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Abstract- New formulas are proposed as a means to express the conservation of information 

principle. The first of them modifies the expression we presented in a previous work 

(viXra:1312.0060). The second one deals with the entropy of a particle in a circle. It is used to treats 

in a novel way the thermodynamics of a quantum gas. The wave function of this particle, when 

inserted in the conservation principle, leads to its entropy and the structure of energy levels to its 

internal energy. 

 

1 – Some Preliminaries 

 

   In a paper dealing with the proton-electron mass ratio [1], the “Conservation of Information 

Principle” was proposed in order to evaluate a modified Planck’s momentum related to the 

curved space-time. The equation representing this principle was written as 

 

                                                          S + I = S + ln(
2
) = C.                                                   (1) 

 

In equation (1), S is the Bekenstein-Hawking entropy [2,3],  is a wave function  associated 

to the curved space-time and C is a constant. 

   Indeed equation (1) seems not to be the best form to express the conservation of 

information principle. Instead of equation (1), we propose that the more appropriate form to 

write this principle is 

 

                                                           S + I = S + ln = C.                                                   (1A) 

 

If we consider the surface horizon of a black hole as a spherical surface of radius r, and by 

permitting its area or equivalently its radius to vary, we have with LPl being its Planck’s 

radius 

 

                                                                 S = (𝜋r
2
)  LPl

2
.                                                        (2) 

 

Inserting (2) into (1A), we get 

 

                                           = 0 exp(-S) =  0 exp( - 𝜋r
2
  LPl

2
 ).                                        (3) 

 

In reference [1] the wave function given by (3), was used in a Schroedinger equation as a 

means to find a modified Planck´s momentum in a curved space-time. 

 

2 – Particle in a Circle: A Plane-wave-like Case 

 

   Perhaps relation (1A) applies essentially to the cases where the wave function is a real 

quantity (not complex). In more general cases, specifically for the plane-wave-like case, we 

can write 

 

                                                   S + [i kB  (2𝜋)] ln = S0.                                                     (4) 
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Let us write (), the wave function of a particle in a circle. A particle of mass m is 

constrained to move in a circle of radius R and its position on the circumference is 

conveniently specified by an angle  (please see reference [4]). We have 

 

                                          n() = exp( in ),   n = 0, 1, 2, 3, …                                     (5) 

 

                                               S() = S0 +  [kB  (2𝜋)]n.                                                               (6) 
 
                                                       Sn  Smax = S0 + kB n.                                                                     (7) 
 
In (5) to (7), n are the quantum numbers and Smax is the maximum entropy related to a 
given quantum number. 
    The energy levels of this system are 
 
                                                           En = ℏ2 n2  (2mR2).                                                                   (8) 
 
3 – Connection with Thermodynamics 
 
   Let us consider the gas of particles described by (8), in contact with a thermal 
reservoir. In an isothermal process at a fixed size R, and taking in account the first law 
of thermodynamics we can write 
 
                                                                      Q = U.                                                                            (9) 
 
Here we consider the internal energy, namely the kinetic energy, as being quantized. We 
have 
 
                                                            UN  EN = ℏ2 N2  (2mR2).                                                      (10) 
 
We put the system in thermal contact with a heat reservoir at the absolute temperature 
T slightly greater than TN, so that the system makes a transition to the state N+1. This 
can be achieved in a quasi-static process if N>>1. In this process we have 
  
                                              U = EN+1 – EN = ℏ2 (2N +1)  (2mR2).                                          (11) 
 
Now we evaluate the excess of entropy developed in this process 
 
                                         S = Q  TN = [ℏ2  (2mR2)][(2N+1)  TN].                                        (12) 
 
Meanwhile relation (7) implies that  
 
                                                                 S = SN+1 – SN = kB.                                                           (13) 
 
Putting (13) into (12) yields 
 
                                                         KBTN = ℏ2 (2N +1)  (2mR2).                                                  (14) 
 
For N>>1, we can neglect the term independent of N in (14) and we get 
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                                                   KBTN = ℏ2 N  (mR2),              N>>1.                                            (15) 
 
   On the other hand, if we extend the validity of (14) to small values of N, we see that 
the lowest temperature is given by N=0, namely 
 
                                                        KBT0 = ℏ2  (2mR2).                                                                    (16) 
 
Therefore relation (14) is in accord with the third law of thermodynamics which states 
that the absolute zero is not accessible. 
 
4 – The Fermi Gas Connection 
 
   In the case of  N>>1, let us take R as the radius of gyration Rg of a polymer chain , 
having the monomer size equal to the reduced Fermi wavelength F  and with the 
number of monomers Ɲ equal to 2N. This leads to (please see reference [5]) 
 
                                             R2 = Rg2 = ƝF2 = 2N ℏ2  (m2 vF2).                                                  (17) 
 
Inserting (17) into (15) we get 
 
                                                              KBTN = ½ m vF2.                                                                    (18) 
 
Then it seems that a Fermi gas can also be encompassed in the present structure. The 
interesting feature to be noted is the adjustment of the quantum number N to be equal 
to half of the number of monomers composing the polymer chain. 
 
 
 5 – Concluding Remarks 
 
   We observe that in the present model of a quantum gas all relevant quantities are 
quantized. Then, the internal energy UN is quantized and also are quantized the 
temperature TN and the entropy SN. Temperature and entropy both grow linearly with 
N, while internal energy grows with N squared. It is interesting to compare the present 
case with the black hole thermodynamics. There the entropy goes with the mass 
squared, while the internal energy grows linearly with the mass and the temperature 
goes with the inverse of the mass (please see reference [6]). 
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