
Steer by Logic

Einstein’s online physics challenge to today’s academics
— steering clear of false obstacles on the road ahead —

Gordon Watson ∗

FQXi 2014 asks, ‘How should humanity steer the future?’ Recalling false obstacles
to medical progress in humanity’s recent past — eg, impeding Semmelweis (b.1818),
McClintock (1902), Marshall (1951) — we reply, ‘Steer by Logic.’ Then — with Logic
in view and other scientific disciplines in mind — we amplify our answer via an online
coaching-clinic/challenge based on Einstein’s work. With the future mostly physical,
this physics-based challenge shows how we best steer clear of false obstacles — unneces-
sary barriers that slow humanity’s progress. Hoping to motivate others to participate,
here’s our position: we locate current peer-reviewed claims of ‘impossible’ — like those
from days of old — and we challenge them via refutations and experimental verifi-
cations. The case-study identifies an academic tradition replete with ‘impossibility-
proofs’ — with this bonus: many such ‘proofs’ are challengeable via undergraduate
maths and logic. So — at the core of this clinic/challenge; taking maths to be the
best logic — we model each situation in agreed mathematical terms, then refute each
obstacle in like terms. Of course, upon finding ‘impossibilities’ that are contradicted
by experiments, our next stride is easy: at least one step in such analyses must be
false. So — applying old-fashioned commonsense; ie, experimentally verifiable Logic
— we find that false step and correct it. With reputable experiments agreeing with our
corrections, we thus negate the false obstacles. Graduates of the clinic can therefore
more confidently engage in steering our common future: secure in the knowledge that
old-fashioned commonsense — genuine Logic — steers well.

[1] Notes to the Reader

‘In the interest of clearness, it appeared to me inevitable that I should repeat myself
frequently, without paying the slightest attention to the elegance of presentation,’ Ein-
stein (1916). May this essay bring you many happy hours of fun and critical thinking.

z. History: Submitted to FQXi ’s 2014 Essay Contest. Rejected: FQXi’s “initial review team has
found that your essay fails to meet the minimal standard for publication required by the contest
rules, due to a lack of connection to the contest topic.” NB: Lightly edited for posting at viXra.org.
a. Pre-requisites: A passion to learn physics! Elementary trig, the nature of functions, will help.
b. Pre-reading: Available online; EPR to the first paragraph on page 778; Bell (1964) to equation

(15). Additional hyperlinks are available at Appendix [B]; eg, Goldstein et al. (2011).
c. Notation: In trig functions, (u,v) = angle between vectors u, v. u·v = their inner product.
d. Technical notes: See Appendix [A].
e. Policy: We make weak allowances; take maths to be the best logic; seek experimental validations.
f. Results: Requiring no loopholes, all results here accord with reputable experimental findings.
g. Errors: Please report errors, typos, etc; critical correspondence is especially welcome.
h. Key words: CLR, commonsense local realism; DECs, dynamic equivalence classes; function Q.

∗ e-mail eprb@me.com Ref: FQXi2014c/viXra; 60c.lyx Date: 20140418

1

http://www.fqxi.org
http://www.fqxi.org
http://vixra.org
http://prola.aps.org/pdf/PR/v47/i10/p777_1
http://philoscience.unibe.ch/documents/TexteHS10/bell1964epr.pdf
http://www.scholarpedia.org/article/Bell%27s_theorem
mailto:eprb@me.com


[2] Introduction
In that this essay introduces a plan for an ongoing online coaching-clinic/challenge, readers should
freely avail themselves of the accompanying FQXi viXra.org facility for questions/answers, discus-
sion, etc. Past experience shows that — for the benefit of all — simple questions often lead to
helpful expansions. Also, to be clear, the coaching-clinic is for all: the challenge-aspect is primarily
applicable to academics who publish or hold contrary views.

Further, reader-engagement can often order the priority for expansions. Our own views may
also require conversion; eg, to the established languages of maths, physics, social-science. Given
our therapeutic-community approach here, subsequent expanded essays will be freely available.

So, hopefully with many minds at ease, we commence with a typical engineering approach:
Allowing that natural physical variables and their local interactions alone account for this classical
mantra — correlated tests on correlated things produce correlated results, without mystery — we
let these natural physical variables (unlike observables) be beables (after Bell 2004:174): elements
of reality, things which exist, their existence independent of measurement and observation.

As for observables — dynamic physical variables; test outcomes labelled by real numbers — we
allow that the beables here may be revealed by observables (by tests/interactions), and confirmed
by robust physical experiments and tests.

