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ABSTRACT

One proposes a first alternative rule of combination to WAO (Weighted Average Operator) proposed
recently by Josang, Daniel and Vannoorenberghe, called Proportional Conflict Redistribution rule
(denoted PCR1). PCR1 and WAO are particular cases of WO (the Weighted Operator) because the
conflicting mass is redistributed with respect to some weighting factors. In this first PCR rule, the pro-
portionalization is done for each non-empty set with respect to the non-zero sum of its corresponding
mass matrix - instead of its mass column average as in WAO, but the results are the same as Ph.
Smets has pointed out. Also, we extend WAO (which herein gives no solution) for the degenerate case
when all column sums of all non-empty sets are zero, and then the conflicting mass is transferred to
the non-empty disjunctive form of all non-empty sets together; but if this disjunctive form happens
to be empty, then one considers an open world (i.e. the frame of discernment might contain new
hypotheses) and thus all conflicting mass is transferred to the empty set. In addition to WAO, we
propose a general formula for PCR1 (WAO for non-degenerate cases). Several numerical examples
and comparisons with other rules for combination of evidence published in literature are presented
too. Another distinction between these alternative rules is that WAO is defined on the power set,
while PCR1 is on the hyper-power set (Dedekind’s lattice). A nice feature of PCR1, is that it works
not only on non-degenerate cases but also on degenerate cases as well appearing in dynamic fusion,
while WAO gives the sum of masses in this cases less than 1 (WAO does not work in these cases).
Meanwhile we show that PCR1 and WAO do not preserve unfortunately the neutrality property of the
vacuous belief assignment though the fusion process. This severe drawback can however be easily
circumvented by new PCR rules presented in a companion paper.
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1. INTRODUCTION

Due to the fact that Dempster’s rule is not mathematically defined for conflict 1 or gives counter-

intuitive results for high conflict (see Zadeh’s example [23], Dezert-Smarandache-Khoshnevisan’s

examples [11]), we looked for another rule, similar to Dempster’s, easy to implement due to its simple

formula, and working in any case no matter the conflict. We present this PCR1 rule of combination,

which is an alternative of WAO for non-degenerate cases, in many examples comparing it with other

existing rules mainly: Smets’, Yager’s, Dubois-Prade’s, DSm hybrid rule, Murphy’s, and of course

Dempster’s. PCR1 rule is commutative, but not associative nor Markovian (it is however quasi-

associative and quasi-Markovian). More versions of PCR rules are proposed in a companion paper

[12] to overcome the limitations of PCR1 presented in the sequel.

2. EXISTING RULES FOR COMBINING EVIDENCE

We briefly present here the main rules proposed in the literature for combining/aggregating several in-

dependent and equi-reliable sources of evidence expressing their belief on a given finite set of exhaus-

tive and exclusive hypotheses (Shafer’s model). We assume the reader familiar with the Dempster-

Shafer theory of evidence [10] and the recent theory of plausible and paradoxical reasoning (DSmT)

[11]. A detailed presentation of these rules can be found in [11] and [9]. In the sequel, we consider

the Shafer’s model as the valid model for the fusion problem under consideration, unless specified.

Let Θ = {θ1, θ2, . . . , θn} be the frame of discernment of the fusion problem under consideration

having n exhaustive and exclusive elementary hypotheses θi. The set of all subsets of Θ is called the

power set of Θ and is denoted 2Θ. Within Shafer’s model, a basic belief assignment (bba) m(.) :

2Θ → [0, 1] associated to a given body of evidence B is defined by [10]

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (1)

The belief (credibility) and plausibility functions of X ⊆ Θ are defined as

Bel(X) =
∑

Y ∈2Θ,Y ⊆X

m(Y ) (2)

Pl(X) =
∑

Y ∈2Θ,Y ∩X �=∅

m(Y ) = 1 − Bel(X̄) (3)

where X̄ denotes the complement of X in Θ.
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 The belief functions m(.), Bel(.) and Pl(.) are in one-to-one correspondence. The set of elements

X ∈ 2Θ having a positive basic belief assignment is called the core/kernel of the source of evidence

under consideration.

The main problem is now how to combine several belief assignments provided by a set of inde-

pendent sources of evidence. This problem is fundamental to pool correctly uncertain and imprecise

information and help the decision-making. Unfortunately, no clear/unique and satisfactory answer

to this problem exists since there is potentially an infinite number of possible rules of combination

[5, 7, 9]. Our contribution here is to propose an alternative to existing rules which is very easy to

implement and have a legitimate behavior (not necessary the optimal one - if such optimality exists

...) for practical applications.

2.1 THE DEMPSTER’S RULE

The Dempster’s rule of combination is the most widely used rule of combination so far in many

expert systems based on belief functions since historically it was proposed in the seminal book of

Shafer in [10]. This rule, although presenting interesting advantages (mainly the commutativity and

associativity properties) fails however to provide coherent results due to the normalization procedure

it involves. Discussions on the justification of the Dempster’s rule and its well-known limitations can

be found by example in [22, 23, 24, 18]. The Dempster’s rule is defined as follows: let Bel1(.) and

Bel2(.) be two belief functions provided by two independent equally reliable sources of evidence B1

and B2 over the same frame Θ with corresponding belief assignments m1(.) and m2(.). Then the

combined global belief function denoted Bel(.) = Bel1(.) ⊕ Bel2(.) is obtained by combining m1(.)

and m2(.) according to m(∅) = 0 and ∀(X �= ∅) ∈ 2Θ by

m(X) =

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
(4)

m(.) is a proper basic belief assignment if and only if the denominator in equation (4) is non-zero.

