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I. INTRODUCTION

Quantum theory has paradoxes related to the reduction of the wave packet typified by

“Schrödinger’s cat” and “Einstein, Podolsky and Rosen (EPR)”1,2. In order to interpret the

quantum theory without paradoxes, de Broglie and Bohm had proposed so called “hidden

variables” theory3,4. Although “hidden variables” has been rejected at that time5, the theory

has been improved in a way that is consistent with relativity and ontology6–10. However,

the improvement has not been completed so far.

Several experiments have demonstrated that Bell’s inequalities are always violated con-

firming the quantum mechanics theory on the non-locality of the photon and demonstrating

the absence of “hidden variables” for the local representation11–13.

However, the author has reported the alternative interpretation for quantum theory utiliz-

ing quantum field formalism with unobservable potentials14 that can be identified as “hidden

variables” similar to Aharonov-Bohm effect15,16 and rigorous mathematical treatment using

tensor form in keeping with the local representation, i. e., consistent with relativity. The

interpretation can omit the quantum paradoxes and be applicable to elimination of infinite

zero-point energy, spontaneous symmetry breaking, mass acquire mechanism, non-Abelian

gauge fields and neutrino oscillation, which can lead to the comprehensive theory.

The alternative interpretation gives completely the same calculation results using the

traditional quantum-superposition states because the mathematical tools involved in the

calculations, such as routine state vectors, operators, and inner products, are identical to

those used in traditional quantum theory. The difference between the alternative and tradi-

tional treatment is the introduction of indefinite metric as a physical reality that contradicts

“probabilistic interpretation”. In the alternate interpretation, the inner product of the states

which has been recognized as so called “probability amplitudes” is unrelated to the prob-

ability but related to an amplitude of interferences. Hence the “interference amplitudes”

is preferable to “probability amplitudes”, though we will use the word “probability am-

plitudes” in this paper according to traditional way. Although the calculation method of

the alternative interpretation in this paper using covariant quantization might be slightly

more complicated than the traditional one without covariant quantization, the method is a

straightforward approach, and the result is an inevitable conclusion by the rigorous deriva-

tion.
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In one example, the linear equations, e. g., Maxwell and Schrödinger equations, allow a

superposition of any eigenfunctions as a different solution. An eigenfunction can represent

an eigenstate after quantization, which describes non-divisible eigenstates such as single

photon and electron. Although the superposition states are allowed by the linearity of

the equations, the non-divisible eigenstate should not be divided after quantization, i. e.,

the coefficient so-called “probability amplitude” of the non-divisible eigenstate must be

integer. In other words, the eigenstates are just mode eigenfunctions derived from the

geometry (boundary condition of the equations), and the superposition states composed

of broken eigenstates should not be configured for an initial condition after quantization.

Therefore, the superposition of the eigenstates whose coefficients are not integer has to be

recognized as statistical treatment in mixed states for the case that a lot of particles exist,

e. g., the normalization of the coefficients is obviously the statistical treatment which allows

probabilistic interpretation.

However, in order to justify the phenomena looking like the quantum superposition states

in the case that few particles exist such as single particle, we need some infinitely divisible

(i.e., arbitrary coefficient) continuous body regardless of the quantization. The author find

that the unobservable (scalar) potentials must be just the thing which acts as a substitute

for the superposition as an inevitable result from the rigorous covariant quantization without

any artificial treatment. The result is not a matter of interpretation or the authors claims

but just findings.

Here we introduce an example of the findings as reported in Ref.14, and two-path single

photon and electron interference can be calculated without quantum-superposition state

by introducing a substantial (localized) photon or electron and the unobservable (scalar)

potentials, which are expressed as following Maxwell equations.(
∆− 1
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∂2

∂t2

)
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∂ϕ
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)
= −µ0i(
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When the scalar potential of Eq. (1) is quantized, the photon annihilation operator Â′
0

expressing the unobservable (scalar) potential can be expressed as follows.

Â′
0 =

1

2
γeiθ/2Â1 −

1

2
γe−iθ/2Â1, Â′†

0 =
1

2
γe−iθ/2Â†

1 −
1

2
γeiθ/2Â†

1 (2)
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where γ2 = −1 ( i. e., γ corresponds to the square root of the determinant of Minkowski

metric tensor
√
|gµν | ≡

√
g ≡

√
−1 = γ) which stands for requirement of indefinite metric,

Â1 is the photon annihilation operator obtained from quantization of the vector potentials

in Eq. (1); θ is a phase difference derived from a geometry. By using tensor form (covariant

quantization), we can explicitly identify these operators Â′
0 as the scalar potential and Â1

as the vector potentials. This description is spontaneously obtained as described later.

The above Â′
0 is quite similar to the expression of Ξ̃ reported by Meis to investigate

quantum vacuum state as follows17.

