
gram in mathematics. However, as we argue in Refs. [19, 20] and in the preceding
section, quantum theory should not be based on classical space-time background and
the approach should be the opposite. Each system is described by a set of inde-
pendent operators. By definition, the rules how these operators commute with each
other define the symmetry algebra. In particular, by definition, Poincare symmetry
on quantum level means that the operators commute according to Eq. (3). This
definition does not involve Minkowski space at all. Such a definition of symmetry
on quantum level is in the spirit of Dirac’s paper [21]. A detailed discussion of the
symmetry on quantum level can be found in Refs. [19, 20].

Analogously, the definition of dS symmetry on quantum level should not
involve the fact that the dS group is the group of motions of the dS space. Instead, the
definition is that the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing the
system under consideration satisfy the commutation relations of the dS Lie algebra
so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (4)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. The definition of the AdS symmetry on quantum level is given by the
same equations but η44 = 1.

With such a definition of symmetry on quantum level, dS and AdS sym-
metries look more natural than Poincare symmetry. In the dS and AdS cases all the
ten representation operators of the symmetry algebra are angular momenta while in
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the Poincare case only six of them are angular momenta and the remaining four op-
erators represent standard energy and momentum. If we define the operators P µ as
P µ = M4µ/R where R is a parameter with the dimension length then in the formal
limit when R → ∞, M4µ → ∞ but the quantities P µ are finite, the relations (4)
become the relations (3). This procedure is called contraction and in the given case
it is the same regardless of whether the relations (4) are considered for the dS or AdS
symmetry. Note also that the above definitions of the dS and AdS symmetries has
nothing to do with dS and AdS spaces and their curvatures.

One might say that the relations (4) are written in units c = h̄ = 1.
However, as noted in the preceding section, the dimensionful constants c and h̄ arise
only because, for historical reasons, people prefer to measure angular momenta in kg ·
m/s and velocities in m/s and in fundamental theory those constants are not needed.
It is also obvious from Eq. (4) that dS and AdS theories contain only quantities
which are dimensionless in units c = h̄ = 1. For example, those theories cannot
contain quantities with the dimension equal to some power of length. In particular,
if we accept dS or AdS symmetry then neither G nor Λ can be fundamental physical
quantities. In situations when Poincare symmetry is a good approximation for dS or
AdS symmetry one can introduce a quantity R with the dimension length and work
not with the dimensionless quantities M4µ but with the dimensionful quantities P µ.
In the literature the quantity Λ is treated as the scalar curvature of the dS or AdS
space and therefore in terms of R it equals Λ = 3/R2. Then the question why Λ is as
it is does not arise because the answer is: because we want to measure distances in
meters. There is no guaranty that the quantity defined in such a way will not depend
on time and will have a physical meaning in situations when Poincare symmetry is
not a good approximation for dS or AdS symmetry. In particular, there is no relation
between the quantities Λ and G.

Let us now define the notion of elementary particle. Although theory of
elementary particles exists for a rather long period of time, there is no commonly
accepted definition of elementary particle in this theory. In the spirit of the above
definition of symmetry on quantum level and Wigner’s approach to Poincare symme-
try [22], a general definition, not depending on the choice of the classical background
and on whether we consider a local or nonlocal theory, is that a particle is elementary
if the set of its wave functions is the space of an irreducible representation (IR) of
the symmetry algebra in the given theory. In particular, in Poincare invariant theory
an elementary particle is described by an IR of the Poincare algebra, in dS or AdS
theory it is described by an IR of the dS or AdS algebra, respectively, etc.

A fundamental difference between Poincare and AdS symmetries on one
hand and dS symmetry on the other follows. In the former case, IRs are characterized
by a definite sign of the Poincare energy P 0 or its AdS analog M04. Then IRs with
positive energies are used for describing particles and IRs with negative energies are
used for describing antiparticles. However, each IR of the dS algebra necessarily
contains states with positive and negative dS energies M04 (see e.g. Ref. [23]). As
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shown in Ref. [24], the only possible interpretation of such IRs is that they describe
particles and antiparticles simultaneously.