The degree of conflict between the sources B1 and B2 is defined by

k12 �
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (5)
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2.2 THE MURPHY’S RULE

The Murphy’s rule of combination [8] is a commutative but not associative trade-off rule, denoted

here with index M , drawn from [20, 3]. It is a special case of convex combination of bbas m1(.) and

m2(.) and consists actually in a simple arithmetic average of belief functions associated with m1(.)

and m2(.). BelM(.) is then given ∀X ∈ 2Θ by:

BelM(X) =
1

2
[Bel1(X) + Bel2(X)]

2.3 THE SMETS’ RULE

The Smets’ rule of combination [16, 17] is the non-normalized version of the conjunctive consensus

(equivalent to the non-normalized version of Dempster’s rule). It is commutative and associative and

allows positive mass on the null/empty set ∅ (i.e. open-world assumption). Smets’ rule of combination

of two independent (equally reliable) sources of evidence (denoted here by index S) is then trivially

given by:

mS(∅) ≡ k12 =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

and ∀(X �= ∅) ∈ 2Θ, by

mS(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

2.4 THE YAGER’S RULE

The Yager’s rule of combination [19, 20, 21] admits that in case of conflict the result is not reliable,

so that k12 plays the role of an absolute discounting term added to the weight of ignorance. This

commutative but not associative rule, denoted here by index Y is given1 by mY (∅) = 0 and ∀X ∈

2Θ, X �= ∅,X �= Θ by

mY (X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

and when X = Θ by

mY (Θ) = m1(Θ)m2(Θ) +
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

1Θ represents here the full ignorance θ1 ∪ θ2 ∪ . . . ∪ θn on the frame of discernment according the notation

used in [10].
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2.5 THE DUBOIS & PRADE’S RULE

The Dubois & Prade’s rule of combination [3] admits that the two sources are reliable when they are

not in conflict, but one of them is right when a conflict occurs. Then if one observes a value in set

X1 while the other observes this value in a set X2, the truth lies in X1 ∩ X2 as long X1 ∩ X2 �= ∅. If

X1 ∩ X2 = ∅, then the truth lies in X1 ∪ X2 [3]. According to this principle, the commutative (but

not associative) Dubois & Prade hybrid rule of combination, denoted here by index DP , which is a

reasonable trade-off between precision and reliability, is defined by mDP (∅) = 0 and ∀X ∈ 2Θ, X �=

∅ by

mDP (X) =
∑

X1,X2∈2Θ

X1∩X2=X
X1∩X2 �=∅

m1(X1)m2(X2) +
∑

X1,X2∈2Θ

X1∪X2=X
X1∩X2=∅

m1(X1)m2(X2) (6)

2.6 THE DISJUNCTIVE RULE

The disjunctive rule of combination [2, 3, 15] is a commutative and associative rule proposed by

Dubois & Prade in 1986 and denoted here by the index ∪. m∪(.) is defined ∀X ∈ 2Θ by m∪(∅) = 0

and ∀(X �= ∅) ∈ 2Θ by

m∪(X) =
∑

X1,X2∈2Θ

X1∪X2=X

m1(X1)m2(X2)

The core of the belief function given by m∪ equals the union of the cores of Bel1 and Bel2.

This rule reflects the disjunctive consensus and is usually preferred when one knows that one of the

sources B1 or B2 is mistaken but without knowing which one among B1 and B2. Because we assume

equi-reliability of sources in this paper, this rule will not be discussed in the sequel.

2.7 UNIFICATION OF THE RULES (WEIGHTED OPERATOR)

In the framework of Dempster-Shafer Theory (DST), an unified formula has been proposed recently

by Lefèvre, Colot and Vanoorenberghe in [7] to embed all the existing (and potentially forthcoming)

combination rules (including the PCR1 combination rule presented in the next section) involving

conjunctive consensus in the same general mechanism of construction. We recently discovered that

actually such unification formula had been already proposed 10 years before by Inagaki [5] as reported

in [9]. This formulation is known as the Weighted Operator (WO) in literature [6], but since these two

approaches have been developed independently by Inagaki and Lefèvre et al., it seems more judicious

to denote it as ILCV formula instead to refer to its authors when necessary (ILCV beeing the acronym

standing for Inagaki-Lefèvre-Colot-Vannoorenberghe). The WO (ILCV unified fusion rule) is based

on two steps.
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• Step 1: Computation of the total conflicting mass based on the conjunctive consensus

k12 �
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (7)

• Step 2: This step consists in the reallocation (convex combination) of the conflicting masses

on (X �= ∅) ⊆ Θ with some given coefficients wm(X) ∈ [0, 1] such that
∑

X⊆Θ wm(X) = 1

according to

m(∅) = wm(∅) · k12

and ∀(X �= ∅) ∈ 2Θ

m(X) = [
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)] + wm(X)k12 (8)

This WO can be easily generalized for the combination of N ≥ 2 independent and equi-reliable

sources of information as well for step 2 by substituting k12 by

k12...N �
∑

X1,...,XN∈2Θ

X1∩...∩XN=∅

∏
i=1,N

mi(Xi)

and for step 2 by deriving for all (X �= ∅) ∈ 2Θ the mass m(X) by

m(X) = [
∑

X1,...,XN∈2Θ

X1∩...∩XN=X

∏
i=1,N

mi(Xi)] + wm(X)k12...N

The particular choice of the set of coefficients wm(.) provides a particular rule of combination.

Actually this nice and important general formulation shows there exists an infinite number of possible

rules of combination. Some rules are then justified or criticized with respect to the other ones mainly

on their ability to, or not to, preserve the associativity and commutativity properties of the combina-

tion. It can be easily shown in [7] that such general procedure provides all existing rules involving

conjunctive consensus developed in the literature based on Shafer’s model. We will show later how

the PCR1 rule of combination can also be expressed as a special case of the WO.

2.8 THE WEIGHTED AVERAGE OPERATOR (WAO)

This operator has been recently proposed by Josang, Daniel and Vannoorenberghe in [6]. It is a

particular case of WO where the weighting coefficients wm(A) are chosen as follows: wm(∅) = 0 and

∀A ∈ 2Θ \ {∅},

wm(A) =
1

N

N∑
i=1

mi(A)
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where N is the number of independent sources to combine.

