Numerical Solution of Radial Biquaternion Klein-Gordon Equation

Vic Christianto* and Florentin Smarandache†

*Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org E-mail: admin@sciprint.org

†Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA E-mail: smarand@unm.edu

In the preceding article we argue that biquaternionic extension of Klein-Gordon equation has solution containing imaginary part, which differs appreciably from known solution of KGE. In the present article we present numerical /computer solution of radial biquaternionic KGE (radialBQKGE); which differs appreciably from conventional Yukawa potential. Further observation is of course recommended in order to refute or verify this proposition.

1 Introduction

In the preceding article [1] we argue that biquaternionic extension of Klein-Gordon equation has solution containing imaginary part, which differs appreciably from known solution of KGE. In the present article we presented here for the first time a numerical/computer solution of radial biquaternionic KGE (radialBQKGE); which differs appreciably from conventional Yukawa potential.

This biquaternionic effect may be useful in particular to explore new effects in the context of low-energy reaction (LENR) [2]. Nonetheless, further observation is of course recommended in order to refute or verify this proposition.

2 Radial biquaternionic KGE (radial BQKGE)

In our preceding paper [1], we argue that it is possible to write biquaternionic extension of Klein-Gordon equation as follows:

$$egin{align} \left[\left(rac{\partial^2}{\partial t^2}-
abla^2
ight)+i\left(rac{\partial^2}{\partial t^2}-
abla^2
ight)
ight]arphi(x,t)=\ &=-m^2\,arphi(x,t)\,, \end{split}$$

or this equation can be rewritten as:

$$\left(\diamondsuit\bar{\diamondsuit} + m^2\right)\varphi(x,t) = 0, \tag{2}$$

provided we use this definition:

$$\diamondsuit = \nabla^q + i \nabla^q = \left(-i \frac{\partial}{\partial t} + e_1 \frac{\partial}{\partial x} + e_2 \frac{\partial}{\partial y} + e_3 \frac{\partial}{\partial z} \right) + i \left(-i \frac{\partial}{\partial T} + e_1 \frac{\partial}{\partial X} + e_2 \frac{\partial}{\partial Y} + e_3 \frac{\partial}{\partial Z} \right),$$
 (3)

where e_1 , e_2 , e_3 are quaternion imaginary units obeying (with ordinary quaternion symbols: $e_1 = i$, $e_2 = j$, $e_3 = k$):

$$i^{2} = j^{2} = k^{2} = -1, \quad ij = -ji = k,$$

 $jk = -kj = i, \quad ki = -ik = j.$
(4)

and quaternion Nabla operator is defined as [1]:

$$\nabla^{q} = -i \frac{\partial}{\partial t} + e_{1} \frac{\partial}{\partial x} + e_{2} \frac{\partial}{\partial y} + e_{3} \frac{\partial}{\partial z}.$$
 (5)

(Note that (3) and (5) included partial time-differentiation.)

In the meantime, the standard Klein-Gordon equation usually reads [3, 4]:

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2\right) \varphi(x,t) = -m^2 \varphi(x,t).$$
 (6)

Now we can introduce polar coordinates by using the following transformation:

$$\nabla = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\ell^2}{r^2} \,. \tag{7}$$

Therefore, by substituting (7) into (6), the radial Klein-Gordon equation reads — by neglecting partial-time differentiation — as follows [3, 5]:

$$\left(rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r}
ight)-rac{\ell(\ell+1)}{r^2}+m^2
ight)arphi(x,t)=0\,, \quad (8)$$

and for $\ell = 0$, then we get [5]:

$$\left(\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + m^2\right)\varphi(x,t) = 0. \tag{9}$$

The same method can be applied to equation (2) for radial biquaternionic KGE (BQKGE), which for the 1-dimensional situation, one gets instead of (8):

$$\left(\frac{\partial}{\partial r}\left(\frac{\partial}{\partial r}\right) - i\frac{\partial}{\partial r}\left(\frac{\partial}{\partial r}\right) + m^2\right)\varphi(x,t) = 0. \quad (10)$$

In the next Section we will discuss numerical/computer solution of equation (10) and compare it with standard solution of equation (9) using Maxima software package [6]. It can be shown that equation (10) yields potential which differs appreciably from standard Yukawa potential. For clarity, all solutions were computed in 1-D only.

