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In this article we’ll present the properties of the radicale axes and the adjoin circles of a 
triangle. 

 
Definition 1 
Given a triangle ABC, we call the circle that passes through the vertexes C, A and it is tangent 

in the point A to the side AB, that it is an adjoin circle to the given triangle. 
 
Observations 
a) We note the circle from the above definition CĀ. 
b) To a triangle, in general, there are corresponding 6 different adjoin circles. If the given 

triangle is isosceles, it will have 5 different adjoin circles, and if the triangle is equilateral, there will 
be 3 different adjoin circles associated to it. 
 
 
 Theorem 1 (A. L. Crelle, 1816) 

 i). The adjoin circles ,AC ,BA ,CB of a random triangle ABC have a common point Ω  with 

the property:  AB BC CA∠Ω ≡ ∠Ω ≡ ∠Ω  

 ii). The adjoin circles  ,CA ,BC ,AB  of a random triangle ABC have a common point 'Ω  

with the property: ' ' 'AC BA CB∠Ω ≡ ∠Ω ≡ ∠Ω  
 

Proof: 
 i). Let Ω  a second point of intersection of the 

circles AC  and ,BA (see fig.1). 

We have: 

 CA AB şi AB BC∠Ω ≡ ∠Ω ∠Ω ≡ ∠Ω . 
 Indeed, the first angles have as measure the half 
of the measure of the cord AΩ , and those from the 
second congruence have as measure half from the 
measure of the cordBΩ . 
 
We obtain that: 

 AB BC CA∠Ω ≡ ∠Ω ≡ ∠Ω . 
 
The relation BC CA∠Ω ≡ ∠Ω  show that the 
circumscribed circle to the triangle CBΩ  is tangent in C to the side AC and it is, therefore, the adjoin 

circle CB . 
 
Observations: 
a). Similarly it can be proved ii). 

b). The point Ω  is called the first point of Brocard(1), and 'Ω  is called the second point of 
Brocard. 



c). The Brocard’s point Ω  is the radical center of the adjoin circles ,AC ,BA ,CB  and the 

Brocard’s point 'Ω  is the radical center of the adjoin circles ,CA ,BC ,AC of the triangle 

ABC.  

 Indeed, the Ω  as well as 'Ω  have equal powers (null) in rapport to the triplet of the adjoin 
circles indicated, and therefore these are their radical centers. 

 
Theorem 2  

 The Brocard’s points Ω  and 'Ω  are isogonal point in the triangle ABC  
 

Proof 
 We’ll note ( )m AB ω∠Ω = . 

Applying the sinus theorem in the triangles A BΩ  and A CΩ we obtain:  
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Because  

   ( ) 180 ( )Om B A m B∠ Ω = − ∠ ;  
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Expanding sin( )B ω− and taking into account that 
sin

sin
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=  and sin( ) sinA C B+ =  we obtain:  

   ctg ctgA ctgB ctgCω = + + . 

 If we note ( ' ) 'm AC ω∠Ω = , and making a similar rational, it results:  

   'ctg ctgA ctgB ctgCω = + + . 

 The precedent relations lead to 'ω ω= , which shows that Ω  and 'Ω  are isogonal points.  
 
 Observation   
 The angle ω  is called Brocard’s angle and it appears in many relations and formulae of the 
triangle geometry (see [1]). 
 

Theorem 3 The adjoin circles AC  and AB   
intersect on the symmedian from A on the 
triangle ABC.  

 
Proof 

 Let S the second point of intersection of the 

circles AC  and AB  (see Fig. 2) and{ } BCASP ∩= . 

We observe that  

 SCA SAB∠ ≡ ∠  and SBA SAC∠ ≡ ∠ .  
Therefore ~SBA SACΔ Δ , from which we obtain: 
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 On the other side, from the above angular congruencies we obtain: BSP CSP∠ ≡ ∠ , and 
taking into account the bisectrix in the triangle BSC, it results that; 
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 From (1) and (2) it results  
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which shows that AP is the symmedian from A of the triangle ABC. 
 

Observation 
 Theorem 3 expresses the fact that two adjoin circles, which are tangent to two sides of a 
triangle, having a common vertex of these sides; have as radical axes the symmedian of the triangle 
constructed from that vertex. 
 

Theorem 4 
The adjoin circles BA  and CA  intersect on the median from A of the triangle ABC. 