2.9 THE HYBRID DSm RULE

The hybrid DSm rule of combination is a new powerful rule of combination emerged from the re-

cent theory of plausible and paradoxist reasoning developed by Dezert and Smarandache, known as

DSmT in literature. The foundations of DSmT are different from the DST foundations and DSmT

covers potentially a wider class of applications than DST especially for dealing with highly conflict-

ing static or dynamic fusion problems. Due to space limitations, we will not go further into a detailed

presentation of DSmT here. A deep presentation of DSmT can be found in [11]. The DSmT deals

properly with the granularity of information and intrinsic vague/fuzzy nature of elements of the frame

Θ to manipulate. The basic idea of DSmT is to define belief assignments on hyper-power set DΘ (i.e.

free Dedekind’s lattice) and to integrate all integrity constraints (exclusivity and/or non-existential

constraints) of the model, say M(Θ), fitting with the problem into the rule of combination. This rule,

known as hybrid DSm rule works for any model (including the Shafer’s model) and for any level

of conflicting information. Mathematically, the hybrid DSm rule of combination of N independent

sources of evidence is defined as follows (see chap. 4 in [11]) for all X ∈ DΘ

mM(Θ)(X) � φ(X)
[
S1(X) + S2(X) + S3(X)

]
(9)

where φ(X) is the characteristic non-emptiness function of a set X , i.e. φ(X) = 1 if X /∈ ∅ and

φ(X) = 0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of DΘ which have been

forced to be empty through the constraints of the model M and ∅ is the classical/universal empty set.

S1(X), S2(X) and S3(X) are defined by

S1(X) �
∑

X1,X2,...,XN∈DΘ

(X1∩X2∩...∩XN )=X

N∏
i=1

mi(Xi) (10)

S2(X) �
∑

X1,X2,...,XN∈∅

[U=X]∨[(U∈∅)∧(X=It)]

N∏
i=1

mi(Xi) (11)

S3(X) �
∑

X1,X2,...,XN∈DΘ

(X1∪X2∪...∪XN )=X
(X1∩X2∩...∩XN )∈∅

N∏
i=1

mi(Xi) (12)

with U � u(X1) ∪ u(X2) ∪ . . . ∪ u(XN) where u(Xi), i = 1, . . . , N , is the union of all singletons

θk, k ∈ {1, . . . , |Θ|}, that compose Xi and It � θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance. S1(X) cor-

responds to the conjunctive consensus on free Dedekind’s lattice for N independent sources; S2(X)
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represents the mass of all relatively and absolutely empty sets which is transferred to the total or rel-

ative ignorances; S3(X) transfers the sum of relatively empty sets to the non-empty sets.

In the case of a dynamic fusion problem, when all elements become empty because one gets new

evidence on integrity constraints (which corresponds to a specific hybrid model M), then the con-

flicting mass is transferred to the total ignorance, which also turns to be empty, therefore the empty

set gets now mass which means open-world, i.e, new hypotheses might be in the frame of discern-

ment. For example, Let’s consider the frame Θ = {A, B} with the 2 following bbas m1(A) = 0.5,

m1(B) = 0.3, m1(A ∪ B) = 0.2 and m2(A) = 0.4, m2(B) = 0.5, m2(A ∪ B) = 0.1, but one finds

out with new evidence that A and B are truly empty, then A ∪ B ≡ Θ
M
≡ ∅. Then m(∅) = 1.

The hybrid DSm rule of combination is not equivalent to Dempter’s rule even working on the

Shafer’s model. DSmT is actually a natural extension of the DST. An extension of this rule for the

combination of imprecise generalized (or eventually classical) basic belief functions is possible and

is presented in [11].

3. THE PCR1 COMBINATION RULE

3.1 THE PCR1 RULE FOR 2 SOURCES

Let Θ = {θ1, θ2} be the frame of discernment and its hyper-power set DΘ = {∅, θ1, θ2, θ1∪θ2 θ1∩θ2}.

Two basic belief assignments / masses m1(.) and m2(.) are defined over this hyper-power set. We

assume that m1(.) and m2(.) are normalized belief masses following definition given by (1). The

PCR1 combination rule consists in two steps:

• Step 1: Computation of the conjunctive consensus2 m∩(.) = [m1 ⊕ m2](.) and the conflicting

mass according to

m∩(X) =
∑

X1,X2∈DΘ

X1∩X2=X

m1(X1)m2(X2) (13)

and

k12 �
∑

X1,X2∈DΘ

X1∩X2=∅

m1(X1)m2(X2) (14)

This step coincides with the Smets’ rule of combination when accepting the open-world as-

sumption. In the Smets’ open-world TBM framework [14], k12 is interpreted as the mass m(∅)

2⊕ denotes here the generic symbol for the fusion.
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committed to the empty set. ∅ corresponds then to all missing unknown hypotheses and the

absolute impossible event.

• Step 2 (normalization): Distribution of the conflicting mass k12 onto m∩(X) proportionally

with the non-zero sums of their corresponding columns of non-empty sets of the effective mass

matrix M12[mij ] (index 12 denotes the list of sources entering into the mass matrix). If all sets

are empty, then the conflicting mass is redistributed to the disjunctive form of all these empty

sets (which is many cases coincides with the total ignorance).

More precisely, the original mass matrix M12 is a (N = 2) × (2|Θ| − 1) matrix constructed by

stacking the row vectors
⎧⎪⎨
⎪⎩

m1 = [m1(θ1) m1(θ2) m1(θ1 ∪ θ2)]

m2 = [m2(θ1) m2(θ2) m2(θ1 ∪ θ2)]

associated with the beliefs assignments m1(.) and m2(.). For convenience and by convention,

the row index i follows the index of sources and the index j for columns follows the enumeration

of elements of power set 2Θ (excluding the empty set because by definition its committed mass

is zero). Any permutation of rows and columns can be arbitrarily chosen as well and it doesn’t

not make any difference in the PCR1 fusion result. Thus, one has for the 2 sources and 2D

fusion problem:

M12 =

⎡
⎣m1

m2

⎤
⎦ =

⎡
⎣m1(θ1) m1(θ2) m1(θ1 ∪ θ2)

m2(θ1) m2(θ2) m2(θ1 ∪ θ2)

⎤
⎦

We denote by c12(X) the sum of the elements of the column of the mass matrix associated with

element X of the power set, i.e
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c12(X = θ1) = m1(θ1) + m2(θ1)

c12(X = θ2) = m1(θ2) + m2(θ2)

c12(X = θ1 ∪ θ2) = m1(θ1 ∪ θ2) + m2(θ1 ∪ θ2)

The conflicting mass k12 is distributed proportionally with all non-zero coefficients c12(X). For

elements X ∈ DΘ with zero coefficients c12(X), no conflicting mass will be distributed to them.