Coupling Einstein-locality with EPR’s condition of completeness and their definition of beables
(their elements of physical reality), we have our fundamental CLR (pronounced clear) principles:

On one supposition we absolutely hold fast; that of local-causality, often called Einstein-
locality: “The real factual situation of the system S2 is independent of what is done with
the system S1, which is spatially separated from the former,” after Einstein (1949:85).
“Every [relevant] element of the physical reality must have a counterpart in our physical
theory,” EPR (1935:777).
“If, without any way disturbing a system, we can predict with certainty (ie, with prob-
ability equal to unity) the value of a physical quantity, then there exists an element of
physical reality [a beable] corresponding to this physical quantity,” EPR (1935:777).

Formally, the foregoing specifications together constitute the commonsense local realism (CLR)
that, under Einstein’s guidance, we bring to any physical situation. For CLR represents the
fusion of local-causality (no causal influence propagates superluminally) and physical-realism (some
physical properties change interactively).

Under CLR, we now model EPRB: ie, EPR plus B for Bohm (1951:611-623); see also Bell
(1964).

↓ Alice’s domain ↓ ↓ Source ↓ ↓ Bob’s domain ↓
A±=±1=(a·λ){±a←λ]⇐p(λ)·〈λ+λ′=0〉·p′(λ′)⇒ [λ′→ ±b′}(λ′·b′)=±1=B±. (1)

(1) shows the model coded as an equation because it equates perfectly with EPRB — nothing
relevant missing, nothing irrelevant found — every relevant element of the subject physical reality
having its counterpart in the theory.

In (1), with its gedanken (mind’s eye) block-time view, we see a spin-conserving decay 〈λ+ λ′ = 0〉
giving birth to twinned spin-half particles which fly apart⇐ p(λ)·〈·〉·p′(λ′)⇒ en-route to their des-
tiny with gedanken Stern-Gerlach devices (SGDs): function-machines, each built from a squeeze-
function, eg [λ → ±a} ≡ Q(±a) and a response-function, eg (λ·a) ≡ R(a). Printed outputs
(A± = ±1 : B± = ±1) record each Up:Down output; appropriately observed by Alice:Bob.

See [A] for technical notes. Re our use of primes (′) see [A].1. Re λ, λ′ see [A].2. For R’s role as
a diagnostic-function: from reporting the output of an SGD to analyzing its behavior; see [A].3.

We next show our policy at work: modeling situations in agreed mathematical terms as above,
then analyzing each obstacle in like terms. Thus, triggered by Mermin (1988), but in the context
of EPRB per (1) above — the experiment in Bell (1964) — we arrive at Bell’s theorem.
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[3] Bell’s theorem
λ may denote “any number of hypothetical additional complementary variables needed
to complete quantum mechanics in the way envisaged by EPR,” Bell (2004:242).

Here’s a wholly mathematical version of Bell’s theorem; Bell (1964:(1)-(3), (12)-(14); 2004:14-21):

If A(λ, a) = A± = ±1; B(λ′,b′) = B± = ±1 = −A(λ,b′);
´
dλ ρ(λ) = 1 : (2)

Then 〈AB〉 ≡
´
dλ ρ(λ)A(λ, a)B(λ′,b′) = −

´
dλ ρ(λ)A(λ, a)A(λ,b′) 6= −a·b′; (3)

with Bohm and Aharonov (1957) cited as Bell’s example. To avoid confusion with later functions,
our expectation 〈AB〉 — the average of AB — replaces Bell’s equivalent expression P (~a,~b).

Introduced with the ‘not possible’ in the line below his 1964:(3), and based on the paragraph
below his 1964:(15), the 6= in (3) is Bell’s famous inequality.

However, for us, the identity in LHS (3) is a valid representation of the subject reality (from
high-school maths), so the source of Bell’s questionable 6= lies elsewhere: to be found. Detective-
like, we first turn to those unnumbered equations following Bell 1964:(14). There we refute Bell’s
analysis: from fundamental first principles — the CLR custom — and thus beyond dispute.

[4] Bell’s 1964 analysis refuted
To derive his 1964:(15), Bell goes beyond our (2)-(3) and invokes a third unit-vector c in unnum-
bered equations that follow his 1964:(14). If we number them Bell’s (14a) to Bell’s (14c), Bell —
suspiciously, in our view — equates (14b) to (14a).

Since A,B,C are discrete, let’s replace Bell’s integrals with sums and Bell’s 1964:(14a) with
discrete variables. For generality, let λ be a random variable in R3; with a uniform distribution
and consequent probability zero that two λs or λ′s or two particle-pairs are the same. Then, with
index i uniquely numbering each pair, let n be such that, to an adequate accuracy hereafter:

Bell’s (14a) = 〈AB〉 − 〈AC〉 = − 1

n

n∑
i=1

[A(a, λi)A(b′, λi)− A(a, λn+i)A(c, λn+i)] (4)

=
1

n

n∑
i=1

A(a, λi)A(b′, λi)[A(a, λi)A(b′, λi)A(a, λn+i)A(c, λn+i)− 1]. (5)

(5) is the correct discrete form of Bell’s (14a). And Bell’s (14c) is a valid conclusion from his (14b).
So, if Bell’s (14b) = Bell’s (14a), the related components of (5) and Bell’s (14c) should be equal.
Let ?