More precisely, the very notion of particles and antiparticles becomes only
approximate in situations when R is rather large. As a consequence: a) no neutral
elementary particles can exist; b) the electric charge and the baryon and lepton
quantum numbers can be only approximately conserved (see Ref. [8] for a detailed
discussion). The experimental data that these quantum numbers are conserved reflect
the fact that at present Poincare approximation works with a very high accuracy. As
noted above, the cosmological constant is not a fundamental physical quantity and if
the quantity R is very large now, there is no reason to think that it was large always.
This completely changes the status of the problem known as ”baryon asymmetry
of the World” since at early stages of the World transitions between particles and
antiparticles had a much greater probability than now.

5 Position operator in quantum theory

As noted in the preceding sections, although quantum theory should not contain
space-time background, for describing real particles space-time coordinates are needed
at least in semiclassical approximation. For definiteness consider first this problem
in Poincare invariant theories. Here spaces of IRs consist of functions defined on the
momentum Lorentz hyperboloid: if p is the particle momentum, m is its mass and
E = ±(m2 + p2)1/2 is its energy then E > 0 on the upper Lorentz hyperboloid and
E < 0 on the lower one. For composite systems (even macroscopic bodies) one can
define the momentum of the system as a whole and internal momenta. Then the
motion of the system as a whole is described by the same wave functions as in IRs.
At this stage the wave function depends only on momenta (and spin variables) but
not on coordinates.

In nonrelativistic quantum theory the transition from momentum rep-
resentation to coordinate one is performed by the Fourier transform. This corre-
sponds to the choice of the position operator in the form r = ih̄∂/∂p. Then the
coordinate and momentum operators satisfy the well-known commutation relations
[pj, rk] = −ih̄δjk and this leads to the famous Heisenberg uncertainty relations.

The postulate that coordinate and momentum representations are related
to each other by the Fourier transform has been accepted from the beginning of
quantum theory by analogy with classical electrodynamics. As a consequence, an
inevitable effect in standard theory is the wave packet spreading (WPS) of the photon
coordinate wave function in directions perpendicular to the photon momentum. As
shown in Ref. [1], this leads to the following paradoxes: if the major part of photons
emitted by stars are in wave packet states (what is the most probable scenario) then
we should see not separate stars but only an almost continuous background from all
stars; no anisotropy of the CMB radiation should be observable; data on gamma-
ray bursts, signals from directional radio antennas (in particular, in experiments on
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Shapiro delay) and signals from pulsars show no signs of WPS. In addition, a problem
arises why there are no signs of WPS for protons in the LHC ring.

As argued in Ref. [1], the above postulate is based neither on strong the-
oretical arguments nor on experimental data. We propose a new consistent definition
of the position operator which resolves the paradoxes. Different components of the
new position operator do not commute with each other and, as a consequence, there
is no wave function in coordinate representation. In Ref. [8] we consider position
operator in dS theory and show that it considerably differs from standard one. As
noted in the next section, this problem is very important for understanding gravity.

6 Is the notion of interaction physical?

The fact that problems of QFT arise as a result of describing interactions in terms
of local quantum fields poses the following dilemma. One can either modify the
description of interactions or investigate whether the notion of interaction is needed
at all. A reader might immediately conclude that the second option fully contradicts
the existing knowledge and should be rejected right away. In the present section we
discuss a question whether the cosmological acceleration and gravity might be simply
kinematical manifestations of dS symmetry on quantum level.

Let us consider an isolated system of two particles and pose a question of
whether they interact or not. In theoretical physics there is no unambiguous criterion
for answering this question. For example, in classical (i.e. nonquantum) nonrela-
tivistic and relativistic mechanics the criterion is clear and simple: if the relative
acceleration of the particles is zero they do not interact, otherwise they interact.
However, those theories are based on Galilei and Poincare symmetries, respectively
and there is no reason to believe that such symmetries are exact symmetries of nature.

In quantum theory a system of two particles is described by a represen-
tation constructed from the corresponding single-particle representations. By defini-
tion, two particles do not interact with each other if each two-particle representation
operator O is a sum of the corresponding single-particle operators O1 and O2. In
particular the two-body energy operator is a sum of the single-particle energy op-
erators and analogously for the two-body momenta and angular momenta. Such a
representation is called the tensor product of single-particle representations.