January, 2008 PROGRESS IN PHYSICS Volume 1

3 Numerical solution of radial biquaternionic Klein-Gordon equation

Numerical solution of the standard radial Klein-Gordon equation (9) is given by:

(%i1) diff(y,t,2)-'diff(y,r,2)+m^2*y;
(%o1)
$$m^2 \cdot y - \frac{d^2}{d^2x} y$$

(%i2) ode2 (%o1, y, r);
(%o2) $y = \%k_1 \cdot \% \exp(mr) + \%k_2 \cdot \% \exp(-mr)$ (11)

In the meantime, numerical solution of equation (10) for radial biquaternionic KGE (BQKGE), is given by:

$$(\%i3) \ \text{diff}(y,t,2) - (\%i+1)*' \text{diff}(y,r,2) + m^2 * y;$$

$$(\%o3) \ m^2 \cdot y - (i+1) \ \frac{d^2}{d^2 r} y$$

$$(\%i4) \ \text{ode2} \ (\%o3, \ y \ , \ r);$$

$$(\%o4) \ y = \%k_1 \cdot \sin\left(\frac{|m|r}{\sqrt{-\%i-1}}\right) + \%k_2 \cdot \cos\left(\frac{|m|r}{\sqrt{-\%i-1}}\right)$$

$$(12)$$

Therefore, we conclude that numerical solution of radial biquaternionic extension of Klein-Gordon equation yields different result compared to the solution of standard Klein-Gordon equation; and it *differs appreciably* from the well-known Yukawa potential [3, 7]:

$$u(r) = -\frac{g^2}{r} e^{-mr}. \tag{13}$$

Meanwhile, Comay puts forth argument that the Yukawa lagrangian density has theoretical inconsistency within itself [3].

Interestingly one can find argument that biquaternion Klein-Gordon equation is nothing more than quadratic form of (modified) Dirac equation [8], therefore BQKGE described herein, i.e. equation (12), can be considered as a plausible solution to the problem described in [3]. For other numerical solutions to KGE, see for instance [4].

Nonetheless, we recommend further observation [9] in order to refute or verify this proposition of new type of potential derived from biquaternion Klein-Gordon equation.

Acknowledgement

VC would like to dedicate this article for RFF.

Submitted on November 12, 2007 Accepted on November 30, 2007

References

- 1. Yefremov A., Smarandache F. and Christianto V. Yang-Mills field from quaternion space geometry, and its Klein-Gordon representation. *Progress in Physics*, 2007, v. 3, 42–50.
- 2. Storms E. http://www.lenr-canr.org
- Comay E. Apeiron, 2007, v. 14, no. 1; arXiv: quant-ph/ 0603325.

- 4. Li Yang. Numerical studies of the Klein-Gordon-Schrödinger equations. MSc thesis submitted to NUS, Singapore, 2006, p. 9 (http://www.math.nus.edu.sg/~bao/thesis/Yang-li.pdf).
- Nishikawa M. A derivation of electroweak unified and quantum gravity theory without assuming Higgs particle. arXiv: hep-th/ 0407057, p. 15.
- 6. Maxima from http://maxima.sourceforge.net (using GNU Common Lisp).
- 7. http://en.wikipedia.org/wiki/Yukawa_potential
- Christianto V. A new wave quantum relativistic equation from quaternionic representation of Maxwell-Dirac equation as an alternative to Barut-Dirac equation. *Electronic Journal of The*oretical Physics, 2006, v. 3, no. 12.
- Gyulassy M. Searching for the next Yukawa phase of QCD. arXiv: nucl-th/0004064.