= identify our suspicion of Bell’s equality under these conditions. Then,

from Bell’s (14c): 〈BC〉 ≡ − 1

n

n∑
i=1

A(b′, λi)A(c, λi) = − 1

n

n∑
i=1

A(b′, λn+i)A(c, λn+i) (6)

?
= − 1

n

n∑
i=1

A(a, λi)A(b′, λi)A(a, λn+i)A(c, λn+i); from (5). (7)

To have Bell’s (14a) = Bell’s (14b) — and remove our ? from (7) — we’d require λi = λn+i :
the impossible. Impossible because by definition, physical context, and from Bell’s own λ-license:
λi 6= λn+i. So here’s a new — and the first valid — Bell-inequality:

Bell 1964 : (14b) 6= Bell 1964 : (14a) (8)
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∵
1

n

n∑
i=1

A(a, λi)A(b′, λi)A(a, λn+i)A(c, λn+i) 6=
1

n

n∑
i=1

A(b′, λi)A(c, λi) (9)

in general. Of course, a stable cohort of n classical objects — like Bertlmann’s socks (Bell 2004:139-
158) — would allow a non-destructive test and a follow-up non-destructive retest on that n-member
cohort. For such an n + i would denote another run of n tests on the same set as the i-series of
tests; and in the same order. Then (7) and (9) would be unfettered equalities. For then

A(a, λi)A(b′, λi)A(a, λn+i)A(c, λn+i) = A(a, λi)A(b′, λi)A(a, λi)A(c, λi) = A(b′, λi)A(c, λi).
(10)

Thus classical objects like socks (not quantum objects) satisfy Bell’s inequality. So we have here
the source of those famous (but soon to be shown erroneous) inequalities in (3) and elsewhere.
The source too of the error in the CHSH family of inequalities (see also Bell 1980:14), as we show
next.

[5] CHSH inequality refuted
Based on Peres’ (1995:164) version of the CHSH (1969) inequality, let Aj, Bj, Cj, Dj independently
equal ±1 randomly. Then, in our terms — see (4) and [A].2 — the following conditional truism
does not hold in real tests under EPRB:

ie, Aj(Bj −Dj) + Cj(Bj +Dj) ≡ ±2 does not ensure that (11)

AiBi +Bn+iCn+i + C2n+iD2n+i − A3n+iD3n+i = ±2 [sic]; (12)

nor that | 〈AiBi〉+ 〈Bn+iCn+i〉+ 〈C2n+iD2n+i〉 − 〈A3n+iD3n+i〉 |≤ 2 [sic]; (13)

for (12) is false over particle-pairs indexed by wn + i; see [A].2. [With SGD settings denoted by
unit-vectors a,b, c,d; (13) is false in the domain −π/3 < φ < π/3 if (a,b) = (b, c) = (c,d) =
φ and (a,d) = 3φ: after (20) below. And false over more that 75% of the range −π < φ < π.]

Of course, under the same conditions that deliver equality (10), truism (11) will hold. But real
experiments are conducted under LHS (12) and LHS (13): refuting such analyses as (11).

So — though naive realism and Bertlmann’s socks will wash in (11) — all naively-realistic
EPR-based Bell inequalities similarly fall to our CLR particle-by-particle analysis: thanks to that
family of unique twins p(λwn+i), p′(λ′wn+i). And, thanks to them and their first-principle examples,
we now move to refute Bell’s theorem.

[6] Bell’s theorem refuted
Pedagogy moving us to take the opposite tack to Bell in (2) — to show the utility of CLR; it
makes no difference to the results — let’s here focus on λ′. Allowing λ′ to be a random beable
uniformly distributed over R3, λ′ will be perturbed by p′(λ′)’s interaction with Bob’s SGD(b′):
for “each [pristine] particle, considered separately, is unpolarized here,” Bell (2004:82).

Representing that interaction by [λ′ → ±b′}, we find λ′ ∼ ±b′ equiprevalently (ie, with equal
prevalence): ∼ denoting an equivalence relation on Λ under the function [λ′ → ±b′}; per [A].3.