Let’s note by w(θ1), w(θ2) and w(θ1 ∪ θ2) the part of the conflicting mass that is respectively

distributed to θ1, θ2 and θ1 ∪ θ2 (assuming c12(θ1) > 0, c12(θ2) > 0 and c12(θ1 ∪ θ2) > 0. Then:
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w(θ1)

c12(θ1)
=

w(θ2)

c12(θ2)
=

w(θ1 ∪ θ2)

c12(θ1 ∪ θ2)
=

w(θ1) + w(θ2) + w(θ1 ∪ θ2)

c12(θ1) + c12(θ2) + c12(θ1 ∪ θ2)
=

k12

d12
(15)

because

c12(θ1) + c12(θ2) + c12(θ1 ∪ θ2) =
∑

X1∈DΘ\{∅}

m1(X1) +
∑

X2∈DΘ\{∅}

m2(X2) = d12

Hence the proportionalized conflicting masses to transfer are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(θ1) = c12(θ1) ·
k12

d12

w(θ2) = c12(θ2) ·
k12

d12

w(θ1 ∪ θ2) = c12(θ1 ∪ θ2) ·
k12

d12

which are added respectively to m∩(θ1), m∩(θ2) and m∩(θ1 ∪ θ2).

Therefore, the general formula for the PCR1 rule for 2 sources, for |Θ| ≥ 2, is given by mPCR1(∅) =

0 and for (X �= ∅) ∈ DΘ,

mPCR1(X) =
∑

X1,X2∈DΘ

X1∩X2=X

m1(X1)m2(X2) + c12(X) ·
k12

d12
(16)

where k12 is the total conflicting mass and c12(X) �
∑

i=1,2 mi(X) �= 0, i.e. the non-zero sum of the

column of the mass matrix M12 corresponding to the element X , and d12 is the sum of all non-zero

column sums of all non-empty sets (in many cases d12 = 2 but in some degenerate cases it can be less).

In the degenerate case when all column sums of all non-empty sets are zero, then the conflicting

mass is transferred to the non-empty disjunctive form of all sets involved in the conflict together. But

if this disjunctive form happens to be empty, then one considers an open world (i.e. the frame of

discernment might contain new hypotheses) and thus all conflicting mass is transferred to the empty

set.

As seen, the PCR1 combination rule works for any degree of conflict k12 ∈ [0, 1], while Demp-

ster’s rule does not work for k12 = 1 and gives counter-intuitive results for most of high conflicting

fusion problems.
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3.2 GENERALIZATION FOR N ≥ 2 SOURCES

The previous PCR1 rule of combination for two sources (N = 2) can be directly and easily extended

for the multi-source case (N ≥ 2) as well. The general formula of the PCR1 rule is thus given by

mPCR1(∅) = 0 and for X �= ∅) ∈ DΘ

mPCR1(X) =
[ ∑

X1,...,XN∈DΘ

X1∩...∩XN=X

∏
i=1,N

mi(Xi)
]
+ c12...N(X) ·

k12...N

d12...N

(17)

where k12...N is the total conflicting mass between all the N sources which is given by

k12...N �
∑

X1,...,XN∈DΘ

X1∩...∩XN=∅

∏
i=1,N

mi(Xi) (18)

and c12...N(X) �
∑

i=1,N mi(X) �= 0, i.e. the non-zero sum of the column of the mass matrix M12...N

corresponding to the element X , while d12...N represents the sum of all non-zero column sums of all

non-empty sets (in many cases d12...N = N but in some degenerate cases it can be less).

Similarly for N sources, in the degenerate case when all column sums of all non-empty sets are

zero, then the conflicting mass is transferred to the non-empty disjunctive form of all sets involved

in the conflict together. But if this disjunctive form happens to be empty, then one considers an open

world (i.e. the frame of discernment might contain new hypotheses) and thus all conflicting mass is

transferred to the empty set.

The PCR1 rule can be seen as a cheapest, easiest implementable approximated version of the

sophisticated MinC combination rule proposed by Daniel in [1] and [11] (chap. 10). Note also that

the PCR1 rule works in the DSmT framework and can serve as a cheap alternative to the more so-

phisticated and specific DSm hybrid rule but preferentially when none of sources is totally ignorant

(see discussion in section 3.6). One applies the DSm classic rule [11] (i.e. the conjunctive consensus

on DΘ), afterwards one identifies the model and its integrity constraints and one eventually employs

the PCR1 rule instead of DSm hybrid rule (depending of the dimension of the problem to solve, the

number of sources involved and the computing resources available). PCR1 can be used on the power

set 2Θ and within the DS Theory.