For understanding whether the relative two-particle acceleration is zero
or not one has to calculate the two-body mass operator which describes the two-
body dynamics. It is known that in nonrelativistic quantum mechanics the free
two-body mass operator equals M = m1 + m2 + q2/2m12 where m1 and m2 are
the particle masses, q is the relative momentum and m12 is the reduced two-body
mass. Since this operator does not depend on the relative distance, the relative
acceleration is zero. The same is true in relativistic case where the mass operator is
M = (m2

1 + q2)1/2 + (m2
2 + q2)1/2.
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Consider now a system of two free particles in dS theory. For simplicity,
we consider first a case when the particles are nonrelativistic and the relative distance
operator r has the standard form ih̄∂/∂q. Then a direct calculation (see e.g. Refs.
[19, 24, 8]) gives that in classical approximation the classical two-body mass equals
M = m1 +m2 +Hnr where the two-body nonrelativistic Hamilotonian equals Hnr =
q2/2m12 −m12c

2r2/2R2. Then, as easily follows from classical equations of motion,
the relative acceleration is a = Λc2r/3.

From the formal point of view, the result is the same as in GR on dS space.
However, our result has been obtained by using only standard quantum-mechanical
notions while dS space, its metric, connection etc. have not been involved at all.
This result shows that the phenomenon of cosmological acceleration can be easily
and naturally explained from first principles of quantum theory without involving
space-time background, dark energy and other artificial notions.

The example with the cosmological acceleration shows that the notion
of interaction depends on symmetry. For example, when we consider a system of
two particles which from the point of view of dS symmetry are free (since they are
described by a tensor product of IRs), from the point of view of our experience based
on Galilei or Poincare symmetries they are not free since their relative acceleration
is not zero. This poses a question of whether not only dS antigravity but other
interactions are in fact not interactions but effective interactions emerging when a
higher symmetry is treated in terms of a lower one.

In particular, is it possible that quantum symmetry is such that on classical
level the relative acceleration of two free particles is described by the same expression
as that given by the Newton gravitational law and corrections to it? It is clear that
this possibility is not in mainstream according to which gravity is a manifestation of
the graviton exchange. However, as noted in Sec. 2, the existence of gravitational
waves has not been experimentally confirmed yet and, as noted in Sec. 3, introducing
interaction in QFT and string theory is mathematically inconsistent. We believe that
until the nature of gravity has been unambiguously understood, different possibilities
should be investigated.

A strong argument in favor of the possibility that gravity is simply a
kinematical manifestation of dS symmetry follows. In contrast to theories based on
Poincare and AdS symmetries, in the dS case the spectrum of the free mass opera-
tor is not bounded below by (m1 + m2). As a consequence, it is not a problem to
indicate states where the mean value of the mass operator has an additional contribu-
tion −Gm1m2/r with possible corrections. A problem is to understand reasons why
macroscopic bodies have such wave functions.

Since gravity is manifested only for macroscopic bodies on classical level,
it is important to understand the conditions of applicability of semiclassical approx-
imation for such bodies. As noted in textbooks om quantum theory, the condition
that a physical quantity is semiclassical is that the magnitude of the mean value of
this quantity is much greater than its uncertainty. In particular, a physical quantity
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cannot be semiclassical if it is rather small. As noted in Sec. 4, in dS theories there
can exist only physical quantities which in units c = h̄ = 1 are dimensionless. If one
introduces the quantity R and r is the standard distance between particles then in dS
theory the physical quantity defining the distance is the angular quantity ϕ = r/R. It
is reasonable to expect that R is of the order of cosmological distances. If r is of the
order of cosmological distances then ϕ is not small and, as argued in Ref. [8], in that
case the standard position operator is physical. Therefore the above result for the
cosmological accelerator is physical too. However, in Solar System the quantity ϕ is
very small and a problem arises whether this quantity can be treated semiclassically.