Ξ̃0kλ = ξakλϵ̂kλe
iφ + ξ∗a†kλϵ̂

∗
kλe

−iφ (3)

where k, λ, ϵ, ξ and φ stand for k mode, λ polarization, a complex unit vector of polarization,

a constant and a phase parameter, respectively.

If we identify ξ and ξ∗ as 1
2
γ and −1

2
γ and introduce polarization vectors as described

later in Eq. (7), then Eq. (2) corresponds to Eq. (3).

When state vector |ζ⟩, which represents the unobservable (scalar) potentials, is introduced

in Schrödinger picture as follows, the vector can be identified as indefinite metric vector.

|ζ⟩ ≡
(
1

2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩ (4)

where |1⟩ represents a photon state. Therefore when there is no phase difference, the expec-

tation value of arbitrary physical quantity Â and probability (or more like “interference”)

amplitude of |ζ⟩ are zeros (⟨ζ|Â|ζ⟩ = 0 , ⟨ζ|ζ⟩ = 0), which means the unobservable potentials

can not be observed alone in the literature. More detail treatment of these operators and

vectors have been discussed in Ref.14.

Aharonov and Bohm have pointed out that the unobservable potentials can cause electron

wave interferences16, and we should realize that all of physical interactions are regulated by

gauge fields (gauge principle. the potentials are also gauge fields.), which can not be observed

alone18–21.

In this paper, we show that the existence of the unobservable potentials can explain

not only the interferences but also the quantum eraser and delayed choice experiment. In

addition, we also show that the interference between photons and the unobservable potentials

violates Bell’s inequalities in keeping with the local representation, which is consistent with

relativity. This fact is the most important novel aspect of this paper that the violation of
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FIG. 1. Typical setup for the Quantum Eraser. Pol1 and Pol2 are fixed linear polarizers with

polarizing axes perpendicular (x and y). Pol3 is a revolvable linear polarizer.

Bell’s inequalities can not justify the non-locality of quantum theory and the absence of

“hidden variables” because the unobservable potentials which propagate through space at

the speed of light, i. e., “local action” or “locality”, can act as “hidden variables”.

II. TRADITIONAL EXPLANATION FOR QUANTUM ERASER

Figure 1 shows a typical setup for the quantum eraser22. When there are no polarizers,

an interference pattern composed of dark and bright fringes can be observed on the screen

because light passing on the left of the wire is combining, or “interfering,” with light passing

on the right-hand side. In other words, we have no information about which path each

photon went.

When polarizers 1 and 2, which are called “which-path markers”, are positioned right

behind the wire as shown in Figure 1, the launched light polarized in 45◦ direction from the

Laser is polarized in perpendicular (x-polarized and y-polarized) by these polarizers. Then

the interference pattern on the screen is erased because “which-path makers” have made

available the information about which path each photon went.

When polarizer 3 is inserted in front of the screen with the polarization angle +45◦ or -45◦

in addition to “which-path makers”, the interference pattern reappears because polarizer 3

has made the information of “which-path makers” unusable.

We can produce a mathematical description of the erasure and reappearance of the inter-

ference pattern as follows. The x- and y-polarized photon passing through polarizer 1 and

2 can be expressed by the quantum-superposition state as follows.

|x⟩ = 1√
2
|+⟩+ 1√

2
|−⟩ (5)
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and

|y⟩ = 1√
2
|+⟩ − 1√

2
|−⟩ (6)

where “+” and “-” represent polarizations +45◦ and -45◦ with respect to x.

The photons pass through polarizers 1 and 2 are polarized at right angles to each other

as seen in the left-hand side of Eqs. (5) and (6), which prevent the interference pattern. In

other words, “which-path makers” have made available the information about which path

each photon went. Although there are same polarized states in the right-hand side of Eq.

(5) and (6), the interference patterns consisting of bright and dark fringes made by +45◦

and -45◦ polarized states are reverted images and annihilate each other. Therefore, sum

total of the images has no interference pattern.

When polarizer 3 is inserted with the polarization angle +45◦ or -45◦, only |+⟩ or |−⟩ can

pass through polarizer 3. Then the interference pattern made by either |+⟩ or |−⟩ of both

Eqs. (5) and (6) reappears, which means that we can not identify which-path the photons

had passed through, i.e., polarizer 3 has made the information of “which-path makers”

unusable.

III. NEW EXPLANATION FOR QUANTUM ERASER

The mathematical description of the photon states passing through polarizers 1 and 2

used in the traditional explanation requires the quantum-superposition states in Eqs. (5)

and (6), respectively.