So, expanding (2) in our terms — see (14)-(16) next — then using LHS (3) to make (17):

A(λ, a) = [λ→ ±a}(λ·a) = ±a·a = ±1, (14)

B(λ′,b′) = [λ′ → ±b′}(λ′·b′) = (±b′)·b′ = ±1, (15)
ˆ
dλ ρ(λ) =

1

4π

4πˆ

0

dΩ = 1. (16)
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∴ 〈AB〉 =
1

4π

4πˆ

0

dΩ [λ→ ±a}(λ·a)[λ′ → ±b′}(λ′·b′); (17)

Ω a unit of solid-angle. The function-set of Q- and R-functions under the integral is therefore

{[λ→ ±a} (λ·a) [λ′ → ±b′} (λ′·b′)} (18)

Now, working with functions, any Q may be applied to any element in its domain, in any order,
to derive 〈AB〉. However, since there is just one independent variable in EPRB — from λ+λ′ = 0
— one Q is superfluous. So, focussing on λ′, the progressively reduced function-sets after (18) are:

{(−λ′·a) [λ′ → ±b′} (λ′·b′)} ⇒ {(−λ′·a) [λ′ → ±b′} (±1)} ⇒ {(∓b′ · a) (±1)} ⇒ {−b′·a} : (19)

or, equivalently, completing (17):

〈AB〉 =
1

4π

4πˆ

0

dΩ (−λ′·a)[λ′ → ±b′}λ′·b′ = (±1)(∓b′)·a = −b′·a = −a·b′. QED: � (20)

Bell’s theorem — represented in (3) consistent with Bell’s formulation — is refuted.
In passing: Since the outputs of (18)-(20) are identical, we see that Q eliminates the need for

normalizing integrals in expressions like (20): for Q is a normalizing function when, as here, its
arguments are normalized; ie, with Z denoting EPRB: P (λ′ → +b′ | Z) = P (λ′ → −b′ | Z) = 1/2.

(20) is the first in a series of correct CLR disentanglements. That series includes GHZ (1989),
GHSZ (1990), CRB (1991). But before showing CLR’s utility in that department at [9] — via
Mermin’s (1990; 1990a) 3-particle GHZ-variant — we next extend the refutation in [4] above; this
time using continuous variables.

[7] Bell’s 1964:(15) refuted
Given (20) — and based on Bell’s erroneous (14a) = (14b); see [4]— Bell’s 1964:(15) reads:

1 + 〈BC〉 = 1− b·c ≥ |a·c− a·b| = | 〈AB〉 − 〈AC〉 | : (21)

But (21) is a false relation (under CLR/EPRB and in general) in the domain −π/2 < φ < π/2 if
(a,b) = (b, c) = φ and (a, c) = 2φ. So Bell’s 1964:(15) is refuted as a generality.

Instead, Bell 1964:(15) is a typical Bellian relation restricted by Bell’s acceptance of naive
realism; per d’Espagnat’s (1979; 1979a): exemplified by Bell’s (1980) use of Bertlmann’s socks.

Despite these constraints, Bell (1964:199) concludes:

“In a theory in which parameters [sic] are added to quantum mechanics to determine
the results of individual measurements, without changing the statistical predictions,
there must be a mechanism whereby the setting of one measuring device can influence
the reading of another instrument, however remote. Moreover, the signal involved must
propagate instantaneously, so that such a theory could not be Lorentz-invariant.”

To the contrary, we will show that a CLR counter-conclusion prevails:

In a theory in which hidden properties, revealed by tests, are found to determine the
results of individual interactions: there must be a function that accurately tracks the
factual inferential consequences of such tests without changing the statistical predic-
tions. Such a theory will be Lorentz-invariant. CLR is such a theory.

Thus, our case against Bell clear, we next refute one of Bell’s false opinions.
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[8] Bell’s ‘statistical independence’ refuted
“One general issue raised by the debates over locality is to understand the connection
between stochastic independence (probabilities multiply) and genuine physical inde-
pendence (no mutual influence). It is the latter that is at issue in ‘locality,’ but it is
the former that goes proxy for it in the Bell-like calculations. We need to press harder
and deeper in our analysis here,” Arthur Fine, in Schlosshauer (2011:45).

In that CLR is devoid of subjective beliefs and non-physical entities, we take ‘probable’ and
its derivatives to be loaded terms here; though we have no problem with technical terms like
impossible, probability zero; or certain, probability one. However, to minimize confusion, we allow
that P denotes the normalized prevalence (aka objective probability).

With Z denoting EPRB, let P (AB = +1|Z) denote the normalized prevalence of AB = +1
given Z. Then, equating (20) to the standard prevalence relation for binary (±1) outcomes:

〈AB〉 = −a·b′ = (+1)P (AB = +1|Z) + (−1)[1− P (AB = +1|Z)]. (22)

∴ P (AB = +1|Z) = (1− a·b′)/2 = sin2 1
2
(a,b); P (AB = −1|Z) = cos2 1

2
(a,b). (23)

∴ P (A+B+|Z) 6= P (A+|Z)P (B+|Z); etc., (24)

when A+ and B+ are causally independent; ie, causally independent in the sense that neither
exerts any direct causal influence on the other.