Since classical mechanics works with a very high accuracy at macroscopic
level, one might think that the validity of semiclassical approximation at this level
is beyond any doubts. However, to the best of our knowledge, this question has not
been investigated quantitatively. As noted above, such quantities as coordinates and
momenta are semiclassicall if their uncertainties are much less than the corresponding
mean values. Consider wave functions describing the motion of macroscopic bodies
as a whole (say the wave functions of the Sun, the Earth, the Moon etc.). It is
obvious that uncertainties of coordinates in these wave functions are much less than
the corresponding macroscopic dimensions. What are those uncertainties for the Sun,
the Earth, the Moon, etc.? What are the uncertainties of their momenta? What can
be said about the corresponding relative quantities in two-body systems, i.e. two-
body distances and two-body momenta?

In Ref. [8] we argue that if q = |q| then for macroscopic systems ∆q
is of the order of 1/rg where rg is the gravitational (Schwarzschild) radius of the
component of the two-body system which has the greater mass. Then we show that
if relative distances are of the order of the size of the Solar System or less then the
standard relative distance operator is not semiclassical. We propose a modification
of this operator such that the new operator is semiclassical. Then we get that the
classical nonrelativistic two-body Hamiltonian is

H(r,q) =
q2

2m12

− m1m2RC
2

2(m1 +m2)r
(

1

δ1
+

1

δ2
) (5)

where C is a constant of the order of unity and δ1 and δ2 are the widths of the dS
momentum wave functions for particles 1 and 2, respectively.

We see that the correction to the standard nonrelativistic Hamiltonian
disappears if the width of the dS momentum distribution for each body becomes very
large. In standard theory (over complex numbers) there is no serious limitation on
the width of the distribution; in semiclassical approximation the only limitation is
that the width of the dS momentum distribution should be much less than the mean
value of this momentum. However, as argued in Ref. [8], in a quantum theory over a
Galois field (GFQT) it is natural that the width of the momentum distribution for a
macroscopic body is inversely proportional to its mass. Then we recover the Newton
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gravitational law. Namely, if

δj =
R

mjG′
(j = 1, 2), C2G′ = 2G (6)

then

H(r,q) =
q2

2m12

−Gm1m2

r
(7)

In Ref. [8] we also consider post-Newtonian corrections and conclude that
in our approach gravity is simply a kinematical manifestation of dS symmetry over a
Galois field. In the next sections we argue that GFQT is a more physical and natural
version of quantum theory than standard one based on complex numbers.

7 What mathematics is most pertinent for quan-

tum physics?

As noted in Sec. 1, several strong arguments indicate that fundamental quantum
theory should be based on discrete mathematics. In this section we consider an
approach when this theory is based on a Galois field. Since the absolute majority of
physicists are not familiar with Galois fields, our first goal is to convince the reader
that the notion of Galois fields is not only very simple and elegant, but also is a
natural basis for quantum physics. If a reader wishes to learn Galois fields on a more
fundamental level, he or she might start with standard textbooks (see e.g. Ref. [25]).

In view of the present situation in modern quantum physics, a natural
question arises why, in spite of great efforts of thousands of highly qualified physicists
for many years, the problem of quantum gravity has not been solved yet. We believe
that a possible answer is that they did not use the most pertinent mathematics.

For example, the problem of infinities remains probably the most chal-
lenging one in standard formulation of quantum theory. As noted by Weinberg [26],
’Disappointingly this problem appeared with even greater severity in the early days of
quantum theory, and although greatly ameliorated by subsequent improvements in the
theory, it remains with us to the present day’. The title of Weinberg’s paper [27] is
”Living with infinities”. A desire to have a theory without divergences is probably the
main motivation for developing modern theories extending QFT, e.g. loop quantum
gravity, noncommutative quantum theory, string theory etc. On the other hand, in
theories over Galois fields, infinities cannot exist in principle since any Galois field is
finite.

The key ingredient of standard mathematics is the notions of infinitely
small and infinitely large. As already noted in Sec. 1, in view of the fact that matter
is discrete, the notions of standard division and infinitely small can have only a limited
applicability. Then we have to acknowledge that fundamental physics cannot be based
on continuity, differentiability, geometry, topology etc. As noted in Sec. 1, the reason
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why modern quantum physics is based on these notions is probably a consequence of
the fact that discrete mathematics still is not a part of standard physics education.