If Maxwell equations are deemed to be classical wave equations whose electro-magnetic

fields obey the superposition principle, then the description is valid. However, applying the

superposition principle to particle image, e. g., inseparable single photon, leads to quantum

paradoxes such as the reduction of the wave packet. These paradoxes are great problems

not only with the traditional explanations but also for true nature of physics.

Although tensor form (covariant quantization) is a rigorous treatment as we will describe

later, here we conveniently take advantage of the unobservable potentials that can eternally

populate the whole space as waves independent of existence of the substantial photons.

Therefore, we can replace the photon state |x⟩ with |x⟩+ |ζ⟩, where |ζ⟩ is a state represent-

ing the unobservable potentials whose probability (or more like “interference”) amplitudes

⟨ζ|ζ⟩ = 0 in initial states as described in Eq. (4) (when there is no difference in phase
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and polarization angle as described below.). The unobservable potentials can be polar-

ized by the polarizers because these potentials obey Maxwell equations and populate the

whole space-time. Therefore, we should introduce the polarization terms with unobservable

potentials.

Then the following states, which are identified as Eq. (4) introducing polarization terms

similar to Eq. (3), can generate the same interference as the quantum-superposition states

in Eqs. (5) and (6).

|x⟩+ |ζϕ,x⟩ = |x⟩+ 1

2
γeiϕeiθ/2|x⟩ − 1

2
γe−iϕe−iθ/2|x⟩

|y⟩+ |ζϕ+ 1
2
π,y⟩ = |y⟩+ 1

2
γei(ϕ+

1
2
π)e−iθ/2|y⟩ − 1

2
γe−i(ϕ+

1
2
π)eiθ/2|y⟩ (7)

where γ2 = −1, ϕ and θ are the indefinite metric, the polarization angle of polarizer 3

measured from x-axis and phase difference between left and right paths, respectively.

Therefore, when we observe only |x⟩ with polarizer 3, i. e., θ = 0, the intensity of the

interference ⟨I⟩ can be calculated as follows.

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩) = ⟨x|x⟩ − 1

2
⟨x|x⟩+ 1

2
⟨x|x⟩ cos (2ϕ+ θ)

=
1

2
+

1

2
cos (2ϕ+ θ) =

1

2
+

1

2
cos (2ϕ) (8)

Hence the output intensity by rotation angle of polarizer 3 is reproduced correctly.

When we observe |x⟩ and |y⟩ with polarizer 3, the intensity is obtained as follows.

⟨I⟩ ∝
(
⟨x|+ ⟨ζϕ,x|+ ⟨y|+ ⟨ζϕ+ 1

2
π,y|

)(
|x⟩+ |ζϕ,x⟩+ |y⟩+ |ζϕ+ 1

2
π,y⟩

)
(9)

Because ⟨x|y⟩ = ⟨y|x⟩ = 0,

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩) +
(
⟨y|+ ⟨ζϕ+ 1

2
π,y|

)(
|y⟩+ |ζϕ+ 1

2
π,y⟩

)
(10)

By using Eq. (8), we can obtain the following result.

⟨I⟩ ∝ 1

2
+
1

2
cos (2ϕ+ θ)+

1

2
+

1

2
cos (2ϕ+ π − θ) = 1+

1

2
cos (2ϕ+ θ)− 1

2
cos (2ϕ− θ) (11)

When ϕ = ±π, ±1
2
π, ⟨I⟩ ∝ 1 and ϕ = ±1

4
π, then ⟨I⟩ ∝ 1 ± sin θ, which reproduces the

interference correctly.

In this new explanation, the polarization of substantial photons is fixed, and the photons

can not pass through the polarizer which has a different polarization angle. However, the
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unobservable potentials create the same interference as the superposition state of |+⟩ and

|−⟩ as described above. In the case of x-polarized single photon, the interference can be

calculated by Eq. (7) replacing |y⟩ with |0⟩. Then ⟨I⟩ ∝ 1 + 1
2
cos (2ϕ+ θ)− 1

2
cos (2ϕ− θ)

is obtained. Note that when we calculate the single photon interference by using photon

number operator n1 = Â†
1Â1, we can obtain exact expression ⟨I⟩ ∝ 1

2
+ 1

2
cos (2ϕ+ θ) because

⟨0|0⟩ = 1 ̸= ⟨0|n1|0⟩ = 0, where Â1 is the photon annihilation operator obtained from the

vector potentials in Eq. (1)14.

The above calculations are based on Schrödinger picture. We can obtain the same results

based on Heisenberg picture. In Heisenberg picture, the photon number operator should be

replaced by n = (Â†
1+Â

†
p)(Â1+Âp)

14, where Â1 and Âp (p : polarization = x, y, · · · , etc.) are

the photon annihilation operators obtained from the vector and scalar potentials in Eq. (1),

respectively, which represents the substantial photons and modified operator introducing

the polarization terms in Eq. (2), i. e., the polarized unobservable potentials, as follows.