The PCR1 combination rule is commutative but not associative. It converges towards Murphy’s

rule (arithmetic mean of masses) when the conflict is approaching 1, and it converges towards the

conjunctive consensus rule when the conflict is approaching 0.
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3.3 IMPLEMENTATION OF THE PCR1 RULE

For practical use and implementation of the PCR1 combination rule, it is important to save memory

space and avoid useless computation as best as possible and especially when dealing with many

sources and for frames of high dimension. To achieve this, it’s important to note that since all zero-

columns of the mass matrix do not play a role in the normalization, all zero-columns (if any) of

the original mass matrix can be removed to compress the matrix horizontally (this can be easily

done using MatLab programming language) to get an effective mass matrix of smaller dimension

for computation the set of proportionalized conflicting masses to transfer. The list of elements of

power set corresponding to non-empty colums must be maintained in parallel to this compression for

implementation purpose. By example, let’s assume |Θ| = 2 and only 2 sources providing m1(θ2) =

m2(θ2) = 0 and all other masses are positive, then the effective mass matrix will become

M12 =

⎡
⎣m1(θ1) m1(θ1 ∪ θ2)

m2(θ1) m2(θ1 ∪ θ2)

⎤
⎦

with now the following correspondance for column indexes: (j = 1) ↔ θ1 and (j = 2) ↔ θ1 ∪ θ2.

The computation the set of proportionalized conflicting masses to transfer will be done using the

PCR1 general formula directly from this previous effective mass matrix rather than from

M12 =

⎡
⎣m1

m2

⎤
⎦ =

⎡
⎣m1(θ1) m1(θ2) = 0 m1(θ1 ∪ θ2)

m2(θ1) m2(θ2) = 0 m2(θ1 ∪ θ2)

⎤
⎦

3.4 PCR1 RULE AS A SPECIAL CASE OF WO

The PCR1 rule can be easily expressed as a special case of the WO (8) for the combination of two

sources by choosing as weighting coefficients for each X ∈ 2Θ \ {∅},

wm(X) = c12(X)/d12

For the combination of N ≥ 2 independent and equi-reliable sources, the weighting coefficients will

be given by

wm(X) = c12...N(X)/d12...N

3.5 ADVANTAGES OF THE PCR1 RULE

• the PCR1 rule works in any cases, no matter what the conflict is (it may be 1 or less); Zadeh’s

example, examples with k12 = 1 or k12 = 0.99, etc. All work;
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• the implementation of PCR1 rule is very easy and thus presents a great interest for engineers

who look for a cheap and an easy alternative fusion rule to existing rules;

• the PCR1 formula is simple (it is not necessary to go by proportionalization each time when

fusionning);

• the PCR1 rule works quite well with respect to some other rules since the specificity of infor-

mation is preserved (i.e no mass is transferred onto partial or total ignorances, neither onto the

empty set as in TBM);

• the PCR1 rule reflects the majority rule;

• the PCR1 rule is convergent towards idempotence for problems with no unions or intersections

of sets (we know that, in fact, no combination rule is idempotent, except Murphy elementary

fusion mean rule);

• the PCR1 rule is similar to the classical Dempster-Shafer’s rule instead of proportionalizing

with respect to the results of the conjunctive rule as is done in Dempster’s, we proportionalize

with respect to the non-zero sum of the columns masses, the only difference is that in the DS

combination rule one eliminates the denominator (which caused problems when the degree of

conflict is 1 or close to 1); PCR1 on the power set and for non-degenerate cases gives the same

results as WAO [6]; yet, for the storage proposal in a dynamic fusion when the associativity is

needed, for PCR1 is needed to store only the last sum of masses, besides the previous conjunc-

tive rules result, while in WAO it is in addition needed to store the number of the steps and both

rules become quasi-associative;

• the normalization, done proportionally with the corresponding non-zero sum of elements of the

mass matrix, is natural - because the more mass is assigned to an hypothesis by the sources the

more mass that hypothesis deserves to get after the fusion.

3.6 DISADVANTAGES OF THE PCR1 RULE

• the PCR1 rule requires normalization/proportionalization, but the majority of rules do; rules

which do not require normalization loose information through the transfer of conflicting mass

to partial and/or total ignorances or to the empty set.

• the results of PCR1 combination rule do not bring into consideration any new set: formed by

unions (uncertainties); or intersections (consensus between some hypotheses); yet, in the DSmT

framework the intersections show up through the hyper-power set.
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• the severe drawback of PCR1 and WAO rules is that they do not preserve the neutrality property

of the vacuous belief assignment mv(.) (defined by mv(Θ) = 1) as one legitimately expects

since if one or more bbas ms(.), s ≥ 1, different from the vacuous belief, are combined with

the vacuous belief assignment the result is not the same as that of the combination of the bbas

only (without including mv(.)), i.e. mv(.) does not act as a neutral element for the fusion

combination. In other words, for s ≥ 1, one gets for m1(.) �= mv(.), . . . , ms(.) �= mv(.):

mPCR1(.) = [m1 ⊕ . . .ms ⊕ mv](.) �= [m1 ⊕ . . .ms](.) (19)

mWAO(.) = [m1 ⊕ . . .ms ⊕ mv](.) �= [m1 ⊕ . . .ms](.) (20)

For the cases of the combination of only one non-vacuous belief assignment m1(.) with the

vacuous belief assignment mv(.) where m1(.) has mass asigned to an empty element, say

m1(∅) > 0 as in Smets’ TBM, or as in DSmT dynamic fusion where one finds out that a

previous non-empty element A, whose mass m1(A) > 0, becomes empty after a certain time,

then this mass of an empty set has to be transferred to other elements using PCR1, but for such

case [m1 ⊕ mv](.)] is different from m1(.).