The notion of infinitely large is based on our belief that in principle we can
operate with any large numbers. In standard mathematics this belief is formalized
in terms of axioms about infinite sets (e.g. Zorn’s lemma or Zermelo’s axiom of
choice) which are accepted without proof. The belief that these axioms are correct
is based on the fact that sciences using standard mathematics (physics, chemistry
etc.) describe nature with a very high accuracy. It is believed that this is much
more important than the fact that, as follows from Gödel’s incompleteness theorems,
standard mathematics is not a self-consistent theory.

Standard mathematics contains statements which seem to be counterintu-
itive. For example, the interval (0, 1) has the same cardinality as (−∞,∞). Another
example is that the function tgx gives a one-to-one relation between the intervals
(−π/2, π/2) and (−∞,∞). Therefore one can say that a part has the same number
of elements as a whole. One might think that this contradicts common sense but in
standard mathematics the above facts are not treated as contradicting.

While Gödel’s works on the incompleteness theorems are written in highly
technical terms of mathematical logics, the fact that standard mathematics has foun-
dational problems is clear from the philosophy of quantum theory. Indeed in this
philosophy there should be no statements accepted without proof (and based only
on belief that they are correct); only those statements should be treated as physical,
which can be experimentally verified, at least in principle. For example, the first
incompleteness theorem says that not all facts about natural numbers can be proved.
However, from the philosophy of quantum theory this seems to be clear because we
cannot verify that a+ b = b+ a for any numbers a and b.

Suppose we wish to verify that 100+200=200+100. In the spirit of quan-
tum theory it is insufficient to just say that 100+200=300 and 200+100=300. We
should describe an experiment where these relations can be verified. In particular,
we should specify whether we have enough resources to represent the numbers 100,
200 and 300. We believe the following observation is very important: although stan-
dard mathematics is a part of our everyday life, people typically do not realize that
standard mathematics is implicitly based on the assumption that one can have any
desirable amount of resources.

Suppose, however that our world is finite. Then the amount of resources
cannot be infinite. In particular, it is impossible in principle to build a computer
operating with any number of bits. In this scenario it is natural to assume that
there exists a fundamental number p such that all calculations can be performed only
modulo p. Then it is natural to consider a quantum theory over a Galois field with the
characteristic p. Since any Galois field is finite, the fact that arithmetic in this field
is correct can be verified (at least in principle) by using a finite amount of resources.

Let us look at mathematics from the point of view of the famous Kronecker
expression: ”God made the natural numbers, all else is the work of man”. Indeed, the
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natural numbers 0, 1, 2... have a clear physical meaning. However only two operations
are always possible in the set of natural numbers: addition and multiplication. In
order to make addition reversible, we introduce negative integers -1, -2 etc. Then,
instead of the set of natural numbers we can work with the ring of integers where three
operations are always possible: addition, subtraction and multiplication. However,
the negative numbers do not have a direct physical meaning (we cannot say, for
example, ”I have minus two apples”). Their only role is to make addition reversible.

The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, as noted above,
division has only a limited meaning.

In mathematics the notion of linear space is widely used, and such impor-
tant notions as the basis and dimension are meaningful only if the space is considered
over a field or body. Therefore if we start from natural numbers and wish to have a
field, then we have to introduce negative and rational numbers. However, if, instead
of all natural numbers, we consider only p numbers 0, 1, 2, ... p− 1 where p is prime,
then we can easily construct a field without adding any new elements. This construc-
tion, called Galois field, contains nothing that could prevent its understanding even
by pupils of elementary schools.

Let us denote the set of numbers 0, 1, 2,...p − 1 as Fp. Define addition
and multiplication as usual but take the final result modulo p. For simplicity, let
us consider the case p = 5. Then F5 is the set 0, 1, 2, 3, 4. Then 1 + 2 = 3 and
1 + 3 = 4 as usual, but 2 + 3 = 0, 3 + 4 = 2 etc. Analogously, 1 · 2 = 2, 2 · 2 = 4,
but 2 · 3 = 1, 3 · 4 = 2 etc. By definition, the element y ∈ Fp is called opposite
to x ∈ Fp and is denoted as −x if x + y = 0 in Fp. For example, in F5 we have
-2=3, -4=1 etc. Analogously y ∈ Fp is called inverse to x ∈ Fp and is denoted as
1/x if xy = 1 in Fp. For example, in F5 we have 1/2=3, 1/4=4 etc. It is easy to
see that addition is reversible for any natural p > 0 but for making multiplication
reversible we should choose p to be a prime. Otherwise the product of two nonzero
elements may be zero modulo p. If p is chosen to be a prime then indeed Fp becomes
a field without introducing any new objects (like negative numbers or fractions). For
example, in this field each element can obviously be treated as positive and negative
simultaneously!