That is, just like the apple and pear crop, we expect a dynamic (and hence a mathematico-
logical) connection because of the common-cause physical correlation between them. Just as here,
with our Q, we expect DECs to be related because of the physical correlations between closely-
related (here, twinned) particles.

In this way (from first principles), we refute Bell’s opinion (2004:243) and his move there from
his (9) to his (10): that causal independence should equate to statistical independence, seen as a
consequence of local causality.

Thus, derived from first principles, (24) responds to Fine’s urgings and delivers this result:
Given EPRB-style physical correlations, statistical independence does not equate to causal inde-
pendence under local causality : nor with apple and pear crops. Rather, like apple and pear crops,
there is a physical correlation and hence a consequential dynamical (and therefore a mathematico-
logical) relation between them. Just as, with our Q, we have physical correlations and consequent
equivalence relations in our maths/logic.

However, in full accord with reciprocal causal independence and local-causality (ie, no causal
influence propagates superluminally), two CLR boundary conditions follow: Causally independent
of SGD(b′), B±, λ

′ : A± may be causally dependent on any property of SGD(a) or λ. Causally
independent of SGD(a), A±, λ: B± may be causally dependent on any property of SGD(b′) or λ′.

With (24) another sound result from first principles — and therefore beyond dispute — we
finally demonstrate Q’s utility in analyzing and disentangling multiparticle experiments.

[9] Understanding Mermin’s 3-particle experiment
Einstein argues that ‘EPR correlations can be made intelligible only by completing the
quantum mechanical account in a classical way,’ after Bell (2004:86). Let’s see.

Consider experiment M : Mermin’s (1990; 1990a) 3-particle GHZ-variant. Respectively: Three
spin-half particles with spin beables λ, µ, ν emerge from a spin-conserving decay such that

λ+ µ+ ν = π. (25)
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Any pristine beable may thus be represented in terms of its siblings — eg, as (25) is used below in
the reduction (29)-(30) or in the transition (31)-(32) — thereby allowing still-relevant Q-functions
to supply relevant facts re relevant beable properties.

The particles separate along three straight lines in the y-z plane to interact with SGDs that
are orthogonal to the related line of flight. Let a, b, c denote the azimuthal angles of each SGD’s
principal-axis relative to the positive x-axis; let the test results be A,B,C. Then, extending
(14)-(15) appropriately; with ⊕ = xor:

A(a, λ) = A± = [λ→ a⊕ a+ π} cos(λ− a) = ±1, (26)

B(b, µ) = B± = [µ→ b⊕ b+ π} cos(µ− b) = ±1, (27)

C(c, ν) = C± = [ν → c⊕ c+ π} cos(ν − c) = ±1. (28)

The function-set of Q-functions and R-functions — as defined at [A].3 — is therefore

{[λ→ a⊕ a+ π}; cos(λ− a); [µ→ b⊕ b+ π}; cos(µ− b); [ν → c⊕ c+ π}; cos(ν − c)}. (29)

Now, working with functions, any Q may be applied to any element in its domain in any order to
derive 〈ABC〉. However, since there are just two independent variables — see (25) — one Q is
superfluous. So, taking just one example: (29) may be reduced to:

{[λ→ a⊕ a+ π}; cos(λ− a); [µ→ b⊕ b+ π}; cos(µ− b); cos(π − λ− µ− c)}. (30)

So, as a physically significant shortcut, (30) will yield 〈ABC〉 correctly. It being understood that
— as with any function — each and every Q-function properly maps its domain to its codomain;
and consequently onto the domain of every relevant response-function.

For now, bypassing the shortcut, we employ functions (26)-(28) ordered per (29):

〈ABC〉 = [λ→ a⊕ a+ π} cos(λ− a)[µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(ν − c) (31)

= [λ→ a⊕ a+ π} cos(λ− a)[µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(π − λ− µ− c) (32)

= [µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(π − a− µ− c)⊕− cos(−a− µ− c) (33)

= [ν → c⊕ c+ π} cos(π − a− b− c)⊕− cos(−a− b− c)⊕− cos(−a− b− c)

⊕ cos(−a− b− c− π) (34)

= cos(π − a− b− c)⊕− cos(−a− b− c)⊕− cos(−a− b− c)⊕ cos(−a− b− c− π) (35)

= − cos(a+ b+ c). QED.� (36)

∴ P (ABC = +1 |M) = sin2 1
2
(a+ b+ c); (37)

P (ABC = −1 |M) = cos2 1
2
(a+ b+ c). (38)

(36) is the correct result for experiment M , Mermin’s (1990a:733) ‘crucial minus’ sign properly
delivered: from (36), 〈ABC〉 = −1 when a + b + c = 0. Thus, consistent with the ordinary rules
for functions, we classically deliver intelligible EPR correlations. And (30) does the same.
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[10] Conclusions
Refuting a number of peer-reviewed ‘impossibility’ claims in modern physics, we have typified the
road-blocks that hinder humanity’s steering of the future. In responding to ‘How should humanity
steer the future?’ — reinforcing our reply - ‘Steer by Logic’ — we have justified the capitalization:
associating Logic with CLR-based mathematics; consistent with Einstein’s hope.