Example: Let’s have Θ = {A, B} and two bbas

m1(A) = 0.4 m1(B) = 0.5 m1(A ∪ B) = 0.1

m2(A) = 0.6 m2(B) = 0.2 m2(A ∪ B) = 0.2

together with the vacuous bba mv(Θ = A ∪ B) = 1. If one applies the PCR1 rule to combine

the 3 sources altogether, one gets

mPCR1|12v(A) = 0.38 + 1 ·
0.38

3
= 0.506667

mPCR1|12v(B) = 0.22 + 0.7 ·
0.38

3
= 0.308667

mPCR1|12v(A ∪ B) = 0.02 + 1.3 ·
0.38

3
= 0.184666

since the conjunctive consensus is given by m12v(A) = 0.38, m12v(B) = 0.22, m12v(A∪B) =

0.02; the conflicting mass is k12v = 0.38 and one has

x

1
=

y

0.7
=

z

1.3
=

0.38
3

while the combination of only the sources 1 and 2 withe the PCR1 provides

mPCR1|12(A) = 0.38 + 0.19 = 0.570
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mPCR1|12(B) = 0.22 + 0.133 = 0.353

mPCR1|12(A ∪ B) = 0.02 + 0.057 = 0.077

since the conjunctive consensus is given by m12(A) = 0.38, m12(B) = 0.22, m12(A ∪ B) =

0.02; the conflicting mass is k12 = 0.38 but one has now the following redistribution condition

x

1
=

y

0.7
=

z

0.3
=

0.38

2
= 0.19

Thus clearly mPCR1|12v(.) �= mPCR1|12(.) although the third source brings no information in the

fusion since it is fully ignorant. This behavior is abnormal and counter-rintuitive. WAO gives

the same results in this example, therefore WAO also doesn’t satisfy the neutrality property of

the vacuous belief assignment for the fusion. That’s why we have improved PCR1 to PCR2-4

rules in a companion paper [12].

3.7 COMPARISON OF THE PCR1 RULE WITH THE WAO

3.7.1 The non degenerate case

Let’s compare in this section the PCR1 with the WAO for a very simple 2D general non degenerate

case (none of the elements of the power set or hyper-power set of the frame Θ are known to be truly

empty but the universal empty set itself) for the combination of 2 sources. Assume that the non

degenerate mass matrix M12 associated with the beliefs assignments m1(.) and m2(.) is given by
⎧⎪⎨
⎪⎩

m1 = [m1(θ1) m1(θ2) m1(θ1 ∪ θ2)]

m2 = [m2(θ1) m2(θ2) m2(θ1 ∪ θ2)]

In this very simple case, the total conflict is given by

k12 = m1(θ1)m2(θ2) + m1(θ2)m2(θ1)

According to the WAO definition, one gets mWAO(∅) = wm(∅) · k12 = 0 because by definition

wm(∅) = 0. The other weighting coefficients of WAO are given by

wm(θ1) =
1

2
[m1(θ1) + m2(θ1)]

wm(θ2) =
1

2
[m1(θ2) + m2(θ2)]

wm(θ1 ∪ θ2) =
1

2
[m1(θ1 ∪ θ2) + m2(θ1 ∪ θ2)]

Thus, one obtains
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mWAO(θ1) = [m1(θ1)m2(θ1) + m1(θ1 ∪ θ2)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2)]

+
1

2
[m1(θ1) + m2(θ1)] · [m1(θ1)m2(θ2) + m1(θ2)m2(θ1)]

mWAO(θ2) = [m1(θ2)m2(θ2) + m1(θ1 ∪ θ2)m2(θ2) + m1(θ2)m2(θ1 ∪ θ2)]

+
1

2
[m1(θ2) + m2(θ2)] · [m1(θ1)m2(θ2) + m1(θ2)m2(θ1)]

mWAO(θ1∪θ2) = [m1(θ1∪θ2)m2(θ1∪θ2)]+
1

2
[m1(θ1∪θ2)+m2(θ1∪θ2)]·[m1(θ1)m2(θ2)+m1(θ2)m2(θ1)]

It is easy to verify that
∑

X∈2Θ mWAO(X) = 1.

Using the PCR1 formula for 2 sources explicated in section 3.1, one has mPCR1(∅) = 0 and the

weighting coefficients of the PCR1 rule are given by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c12(θ1) = m1(θ1) + m2(θ1)

c12(θ2) = m1(θ2) + m2(θ2)

c12(θ1 ∪ θ2) = m1(θ1 ∪ θ2) + m2(θ1 ∪ θ2)

and d12 by d12 = c12(θ1) + c12(θ2) + c12(θ1 ∪ θ2) = 2. Therefore, one finally gets:

mPCR1(θ1) = [m1(θ1)m2(θ1) + m1(θ1 ∪ θ2)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2)]

+
c12(θ1)

d12
· [m1(θ1)m2(θ2) + m1(θ2)m2(θ1)]

mPCR1(θ2) = [m1(θ2)m2(θ2) + m1(θ1 ∪ θ2)m2(θ2) + m1(θ2)m2(θ1 ∪ θ2)]

+
c12(θ2)

d12

· [m1(θ1)m2(θ2) + m1(θ2)m2(θ1)]

mPCR1(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] +
c12(θ1 ∪ θ2)

d12
· [m1(θ1)m2(θ2) + m1(θ2)m2(θ1)]

Therefore for all X in 2Θ, one has mPCR1(X) = mWAO(X) if no singletons or unions of single-

tons are (or become) empty at a given time, otherwise the results are different as seen in the below

three examples. This property holds for the combination of N > 2 sources working on a n−D frame

(n > 2) Θ as well if no singletons or unions of singletons are (or become) empty at a given time,

otherwise the results become different.

16 IJAMAS, Vol. 3, No. J05, June 2005



3.7.2 The degenerate case

In the dynamic fusion, when one or more singletons or unions of singletons become empty at a certain

time t which corresponds to a degenerate case, the WAO does not work.

Example 1: Let’s consider the Shafer’s model (exhaustivity and exclusivity of hypotheses) on Θ =

{A, B, C} and the two following bbas

m1(A) = 0.3 m1(B) = 0.4 m1(C) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(C) = 0.4

Then the conjunctive consensus yields

m12(A) = 0.15 m12(B) = 0.04 m12(C) = 0.12

and the conflicting mass k12 = 0.69. Now assume that at time t, one finds out that B = ∅, then the

new conflict mass which becomes k′
12 = 0.69 + 0.04 = 0.73 is re-distributed to A and C according

to the WAO formula:

mWAO(B) = 0

mWAO(A) = 0.15 + (1/2)(0.3 + 0.5)(0.73) = 0.4420

mWAO(C) = 0.12 + (1/2)(0.3 + 0.4)(0.73) = 0.3755

From this WAO result, one sees clearly that the sum of the combined masses m(.) is 0.8175 < 1 while

using PCR1, one redistributes 0.73 to A and B following the PCR1 formula:

mPCR1(B) = 0

mPCR1(A) = 0.15 +
(0.3 + 0.5)(0.73)

(0.3 + 0.5 + 0.3 + 0.4)
= 0.539333

mPCR1(C) = 0.12 +
(0.3 + 0.4)(0.73)

(0.3 + 0.5 + 0.3 + 0.4)
= 0.460667

which clearly shows that he sum of masses mPCR1(.) is 1 as expected for a proper belief assignment.