The above example with division might also be an indication that, in the
spirit of Ref. [28], the ultimate quantum theory will be based even not on a Galois
field but on a finite ring (this observation was pointed out to me by Metod Saniga).

One might say: well, this is beautiful but impractical since in physics and
everyday life 2+3 is always 5 but not 0. Let us suppose, however that fundamental
physics is described not by ”usual mathematics” but by ”mathematics modulo p”
where p is a very large number. Then, operating with numbers which are much less
than p we will not notice this p, at least if we only add and multiply. We will feel
a difference between ”usual mathematics” and ”mathematics modulo p” only while
operating with numbers comparable to p.
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The above discussion has a well-known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a ”curvature” defined by a very large number p but we do not notice it when
we deal only with numbers much less than p. This number should be treated as a
fundamental constant describing laws of physics in our World.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light c is infinitely large but in relativistic physics it is finite. Analogously, from the
point of view of classical theory, the Planck constant h̄ is infinitely small but in quan-
tum theory it is finite. Therefore it is natural to think that in the future quantum
physics the quantity p will be not infinitely large but finite.

8 Quantum theory over a Galois field

For any new theory there should exist a correspondence principle that at some condi-
tions this theory and standard well tested one should give close predictions. Known
examples are that classical nonrelativistic theory can be treated as a special case of
relativistic theory in the formal limit c→∞ and a special case of quantum mechanics
in the formal limit h̄→ 0. Analogously, Poincare invariant theory is a special case of
dS or AdS invariant theories in the formal limit R→∞. We treat standard quantum
theory as a special case of GFQT in the formal limit p → ∞. Therefore a question
arises which formulation of standard theory is most suitable for its generalization to
GFQT.

A known historical fact is that quantum mechanics has been originally
proposed by Heisenberg and Schrödinger in two forms which seemed fully incompati-
ble with each other. While in the Heisenberg operator (matrix) formulation quantum
states are described by infinite columns and operators — by infinite matrices, in the
Schrödinger wave formulations the states are described by functions and operators
— by differential operators. It has been shown later by Born, von Neumann, Dirac
and others that the both formulations are mathematically equivalent. In addition,
the path integral approach has been developed.

In the spirit of the wave or path integral approach one might try to replace
classical space-time by a finite lattice which may even not be a field. In that case
the problem arises what the natural quantum of space-time is and some of physical
quantities should necessarily have the field structure. Such an approach has been
discussed in the literature but, as argued in Sect. 3, fundamental physical theory
should not be based on space-time background.

22



In the literature there have been also discussed approaches where quantum
theory is based on quaternions or p-adic fields (see e.g. Ref. [29] and references
therein). In those approaches infinity still exists and so a problem remains whether
or not it is possible to construct quantum theory without divergencies.

We treat GFQT as a version of the matrix formulation when complex
numbers are replaced by elements of a Galois field. In that case the columns and ma-
trices are automatically truncated in a certain way, and therefore the theory becomes
finite-dimensional (and even finite since any Galois field is finite). This approach has
been discussed in Refs. [30, 31] and subsequent publications.

As noted in Sec. 6, in GFQT gravity is simply a natural kinematical
manifestation of dS symmetry over a Galois field. In this approach the gravitational
constant G is not a parameter taken from the outside (e.g. from the condition that
theory should describe experiment) but a quantity which should be calculated. The
actual calculation is problematic because it requires the knowledge of details of wave
functions for macroscopic bodies. However, reasonable qualitative arguments show [8]
that the de Sitter gravitational constant is proportional to 1/lnp. Therefore gravity
is a consequence of the finiteness of nature and disappears in the continuous limit
p→∞.