Âx =
1

2
γeiϕeiθ/2Â1 −

1

2
γe−iϕe−iθ/2Â1, Â†

x =
1

2
γe−iϕe−iθ/2Â†

1 −
1

2
γeiϕeiθ/2Â†

1 (12)

We can calculate Eq. (8) in Heisenberg picture as follows.

⟨I⟩ = ⟨n|(Â†
1 + Â†

x)(Â1 + Âx)|n⟩

= ⟨n|n1|n⟩+ ⟨n|Â†
xÂx|n⟩ ∝ 1− 1

2
+

1

2
cos (2ϕ+ θ) =

1

2
+

1

2
cos (2ϕ) (13)

Note that the x-polarized photon annihilation operator should be represented by Â1 + Âx

instead of Â1 in Heisenberg picture14. When there are x- and y-polarized photons, the

operator should be represented by (Â1+ Âx)+ (Â2+ Ây), where Â2 is a photon annihilation

operator obtained from the quantization of y-polarized vector potential, and Ây can be

obtained by replacing ϕ with ϕ + 1
2
π and Â1, Â

†
1 with Â2, Â

†
2 in Eq. (12). Then we can

calculate Eq. (9) in Heisenberg picture as follows.

⟨I⟩ = ⟨n|(Â†
1 + Â†

x + Â†
2 + Â†

y)(Â1 + Âx + Â2 + Ây)|n⟩

= ⟨n|n1|n⟩+ ⟨n|Â†
xÂx|n⟩+ ⟨n|n2|n⟩+ ⟨n|Â†

yÂy|n⟩

∝ 1 +
1

2
cos (2ϕ+ θ)− 1

2
cos (2ϕ− θ) (14)

where we identify ⟨n|n1|n⟩ ≡ ⟨n|Â†
1Â1|n⟩ = ⟨n|n2|n⟩ ≡ ⟨n|Â†

2Â2|n⟩ = n assuming that

there are the same number (n) of x- and y-polarized photons. Under the assumption |n⟩ ≡

|n⟩x + |n⟩y where |n⟩x, |n⟩y are the x- and y-polarized n photon states, respectively, we can
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FIG. 2. Typical setup for the Delayed Choice Quantum Eraser. QWP1 and QWP2 are quarter-wave

plates aligned in front of the double slit with fast axes perpendicular. Pol1 is a linear polarizer. BBO

(β−BaB2O4) crystal generates entangled photons by spontaneous parametric down-conversion23.

calculate Â1|n⟩ = Â1|n⟩x+ Â1|n⟩y =
√
n|n−1⟩x and Â2|n⟩ = Â2|n⟩x+ Â2|n⟩y =

√
n|n−1⟩y.

In addition, ⟨n|Â†
1Â2|n⟩ = ⟨n|Â†

2Â1|n⟩ = 0 is calculated.

The new explanation can describe that Âp or |0⟩+ |ζ⟩ which can be identified as vacuum,

creates and annihilates the substantial photons through the interference.

Loosely speaking, the unobservable potentials are oriented by the polarizers such as Eq.

(7) or Eq. (12). Then the substantial photons surf on the sea of the oriented potentials

which can change into substantial photons through the interference.

IV. NEW EXPLANATION FOR DELAYED CHOICE QUANTUM

ERASER

In this section, we show new explanation for Delayed Choice Quantum Eraser as shown

in Figure 2 which consists of an entangled photon source and two detectors. The delayed

choice has been demonstrated when the distance from BBO to polarizer 1 is longer than

that from BBO to the double slit23.

Here we should take particular note of the fact that the polarization angle of polarizer 1

has been chosen before the entangled photons are generated. Walborn et al.23 have pointed

out that “the experiment did not allow for the observer to choose the polarization angle in

the time period after photon s was detected and before detection of p”. From the principle

of causality, their point will be reasonable.
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However, mathematical description for the phenomenon requires entangled state such as

|ψ⟩ = 1√
2
(|x⟩s |y⟩p + |y⟩s |x⟩p) (15)

The entangled state declares that the state of the whole system is a quantum-superposition

state consisting of |x⟩s |y⟩p and |y⟩s |x⟩p . Therefore, when the state of one photon (s or p) is

observed and determined to be |x⟩, that of the other photon (p or s) suddenly changes from

the quantum-superposition state into |y⟩ even if the photons separate from each other, which

postulates the existence of long-range correlation beyond the causality (spooky action at a

distance). This postulate represents a critical defect and serious problem with the traditional

explanations as pointed out in a paper by “Einstein, Podolsky and Rosen (EPR)”2.

Hence we grapple with a strange physical phenomenon from the moment that we choose

the polarization angle of polarizer 1 to the moment BBO generates the entangle photon

pairs.