The way is thus cleared for significant educational and motivational consequences — across
many disciplines — to influence and shape the heart of that human future.

We conclude by placing our analysis in its historical context: Employing CLR first-principles
and elementary functions, we have refuted Bell’s famous theorem and all the Bell-supporting
arguments known to us; in our view, beyond dispute. Technically, via (20) and (36), we have also
explained ‘entanglement’ in CLR terms; dismissing the 6= in (3).

For the record, here’s Bell’s (2004:147) explanation of the background to that 6= in (3):

“To explain this dénouement without mathematics I cannot do better than follow
d’Espagnat (1979; 1979a).” Our paraphrase of d’Espagnat (1979:166) follows:

‘One can infer that in every particle-pair [every pair of twins; p(λ), p′(λ′)], one particle
has the property A+ and the other has the property A−, one has property B+ and one
B−, . . . . Such conclusions require a subtle but important extension of the meaning
assigned to our notation A+. Whereas previously A+ was merely one possible outcome
of a measurement made on a particle, it is converted by this argument into an attribute
of the particle itself.’

For us, preferring ‘outcome of a test’ to d’Espagnat’s (1979:166) ‘outcome of a measurement’, and
concluding that Bell’s theorem is based on a restrictive naive realism, we rejected any such tamper
with our task. On the contrary — given the fact that such pairs are twins, physically correlated at
birth by their tightly choreographed birth in a spin-conserving decay — this was our position:

One can infer that in every particle-pair — every pair of twins, per Bell’s abandoned
‘genetic’ hypothesis (Bernstein 1991:84) — one particle has the property λ ∼ +a where
∼ +a is not the outcome A+ of a test but an equivalence revealed by that outcome:

For we allowed that A+ reveals a previously-hidden preexisting equivalence relation ∼ on Λ.
Thus we arrived at the key to our analysis: we included all the CLR elements of such implica-

tions in the dynamics. For, in our micro-physics, we allowed that there may be ‘no infinitesimals
by the aid of which an observation might be made without appreciable perturbation’ (Heisenberg
1930:63). But we also allowed that preexisting pristine properties (ie, beables, properties; such as
being a member of a DEC) may be revealed by such perturbations.

So, for us: If a test on a particle reveals an associated DEC, then its pristine twin is a member of
a related class: For such twins are physically correlated at birth by their birth in a spin-conserving
decay. We therefore endorsed EPR’s elements of physical reality, defined as follows:

“If, without any way disturbing a system, we can predict with certainty (ie, with prob-
ability equal to unity) the value of a physical quantity, then there exists an element of
physical reality [a beable] corresponding to this physical quantity,” EPR (1935:777).

For — given the symmetries in (A.4)-(A.5) — let Alice test A(a, λ) and find A+; ie, λ ∼ +a.
Then, without further ado or disturbance anywhere, Alice can predict with certainty that

B(λ′, a′) = B(−λ, a′) = B(−λ ∼ −a′, a′) = B(λ′ ∼ −a′, a′) = −1 = B− : (39)

a′ distinguishing Bob’s SGD(a′) from Alice’s SGD(a) when a′ = b′ = a; per [A].1.
Now in (39), the first equality has Bell’s backing; see (2) or Bell (1964:(13). And the relation

B(λ′ ∼ −a′, a′) = −1 is CLR’s very definition of equivalence in Bob’s domain. For under these
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conditions, for all a′ and any number of such tests, B(λ′ ∼ −a′, a′) equals minus one with certainty:
a central experimental fact.

Thus, via the equivalence class to which p(λ ∼ +a) in this test belongs, the corresponding EPR
beable in Bob’s test is p′(λ′ ∼ −a′). In other words: p′(λ′ ∼ −a′) — the EPR beable that here
corresponds to the test result B− — allows us to complement EPR with a CLR comment:

Unsurprisingly: Without in any way disturbing particle p′(λ′ ∼ −a′), we can predict
with certainty the result B− = −1 of that particle’s interaction with Bob’s SGD(a′):

ie, p′(λ′ ∼ −a′)⇒ [λ′ → ±a′}(λ′ · a′) = −a′·a′ = −1 = B−. (40)

Moreover, to predict with certainty any particular pristine particle’s interaction with
Bob’s SGD(±b′): we’d let Alice test that particle’s twin with her SGD(∓b); etc.