As noted in Sec. 4, in standard dS theory (over complex numbers) the very
notion of particles and antiparticles becomes only approximate and, as a consequence,
no neutral elementary particles can exist and the electric charge and the baryon and
lepton quantum numbers can be only approximately conserved. However, in GFQT
the same is true regardless of whether we consider a Galois field analog of dS or AdS
theory. Here the data that these quantum numbers are conserved is a consequence of
the fact that at present the quantity p is very large [8].

A problem arises whether p is a constant or it is different in different
periods of time. Moreover, in view of the problem of time in quantum theory, an
extremely interesting scenario is that the world time is defined by p. Then the phe-
nomenon of ”baryon asymmetry of the World” could be explained such that at earlier
stages of the World the quantity p was much less than now and transitions between
particles and antiparticles had a much greater probability than now.

The above discussion shows that GFQT gives a new look at fundamental
problems of quantum theory. We believe that the most important feature of GFQT
is that it is based on solid mathematics and this is an absolutely necessary feature
for any approach which can be considered as a candidate for the ultimate quantum
theory.

9 Discussion

In Secs. 1, 7 and 8 we argue that the main reason of crisis in physics is that nature,
which is fundamentally discrete, is described by continuous mathematics. Moreover,
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no ultimate physical theory can be based on continuous mathematics because it is
not self-consistent (as a consequence of Gödel’s incompleteness theorems).

In the first part of the paper we discuss inconsistencies in standard ap-
proach to quantum theory. They arise as a consequence of the fact that standard
approach is based on the space-time background. In Sec. 4 we argue that the theory
should proceed not from the space-time background but from symmetry on quantum
level. One of the immediate consequences is that the cosmological constant prob-
lem does not exist and the phenomenon of cosmological acceleration can be easily
and naturally explained from first principles of quantum theory without involving
space-time background, dark energy and other artificial notions.

The mainstream approach to gravity is that gravity is the fourth (and
probably the last) interaction which should be unified with electromagnetic, weak
and strong interactions. While the electromagnetic interaction is a manifestation of
the photon exchange, the weak interaction is a manifestation of the W and Z boson
exchange and the strong interaction is a manifestation of the gluon exchange, gravity
is supposed to be a manifestation of the graviton exchange. However, the notion
of the exchange by virtual particles is taken from particle theory while gravity is
known only at macroscopic level. Hence thinking that gravity can be explained by
mechanisms analogous to those in particle theory is a great extrapolation.

As noted in Sec. 2, the existence of gravitons is problematic. In addition,
since any quantum theory of gravity can be tested only on macroscopic level, the
problem is not only to construct quantum theory of gravity but also to understand
a correct structure of the position operator on macroscopic level. However, in the
literature the latter problem is not discussed because it is tacitly assumed that the
position operator on macroscopic level is the same as in standard quantum theory.
This is an additional great extrapolation which should be substantiated.

As argued in Secs. 6 and 8, in quantum theory the notion of interaction
is problematic and gravity is simply a kinematical manifestation of dS symmetry
over a Galois field. By analogy with gravity, one might think that electromagnetic,
weak and strong interactions are not interactions but manifestations of higher sym-
metries. Similar ideas have been already discussed in the literature, e.g. in view of
compactification of extra dimensions.

We believe that one of the main reasons of the crisis in modern quantum
theory is in its philosophy. One of extremely impressive results of QFT were that
the theory correctly gives eight digits in the electron and muon magnetic moments
and five digits in the Lamb shift. Those results were obtained in the end of the 40s.
Although they have been obtained with inconsistent mathematics (by subtracting one
infinity from the other), the agreement with experiment was so impressive that the
present mainstream philosophy is such that agreement with experiment is much more
important than solid mathematics.

Dirac was one of the very few famous physicists who had an opposite
philosophy. His advice given in Ref. [14] is: ”I learned to distrust all physical concepts
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as a basis for a theory. Instead one should put one’s trust in a mathematical scheme,
even if the scheme does not appear at first sight to be connected with physics. One
should concentrate on getting an interesting mathematics.”

It is obvious that only those approaches can be candidates for the ultimate
theory, which are based on solid mathematics. In this paper we argue that GFQT
satisfies this criterion.
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