The unobservable potentials, which can change from the potentials into substantial pho-

tons, eternally populate the whole space not forgetting the space between BBO and Polarizer

1 independent of substantial photons. Hence, the space will be populated by the unobserv-

able potentials which are oriented by polarizer 1 as described above. More precisely, the

potentials determine the polarization of substantial photons in the space in advance depend-

ing on the polarization angle of polarizer 1.

For example, if we choose the polarization angle of polarizer 1 to ϕ which is measured

from the polarization angle ψ of created photons, then the unobservable potential is oriented

to |0⟩+ |ζϕ⟩ = |0⟩+ 1
2
γei(ϕ−ψ)eiθ/2|0⟩ − 1

2
γe−i(ϕ−ψ)e−iθ/2|0⟩ at polarizer 1 and propagates to

BBO. BBO is forced to generate the photon pair with polarization p : ϕ and s : ϕ ± 1
2
π

according to the arrival potentials. The mathematical description is as follows. By applying

a photon creation operator Âψ
†
to the polarized potentials, i. e.,

Âψ
†
|0⟩+ Âψ

†
|ζϕ⟩ = |ψ⟩+ 1

2
γei(ϕ−ψ)eiθ/2|ψ⟩ − 1

2
γe−i(ϕ−ψ)e−iθ/2|ψ⟩ (16)

Equation (16) can be calculated as the created photon state at BBO. Then the intensity of

the created photon can be calculated in this setup (θ = 0) as follows.

⟨I⟩ ∝ 1

2
+

1

2
cos (2ϕ− 2ψ) (17)

In order to create a photon, i. e., ⟨I⟩ = 1, ψ = ϕ will be required.
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Then the polarization of the photon pair is fixed by the unobservable potentials instead

of the entangle state in Eq. (15). Therefore, when the polarization angle is set to the fast

axis of QWP (Quarter-wave plate) 1 or 2, the interference pattern can be observed.

In this case, we are not aware of the determination of the polarization of the photon pair

by the unobservable potentials. This is the reason why the state seems to be “entangled”,

and the choice of the polarization angle of polarizer 1 seems to be “delayed”.

In order to confirm the new explanation, we should make experiments with a shutter

between BBO and polarizer 1 as follows. First, close the shutter not to make a definite

orientation of the unobservable potentials. After the entangled photon pairs are generated,

open the shutter. When the photon s is detected by Ds, close the shutter again. After a

time period, we excite BBO to generate the next entangled photon pairs. When the next

pairs are generated, open the shutter again. By repeating these procedures, we can make a

comparison between the traditional results and new result. If the definite orientation of the

unobservable potentials as mentioned above is valid, no interference pattern can be observed

even if the polarization angle of Polarizer 1 is set to the fast axis of QWP 1 or 2 throughout

the experiment.

Note that because the unobservable potentials obey Maxwell equations propagate at the

speed of light, the above time period that prevents the unobservable potentials from being

oriented should be longer than the distance between BBO and the shutter divided by the

speed of light.

The above new explanation is based on the preselected polarization by the setup. How-

ever, even if the polarizations of the photon pair are randomly selected, the measurement

results seem to have the long-range correlation beyond the causality as follows. From Eq.

(7), the measurement results of photons s and p are expressed as follows.

⟨Is⟩ ∝
1

2
+

1

2
cos (2ϕ), ⟨Ip⟩ ∝

1

2
− 1

2
cos (2ϕ) (18)

There is no such a classical correlation. The above results are identical to the traditional

quantum-mechanical predictions and violate Bell’s inequalities. Therefore, the long-range

correlation associated with the interference between the photons and unobservable potentials

is observed in all the experimental setups presented here. This is the answer to the so called

“setting-independence loophole”24.

Therefore, the confirmation method for the preselected polarization case described above
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has to be carefully implemented. When there are no polarizers, the polarization is randomly

selected. Hence, a detection frequency of photons by Dp proportional to the intensity of

measured photon will be extremely lower than the case when there are polarizers. The

difference of the detection frequency will be the only way to distinguish the new explanation

from traditional one.

V. TENSOR FORM OF THE ELECTROMAGNETIC FIELDS

We have introduced the operator by using γ2 = −1 such as Eq. (12), which expresses

the unobservable potentials for convenience in calculation in the above. When we use tensor

form of the electromagnetic fields, the operator and results can be spontaneously obtained

in following manner. The followings is almost the same as the description for the single

photon interference in Ref.14.

The electromagnetic potentials are expressed as following four-vector in Minkowski space.