Example 2 (totally degenerate case) : Let’s take exactly the same previous example with exclusive

hypotheses A, B and C but assume now that at time t one finds out that A, B and C are all truly

empty, then k′
12 = 1. In this case, the WAO is not able to redistribute the conflict to any element A, B,

C or partial/total ignorances because they are empty. But PCR1 transfers the conflicting mass to the
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ignorance A ∪ B ∪ C, which is the total ignorance herein, but this is also empty, thus the conflicting

mass is transferred to the empty set, meaning we have an open world, i.e. new hypotheses might

belong to the frame of discernment.

Example 3 (Open-world): In the Smets’ open-world approach (when the empty set gets some mass

assigned by the sources), the WAO doesn’t work either. For example, let’s consider Θ = {A, B} and

the following bbas m1(∅) = 0.1, m2(∅) = 0.2 and

m1(A) = 0.4 m1(B) = 0.3 m1(A ∪ B) = 0.2

m2(A) = 0.5 m2(B) = 0.2 m2(A ∪ B) = 0.1

Then the conjunctive consensus yields m12(∅) = 0.28 and

m12(A) = 0.34 m12(B) = 0.13 m12(A ∪ B) = 0.02

with the conflicting mass

k12 = m12(A ∩ B) + m12(∅) = 0.23 + 0.28 = 0.51

Using WAO, one gets

mWAO(∅) = 0

mWAO(A) = 0.34 + (1/2)(0.4 + 0.5)(0.51) = 0.5695

mWAO(B) = 0.13 + (1/2)(0.3 + 0.2)(0.51) = 0.2275

mWAO(A ∪ B) = 0.02 + (1/2)(0.2 + 0.1)(0.51) = 0.0965

The sum of massesmWAO(.) is 0.9235 < 1 while PCR1 gives:

mPCR1(∅) = 0

mPCR1(∅) = 0

mPCR1(A) = 0.34 +
(0.4 + 0.5)(0.51)

(0.4 + 0.5 + 0.3 + 0.2 + 0.2 + 0.1)
= 0.61

mPCR1(B) = 0.13 +
(0.3 + 0.2)(0.51)

(0.4 + 0.5 + 0.3 + 0.2 + 0.2 + 0.1)
= 0.28

mPCR1(A ∪ B) = 0.02 +
(0.2 + 0.1)(0.51)

(0.4 + 0.5 + 0.3 + 0.2 + 0.2 + 0.1)
= 0.11

which shows that the sum of masses mPCR1(.) is 1.
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3.7.3 Comparison of memory storages

In order to keep the associativity of PCR1 one stores the previous result of combination using the

conjunctive rule, and also the sums of mass columns [2 storages]. For the WAO one stores the pre-

vious result of combination using the conjunctive rule (as in PCR1), and the mass columns averages

(but the second one is not enough in order to compute the next average and that’s why one still needs

to store the number of masses combined so far) [3 storages].

For example, let’s Θ = {A, B, C} and let’s suppose first that only five bbas available, m1(.),

m2(.), m3(.), m4(.), m5(.), have been combined with WAO, where for example m1(A) = 0.4,

m2(A) = 0.2, m3(A) = 0.3, m4(A) = 0.6, m5(A) = 0.0. Their average m12345(A) = 0.3 was

then obtained and stored. Let’s assume now that a new bba m6(.), with m6(A) = 0.4 comes in as a

new evidence. Then, how to compute with WAO the new average m123456(A) = [m12345 ⊕ m6](A)?

We need to know how many masses have been combined so far with WAO (while in PCR1 this is not

necessary). Therefore n = 5, the number of combined bbas so far, has to be stored too when using

WAO in sequential/iterative fusion. Whence, the new average is possible to be computed with WAO :

m123456(A) =
5 · 0.3 + 0.4

5 + 1
= 0.316667

but contrariwise to WAO, we don’t need an extra memory storage for keep in memory n = 5 when

using PCR1 to compute3 mPCR1|123456(A) from mPCR1|12345(A) and m6(A) which is more interesting

since PCR1 reduces the memory storage requirement versus WAO. Indeed, using PCR1 we only store

the sum of previous masses: c12345(A) = 0.4 + 0.2 + 0.3 + 0.6 + 0.0 = 1.5, and when another bba

m6(.) with m6(A) = 0.4 comes in as a new evidence one only adds it to the previous sum of masses:

c123456(A) = 1.5 + 0.4 = 1.9 to get the coefficient of proportionalization for the set A.

4. SOME NUMERICAL EXAMPLES

4.1 EXAMPLE 1

Let’s consider a general 2D case (i.e. Θ = {θ1, θ2}) including epistemic uncertainties with the two

following belief assignments

m1(θ1) = 0.6, m1(θ2) = 0.3, m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5, m2(θ2) = 0.2, m2(θ1 ∪ θ2) = 0.3

3The notation mPCR1|12...n(.) denotes explicitly the fusion of n bbas m1(.), m2(.), . . . , mn(.); i.e. given

the knowledge of the n bbas combined altogether.
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The conjunctive consensus yields:

m∩(θ1) = 0.53, m∩(θ2) = 0.17, m∩(θ1 ∪ θ2) = 0.03

with the total conflicting mass k12 = 0.27.