We have thus shown that Bell’s theorem and related experiments negate naive realism, not com-
monsense local realism: for that famous inequality at the heart of Bell’s analysis is false. Moreover,
with every relevant element of each studied physical reality included in our physical theory — with
no other elements, subjective or otherwise — we show that our classical mantra holds true: corre-
lated tests on correlated things do produce correlated results without mystery.

We have also shown that, for us at least, mathematics is the best logic. For, though associated
with hidden-variables, the now discovered dynamic equivalence classes (DECs) are physically real
and wholly amenable to mathematical analysis and experimental confirmation. We further note
that the antipodean dichotomies associated with the DECs here are powerful discriminators.

Then, making EPR correlations intelligible by completing the quantum mechanical account in
a classical way, CLR also corrects the view — eg, Bell (2004:243) and Bell’s move there from his
(9) to his (10) — that causal independence should equate to statistical independence, seen as a
consequence of local causality. For we have shown that a chain of equivalence, based on physical
correlations — not causal influences — links the causally independent outcomes in (2) and in
(14)-(15) and in (26)-(28) to the appropriate local-realistic expectations 〈.〉.

And with (23) and (37)-(38) typifying our work on EPRB correlations: we associate the 1
2

in our trigonometric arguments with the intrinsic spin s = 1
2
of the spin-half particles. Similar

analysis with photons — eg, in Aspect (2002) — yields s = 1.
Finally, working from first principles, showing that Bell’s work is limited by his naive realism,

we also eliminate the source of Bell’s discomfort (expressed in Bernstein 1991:84). So, refuting
Bell at every step and honoring Einstein similarly, we here rephrase and reverse Bell’s lament:

Perfect quantum correlations demand something like the ‘genetic’ hypothesis: like the
triplets linked by λ, µ, ν in (25). It’s so reasonable to assume that the particles carry
with them programs, correlated in advance, telling them how to behave. This is so
rational that when Einstein saw that, and the others refused to see it, he was the
rational man. The others were burying their heads in the sand. So it’s great that
Einstein’s idea of a classical locally-causal reality works. The Logical thing works.
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[A] Technical notes

[A].1 The use of primes (′)

Primes (′) helpfully distinguish elements in Bob’s domain from similar elements in Alice’s do-
main. In (1), parameter a represents the principal-axis alignment of Alice’s SGD(a), a freely
and independently chosen by Alice. Parameter b′ represents the principal-axis alignment of Bob’s
SGD(b′); b′ freely and independently chosen by Bob.

So SGD(a′) means that Bob’s setting (indicated by the prime) is equal to Alice’s setting
(indicated by the a). That is: Bob and Alice have identical settings with a′ = b′ = a; agreeing, from
their common perspective, on Up/Down. Their settings are then antiparallel with −a′ = b′ = −a;
agreeing, from a particle perspective, on Up/Down (since λ, λ′ are themselves antiparallel).

However, in many ways, a fact over-rides such considerations: Bob — alone and independent
of anything that Alice might do — can prove p′(λ′ ∼ −a′). To do so, Bob simply tests p′(λ′) with
SGD(a′), revealing λ ∼ −a′ directly. To thus make p′(λ′ ∼ −a′) his own; as well as ours.

[A].2 λ and λ′

In (1), primes (′) show p′(λ′) and other elements in Bob’s domain. λ, λ′ are index-suppressed
twinned antiparallel — from λ+ λ′ = 0 — beables from the set of twinned particles

{p(λwn+i), p′(λ′wn+i) | w = 0, 1, 2, ..; i = 1, 2, .., n};w = run-number when required, eg (12). (A.1)

λ and λ′ are thus spin-half related CLR beables; separable hidden-variables: λ, λ′ ∈ Λ ⊂ R3.

[A].3 SGD(a), Q-function Q(±a) ≡ [λ→ ±a}, R-function R(a), DECs

Each SGD is a composite function-machine: squeeze-function Q feeds response-function R. In the
context of Alice’s device SGD(a): Q(±a) = [λ→ ±a}; R(a) = (λ·a); with related print-out (±1).