Aµ = (A0, A1, A2, A3) = (ϕ/c, A) (19)

The four-current is also expressed as following four-vector.

jµ = (j0, j1, j2, j3) = (cρ, i) (20)

When we set the axises of Minkowski space to x0 = ct, x1 = x, x2 = y, x3 = z, Maxwell

equations with Lorentz condition are expressed as follows.

□Aµ = µ0j
µ, ∂µA

µ = 0 (21)

In addition, the conservation of charge div i + ∂ρ/∂t = 0 is expressed as ∂µj
µ = 0, where

∂µ = (1/c∂t, 1/∂x, 1/∂y, 1/∂z) = (1/∂x0, 1/∂x1, 1/∂x2, 1/∂x3), and □ stands for the

d’Alembertian: □ ≡ ∂µ∂
µ ≡ ∂2/c2∂t2 −∆.

The transformation between covariance and contravariance vector can be calculated by

using the simplest form of Minkowski metric tensor gµν as follows.

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


Aµ = gµνA

ν , Aµ = gµνAν (22)
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The following quadratic form of four-vectors is invariant under a Lorentz transformation.

(x0)2 − (x1)2 − (x2)2 − (x3)2 (23)

The above quadratic form applied a minus sign expresses the wave front equation and can

be described by using metric tensor.

−gµνx
µxν = −xµxµ = x2 + y2 + z2 − c2t2 = 0 (24)

This quadratic form which includes minus sign is also introduced to inner product of arbi-

trarily vectors and commutation relations in Minkowski space.

The four-vector potential satisfied Maxwell equations with vanishing the four-vector cur-

rent can be expressed as following Fourier transform in terms of plane wave solutions25.

Aµ(x) =

∫
dk̃

3∑
λ=0

[a(λ)(k)ϵ(λ)µ (k)e−ik·x + a(λ)†(k)ϵ(λ)∗µ (k)eik·x] (25)

k̃ =
d3k

2k0(2π)3
k0 = |k| (26)

where the unit vector of time-axis direction n and polarization vectors ϵ
(λ)
µ (k) are introduced

as n2 = 1, n0 > 0 and ϵ(0) = n, ϵ(1) and ϵ(2) are in the plane orthogonal to k and n

ϵ(λ)(k) · ϵ(λ′)(k) = −δλ,λ′ λ , λ′ = 1, 2 (27)

ϵ(3) is in the plane (k, n) orthogonal to n and normalized

ϵ(3)(k) · n = 0, [ϵ(3)(k)]2 = −1 (28)

Then ϵ(0) can be recognized as a polarization vector of scalar waves, ϵ(1) and ϵ(2) of

transversal waves and ϵ(3) of a longitudinal wave. Then we take these vectors as following

the easiest forms.

ϵ(0) =


1

0

0

0

 ϵ(1) =


0

1

0

0

 ϵ(2) =


0

0

1

0

 ϵ(3) =


0

0

0

1

 (29)

When the Fourier coefficients of the four-vector potentials are replaced by operators as

Âµ ≡
∑3

λ=0 â
(λ)(k)ϵ

(λ)
µ (k), the commutation relations are obtained as follows.

[Âµ(k), Â
†
ν(k

′)] = −gµνδ(k − k′) (30)

13
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The time-axis component (corresponds to µ, ν = 0 scalar wave, i. e., scalar potential because

ϵ
(0)
µ (k) = 0 (µ ̸= 0)) has the opposite sign of the space axes. Because ⟨0|Â0(k)Â

†
0(k

′)|0⟩ =

−δ(k − k′),

⟨1|1⟩ = −⟨0|0⟩
∫
dk̃|f(k)|2 (31)

where |1⟩ =
∫
dk̃f(k)Â†

0(k)|0⟩. Therefore, the time-axis component is the root cause of

indefinite metric. Note that the products of the operators replaced from the four-vectors

must introduce the same formalism.

Â†Â = −gµνÂ
µ†Âν (32)

In order to utilize the indefinite metric as follows, Coulomb gauge that removes the scalar

potentials should not be used.

Here we can recognize the potentials before passing through the polarizers 1 and 2 as

Aµ = (A0, A1, A2, 0) (33)

where, we neglect the longitudinal wave which is considered to be unphysical presence, i.

e., A3 = 0 for simplicity. When there are an x-polarized photon and scalar potential which

pass through each polarizer, the potentials passing through the polarizers can be expressed

as

A(x pol 1) µ =

(
1

2
eiθx/2A(x)0, A(x)1, 0, 0

)
, A(x pol 2) µ =

(
1

2
e−iθx/2A(x)0, 0, 0, 0

)
(34)

When these scalar potentials undergo a |ϕ| phase shift, i. e., the angle of the polarizer 3, by

passing through the polarizer 3, the phase terms will be shifted to ±i (|ϕ|+ θx/2). Here we

identify the number operators as ⟨1|A†
0A0|1⟩ = ⟨1|A†

1A1|1⟩ = ⟨1|A†
2A2|1⟩ = 1 because of the

Lorentz invariance. Hence the single photon interference in Eq. (8) or (18) is obtained as

followings.