 
Proof 

 Let D the second point of intersection of the circles BA  and CA  and { } BCADM ∩= . The 

line AD is the radical axes of the circles BA  and CA , we have: 

  22 MCMAMDMB =⋅= , 
it results that M is the middle point of (BC). 
 

Observations 
a). Theorem 4 expresses the fact that two adjoin circles of a triangle, tangent to the same side, 

have as radical axes the opposed median to the side. 
b). From the results proved, it results that the radical axes of two adjoin circle of a triangle can 

be: the Brocard’s cevian ΩA , 'AΩ , etc., triangle’s symmedian, triangle’s medians or the triangle’s  

sides. Indeed, if we consider in a given triangle the adjoin circles BC  and CB  their radical axes is 
the side BC 

c) Relative to the radical centers of the adjoin circles we proved that  Ω  and 'Ω  have this 

property. Because, in general, a triangle has 6 adjoin circles, it means that there exists 
3
6 20C =  radical 

centers corresponding to the different triplets of adjoin circles. 
d). The vertexes of the triangle ABC are the radical centers of certain triplets of adjoin circles 

Indeed, for example, the vertex C of the triangle ABC is the radical center of the adjoin circles     

BC ,CB  and CA  because these pass through the same vertex C. Also, C is the radical center 

of the circles BC , CB  and CA  as well as of the circles BC  
 

Theorem 5  (L. Carnot-1803)  
 The common cords of three secant circles 

two by two are concurrent. 
 

Proof: 
 Let 1 2 3, ,C C C  three secant circles and  

1 2 3, ,a a a  the radical axes of the circles  2 3( , )C C ,    

1 3( , )C C  respectively 1 2( , )C C  (see fig. 3.) 

 We note P the intersection point between 1a  

and 2a , it results that the point P will have equal 

Fig.3 



powers in rapport to all the circles, therefore P will be situated on the radical axes 3a  of the 

circles 1 2( , )C C . 

 
Theorem 6 (R. A. Johnson, 1929)   
In a triangle ABC the cevian ΩA , symmedian from B and the median from C are concurrent. 

 
Proof: 

 We’ll construct the circles AC , BA  and BC .  
In conformity to theorem 1, the second intersection point 

of the circles AC  and BA  is Ω , from the theorem 2 it 

results that the second point common to the circles BA  

and BC  is S, situated on the symmedian from B (see fig. 

4), and in conformity to theorem 3, the circles AC  and  

BC  intersect the second time in M, which belongs to the 
median from C of the triangle ABC. The Carnot’s theorem affirms that the cevian AΩ , BS and CM 
are concurrent. We noted the intersection point AI . 

 
Observations 

a) The point IA is the radical center of the adjoin circles AC , BA  , BC . 
b) The theorem 6 can be proved using the reciprocal theorem of Ceva; for this it has to be 

computed 1

1

BA
AC

, where { }1A A BC= Ω ∩ , we find that 
2
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c) In the same manner we can state and prove the following theorems: 
 

Theorem 7 
The cevian BΩ, symmedian from C and the median from A are concurrent in a point IB, which is 

the radical center of the adjoin circles , ,AC CB AB  of the triangle ABC. 
 
Theorem 8 
The cevian CΩ, symmedian from A and the median from B of the triangle ABC are concurrent in 

a point IC , which is the radical center of the adjoin circles , ,CA BC BA . 
 
Theorem 9 
The cevian AΩ’, symmedian from C and the median from B of the triangle ABC are concurrent in 

a point IA’ which is the radical center of the adjoin circles , ,AC BC BA . 

 
Theorem 10 
The cevian BΩ’, symmedian from A and the median from C of the triangle ABC are concurrent in 

a point IB’ which is the radical center of the circles , ,BA CB CA . 

 
Theorem 11 
The cevian CΩ’, symmedian from B and the median from A of the triangle ABC are concurrent in 

a point IC’ which is the radical center of the adjoin circles , ,AC CB AB . 
 

Observation:  

Fig.4 



If the triangle ABC is isosceles, AB=AC, then the adjoin circle BC  coincides with the adjoin 

circle CB  and we obtain the theorem: 
In the isosceles triangle ABC, AB=AC, the symmedian from B and the median from C 
intersect in the Brocard’s point Ω. See [3]. 
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