Turning to R in its role as a diagnostic-function: If R = (λ·a) = ±1, then λ = ±a⊕ λ ∼ ±a;
⊕ denoting xor. But under our policy of weak allowances, λ is a uniformly-distributed random
beable: λ ∈ Λ ⊂ R3. So P (λ = ±a | Z) = 0. However, independent of this supportive fact but
in full accord with our CLR policy of weak allowances: ∼ is the diagnostic message; ∼ being a
coarser relation than =. It follows that:

a+ ≡ {λ ∈ Λ ⊂ R3|λ ∼ +a ∈ V ⊂ R3}, a− ≡ {λ ∈ Λ ⊂ R3|λ ∼ −a ∈ V ⊂ R3}; (A.2)

where a± denotes a dynamic equivalence class (DEC); termed dynamic because subject to such
transformations as Q(±b′) : a± → b′±, or Q(±a) : b′± → a±, with relevant prevalencies.

(A.2) shows that Λ is partitioned dyadically under the mapping [λ → ±a}. So ∼ on the
elements of Q’s domain denotes: “has the same output/image under Q.” With [+a→ +a} = [λ→
+a}, allowing that a could be an element of Λ: [.→ +a} is well-defined under ∼ on Λ.

Representing maximal antipodean discrimination, the quotient set Λ/ ∼ is a set of two diametrically-
opposed extremes: Λ/ ∼= {a+, a−}.

[A].4 The fundamental experiment of CLR

p(λi)⇒ [λi → ±vk}(λi·vk) = ±1 = x : y = ±1 = (−v′

k·λ′i){∓v
′

k ← λ′i]⇐ p′(λ′i) :

xy = +1 : for all i = 1, 2, .., n; for all k = 1, 2, ..,ℵ0, (A.3)

for all unit-vectors vk ∈ V ⊂ R3 and any number of tests: an important proof of exactness.
That is: Under (A.3), the Q-functions are proven to be proper functions: it is impossible for

one beable to be mapped to two different images.
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In other words: Under the equivalence relation ∼ on Λ, two spin-half beables are equivalent
because a given Q maps them to the same output/image; ie, to their vector equivalents; it being
impossible for one beable to be mapped to two different images.

[A].5 The fundamental findings of CLR

Under (A.3): (a) Q-functions are proven to be such: it is impossible to map one spin-beable to
two different outputs/images. (b) The equivalence relation ∼ on Λ holds: spin-related beables are
equivalent if a given Q maps them to the same output/image.

So p(λ) = p(λ ∼ +a) = p(a+) reveals the previously-hidden (but related) DEC of its unper-
turbed and still-pristine correlate: ie, in general;

p(λ) = p(λ ∼ ±a) = p(λ ∈ a±) = p(a±) implies (A.4)

p′(λ′) = p′(λ′ = −λ) = p′(λ′ ∼ ∓a′) = p′(λ′ ∈ a′
∓

) = p′(a′∓); and vice-versa, etc : (A.5)

a range of properties (physical facts) suited to many analytic situations.
More formally: Q : Λ → V ⊂ R3 by assigning every object λ ∈ Λ to exactly one element

Q(λ) ∈ V where V is the space of 3-vectors. Experimental proof of the exactness here is provided
by this example from (A.3): The product of the paired outputs (±1) from SGD(±a) on p(λ) and
SGD(∓a′) on p(λ′) — for all a and any number of tests — equals one.

Allowing λ, λ′ to be antiparallel random beables, it follows that the mutually-exclusive collectively-
exhaustive equiprevalent outputs in (1) are ∼ ±a and ∼ ±b′; to thus highlight the symmetries in
EPRB.

[A].6 CLR dynamics

CLR dynamics deliver the results of local SGD/particle interactions as well as their factual im-
plications ; updating facts re pristine correlates with a mathematical If . . . : Then . . . : Converting
the source of our inferences (physical facts) to relevant physical properties (other physical facts)
via the mathematical transmission of such facts; independent of vague words and conjectures.

‘Surely the big — SGD(a) — and the small — p(λ) — should merge smoothly with one
another? And surely in fundamental physical theory this merging should be described
not just by vague words but by precise mathematics?’ after Bell (2004:190).

“The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite surprising
to have it appearing in physical theory at the most fundamental level. . . . does not any
analysis of measurement require concepts more fundamental than measurement? And
should not the fundamental theory be about these more fundamental concepts? One
line of development towards greater physical precision would be to have the [quantum]
‘jumps’ [or mergings] in the equations and not just in the talk — so it would come
about as a dynamical process in dynamically defined conditions,” Bell (2004:117-118).

In the context of EPRB, we take transformation to be a concept ‘more fundamental than mea-
surement’. Requiring such transformations/mergings in our equations — and not just in the talk
— we allow that local interaction between SGD(a) and p(λ) transforms both the particle and
the device: transforming hidden beables and revealing DECs; eg, λ ∈ a+. Importantly, a pristine
correlate will have a related DEC: ie, λ′ ∈ a′− in this example; λ′ ∈ a′− being confirmed with
certainty by Bob’s direct pre-, ‘simultaneous’ or post-testing of that correlate under SGD(a′).
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