A(x pol 1, 2→3) µ ≡ A(x pol 1→3) µ + A(x pol 2→3) µ =

(
cos(|ϕ|+ θx

2
)A(x)0, A(x)1, 0, 0

)
(35)

⟨Is⟩ ∝ ⟨1|A†
(x pol 1, 2→3)A(x pol 1, 2→3)|1⟩ =

1

2
− 1

2
cos(2|ϕ|+ θx) (36)

Similarly, in the case of a y-polarized photon

A(y pol 1) µ =

(
1

2
eiθy/2A(y)0, 0, 0, 0

)
, A(y pol 2) µ =

(
1

2
e−iθy/2A(y)0, 0, A(y)2, 0

)
(37)

14
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A(y pol 1, 2→3) µ ≡ A(y pol 1→3) µ + A(y pol 2→3) µ =

(
cos(|ϕ|+ θy

2
)A(y)0, 0, A(y)2, 0

)
(38)

Then

⟨Ip⟩ ∝ ⟨1|A†
(y pol 1, 2→3)A(y pol 1, 2→3)|1⟩ =

1

2
− 1

2
cos(2|ϕ|+ θy) (39)

By choosing θ ≡ θx = −(θy + π), i. e., the potentials undergo π phase shift and the

relatively-same phase shift at polarizers 1 and 2 when divided,

⟨Is⟩ ∝
1

2
− 1

2
cos(2|ϕ|+ θ), ⟨Ip⟩ ∝

1

2
+

1

2
cos(2|ϕ| − θ) (40)

Hence, we should choose θ = θ + π to correct the reversed signs, which is attributed to the

difference between using γ2 = −1 and tensor form.

In case of both polarization photons exist, the potentials just before polarizer 3 will be

expressed by summation of Eqs. (34) and (37). Then the potentials that undergo a |ϕ|

phase shift by polarizer 3 can be expressed as follows.

A(x, y pol 1, 2→3) µ =

(
A(x)0 cos(|ϕ|+

θx
2
) + A(y)0 cos(|ϕ|+

θy
2
), A(x)1, A(y)2, 0

)
(41)

Therefore, the photon number operator of the output of the polarizer 3 can be calculated

as follows.

A†
(x, y pol 1, 2→3)A(x, y pol 1, 2→3)

= −A†
(x)0A(x)0 cos

2(|ϕ|+ θx
2
)− A†

(y)0A(y)0 cos
2(|ϕ|+ θy

2
)) + A†

(x)1A(x)1 + A†
(y)2A(y)2

−(A†
(x)0A(y)0 + A†

(y)0A(x)0) cos(|ϕ|+
θx
2
) cos(|ϕ|+ θy

2
) (42)

Then by choosing θ ≡ θx = −(θy + π),

⟨1|A†
(x, y pol 1, 2→3)A(x, y pol 1, 2→3)|1⟩

= 1− 1

2
cos(2|ϕ|+ θ) +

1

2
cos(2|ϕ| − θ)

−⟨1|(A†
(x)0A(y)0 + A†

(y)0A(x)0)|1⟩ cos(|ϕ|+
θ

2
) sin(|ϕ| − θ

2
) (43)

Here we should recognize |1⟩ = (|1⟩x + |1⟩y) as mentioned above, and A(x)0 and A(y)0 an-

nihilate x and y-polarized photon, respectively, i. e., A(x)0|1⟩ = |0⟩x and A(y)0|1⟩ = |0⟩y.

Because x⟨0|0⟩y = 0,

−⟨1|(A†
(x)0A(y)0 + A†

(y)0A(x)0)|1⟩ = 0 (44)

Hence Eq. (43) corresponds to Eqs. (11) and (14) except the π phase shift of θ.
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VI. DISCUSSION

In this paper, we have taken advantage of the indefinite metric property of scalar poten-

tials. Here we discuss what the scalar field represents.

Usually in quantum optics, we can split the electric field and current density by using

Coulomb gauge as follows26.

E = ET + EL, ∇ · ET = 0, ∇× EL = 0

i = iT + iL, ∇ · iT = 0, ∇× iL = 0 (45)

where the indexes “T” and “L” stand for “Transverse” and “Longitudinal”, respectively.

By using electromagnetic potentials, “Transverse”components of Maxwell equations can be

described as follows.

∇× ET = −∂B
∂t
, ∇×B =

1

c2
∂ET

∂t
+ µ0iT

ET = −∂A
∂t

, ∇ ·B = 0 (46)

where B is the magnetic field. We can also obtain following “Longitudinal” components.

EL = −∇ϕ, ∇ · EL =
ρ

ϵ0

iL = ϵ0∇
∂ϕ

∂t
= −ϵ0

∂EL

∂t
(47)

Hence the transverse component seems associated with the magnetic field variation, and the

longitudinal component seems associated with charges as the regular scalar potential.

However, these associations are justified in a particular coordinate system, i. e., “rel-

ative associations”. When the coordinate system is changed according to Lorentz trans-

formation, “Transverse” and “Longitudinal” components are mixed. Then the associa-

tions have no meaning which is the important assertion of relativity27. This is why we

equate scalar potentials with vector potentials, i. e., identify the number operators as

⟨1|A†
0A0|1⟩ = ⟨1|A†

1A1|1⟩ = ⟨1|A†
2A2|1⟩ = 1 by Lorentz invariance. In addition, the Coulomb

gauge removes the explicit covariance of Maxwell equations. Hence we would better use

Maxwell equations (21) with Lorentz gauge. By utilizing the linearity of the equation (21),

we can express Maxwell equations with Lorentz condition as follows.

□Aµ = □(Aµ(mat) + Aµ(vac)) = µ0j
µ

∂µA
µ = ∂µ(A

µ
(mat) + Aµ(vac)) = 0

(48)
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where index “mat” and “vac” mean “matter” associated with four-current and “vacuum”,

respectively. If we naturally assume that there are no four-current in vacuum, then Aµ(mat)

and Aµ(vac) obey the following Maxwell equations respectively.

□Aµ(mat) = µ0j
µ, ∂µA

µ
(mat) = 0 (49)

□Aµ(vac) = 0, ∂µA
µ
(vac) = 0 (50)

Equation (49) will express substantial photon excited by the four-current. Note that

when we consider the spatial domain far from and exclude the four-current, Equation (50)

replacing Aµ(vac) with A
µ
(mat) can express the motion of the potentials in the domain associated

with the four-current.

In contrast, Equation (50) expresses the motion of the potentials unrelated to “matter”

in vacuum. Therefore, we can imagine that vacuum is the sea filled with unobservable

potentials, which evokes the concept of an ether. Although the static ether has been rejected

by special relativity27, the above filling potentials are not static entity but propagate at the

speed of light. Aharonov-Bohm effect clearly presents that the unobservable potentials

without electromagnetic field can cause electron interference16,28,29. By the same token, the

filling potentials in Eq. (50) can cause interference with substantial photon, Eq. (49) as if it

were a local oscillator for homodyne detection attached to space-time as discussed in Ref.14.

We generally calculate photon related phenomena using Aµ in Eq. (48) unconsciously,

i. e., without separation into “matter” and “vacuum”. However, we can not distinguish

Aµ(mat) from Aµ(vac), which is very much like distinguish sea spray from seawater. Indeed, no

separation will be required because both are ever-changing potentials derived from the same

Maxwell equation (48). Therefore, the filling potentials in vacuum can expel and incorporate

the potentials associated with “matter”, which makes us imagine that vacuum can create

and annihilate substantial photon.

The scalar field used in this paper correspond to the scalar component of this filling

potentials in the literature.

Although we estimate that the origin of the filling potentials might be the fabric of

space-time from the above consideration, the investigation will be a subject for a further

study.
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VII. CONCLUSIONS

We have presented that the quantum eraser can be explained without quantum-superposition

states by introducing the unobservable (scalar) potentials whose probability (or more like

“interference”) amplitudes are zero. The explanation presents the concept that vacuum can

create and annihilate the substantial photons.

We have also investigated the delayed choice experiment under the assumption that the

polarization of the photon pairs is determined by the unobservable (scalar) potentials which

are oriented by the setup of the experiment in advance. Moreover, we show that the inter-

ference between the photons and unobservable potentials makes the long-range correlation

beyond the causality that does not really exist in nature but seems to exist regardless of

the assumption. In addition to these discussions based on a method for convenience in

calculation, we have shown rigorous mathematical treatment using tensor form (covariant

quantization).

The new explanations obtained in the present paper are more general and physically

consistent than traditional explanations which require paradoxical quantum-superposition

states and entangled states. The other experiments and considerations have been reported,

which seem like paradoxes11–13,24,30–32. We believe that the paradoxes can be avoided by

the new explanation. Moreover, we should investigate whether engineering applications

based on wave packet reduction or entangled states are feasible technologies or not, because

an inevitable conclusion by the rigorous derivation described in this paper can remove the

paradoxical base concepts of the applications.

The new explanation presented here and Ref.14 compel a restructuring of the traditional

standard quantum theory. However, this is the real natural law without the enigmatic and

paradoxical thought processes such as quantum-superposition and entanglement based on

the “probabilistic interpretation”.
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