Applying the proportionalization from the mass matrix

M12 =

⎡
⎣0.6 0.3 0.1

0.5 0.2 0.3

⎤
⎦

one has

w12(θ1)

0.6 + 0.5
=

w12(θ2)

0.3 + 0.2
=

w12(θ1 ∪ θ2)

0.1 + 0.3
=

w12(θ1) + w12(θ2) + w12(θ1 ∪ θ2)

2
=

0.27

2
= 0.135

and thus one deduces:

w12(θ1) = 1.1 · 0.135 = 0.1485

w12(θ2) = 0.5 · 0.135 = 0.0675

w12(θ1 ∪ θ2) = 0.4 · 0.135 = 0.0540

One adds w12(θ1) to m∩(θ1), w12(θ2) to m∩(θ2) and w12(θ1 ∪ θ2) to m∩(θ1 ∪ θ2). One finally gets the

result of the PCR1 rule of combination:

mPCR1(θ1) = 0.53 + 0.1485 = 0.6785

mPCR1(θ2) = 0.17 + 0.0675 = 0.2375

mPCR1(θ1 ∪ θ2) = 0.03 + 0.0540 = 0.0840

4.2 EXAMPLE 2

Let’s consider the frame of discernment with only two exclusive elements, i.e. Θ = {θ1, θ2} and

consider the two following Bayesian belief assignments

m1(θ1) = 0.2, m1(θ2) = 0.8

m2(θ1) = 0.9, m2(θ2) = 0.1

The associated (effective) mass matrix will be

M12 =

⎡
⎣0.2 0.8

0.9 0.1

⎤
⎦
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The first row of M12 corresponds to basic belief assignment m1(.) and the second row of M12

corresponds to basic belief assignment m2(.). The columns of the mass matrix M12 correspond to

focal elements of m1(.) and m2(.) and the choice for ordering these elements doesn’t matter. any

arbitrary choice is possible. In this example the first column of M12 is associated with θ1 and the

second column with θ2.

4.2.1 Fusion with the PCR1 rule

The conjunctive consensus yields:
⎧⎪⎨
⎪⎩

m∩(θ1) = [m1 ⊕ m2](θ1) = 0.2 · 0.9 = 0.18

m∩(θ2) = [m1 ⊕ m2](θ2) = 0.8 · 0.1 = 0.08

The remaining mass corresponds to the conflict k12, i.e.

k12 = 1 − m∩(θ1) − m∩(θ2) = m1(θ1)m2(θ2) + m1(θ2)m2(θ1) = (0.2 · 0.1) + (0.9 · 0.8) = 0.74

Now the conflicting mass, k12 = 0.74, is distributed between m∩(θ1) and m∩(θ2) proportionally

with the non-zero sums of their columns. Thus, the column vector associated with θ1 is [0.2 0.9]′ and

we add the elements 0.2 + 0.9 = 1.1. The column vector associated with θ2 is [0.8 0.1]′ and we add

the elements 0.8 + 0.1 = 0.9.

Let w12(θ1), w12(θ2) be the parts from the conflicting mass to be assigned to m∩(θ1) and m∩(θ2)

respectively. Then:

w12(θ1)

1.1
=

w12(θ2)

0.9
=

w12(θ1) + w12(θ2)

1.1 + 0.9
=

0.74

2
= 0.37

Whence, w12(θ1) = 1.1 ·0.37 = 0.407, w12(θ2) = 0.9 ·0.37 = 0.333. One adds w12(θ1) to m∩(θ1)

and w12(θ2) to m∩(θ2) and one finally gets the result of the PCR1 rule of combination:

mPCR1(θ1) = 0.18 + 0.407 = 0.587

mPCR1(θ2) = 0.08 + 0.333 = 0.413

where mPCR1(.) means the normalized mass resulting from the PCR1 rule of combination.

We can directly use the PCR1 formula for computing the mass, instead of doing proportionaliza-

tions all the time.
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4.2.2 Fusion with the Dempster’s rule

Based on the close-world Shafer’s model and applying the Dempster’s rule of combination, one gets

(index DS standing here for Dempster-Shafer)

mDS(θ1) =
m∩(θ1)

1 − k12
=

0.18

0.26
= 0.692308

mDS(θ2) =
m∩(θ2)

1 − k12

=
0.08

0.26
= 0.307692

4.2.3 Fusion with the Smets’ rule

Based on the open-world model with TBM interpretation [14] and applying the Smets’ rule of combi-

nation (i.e. the non-normalized Dempster’s rule of combination), one trivially gets (index S standing

here for Smets)

mS(θ1) = m∩(θ1) = 0.18

mS(θ2) = m∩(θ2) = 0.08

mS(∅) = k12 = 0.74

4.2.4 Fusion with other rules

While different in their essence, the Yager’s rule [19], Dubois-Prade [3] rule and the hybrid DSm rule

[11] of combination provide the same result for this specific 2D example. That is

m(θ1) = 0.18 m(θ2) = 0.08 m(θ1 ∪ θ2) = 0.74

4.3 EXAMPLE 3 (ZADEH’S EXAMPLE)

Let’s consider the famous Zadeh’s examples [22, 23, 24, 25] with the frame Θ = {θ1, θ2, θ3}, two

independent sources of evidence corresponding to the following Bayesian belief assignment matrix

(where columns 1, 2 and 3 correspond respectively to elements θ1, θ2 and θ3 and rows 1 and 2 to

belief assignments m1(.) and m2(.) respectively), i.e.

M12 =

⎡
⎣0.9 0 0.1

0 0.9 0.1

⎤
⎦

In this example, one has ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∩(θ1) = [m1 ⊕ m2](θ1) = 0

m∩(θ2) = [m1 ⊕ m2](θ2) = 0

m∩(θ3) = [m1 ⊕ m2](θ3) = 0.1 · 0.1 = 0.01
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and the conflict between the sources is very high and is given by

k12 = 1 − m∩(θ1) − m∩(θ2) − m∩(θ3) = 0.99

4.3.1 Fusion with the PCR1 rule

Using the PCR1 rule of combination, the conflict k12 = 0.99 is proportionally distributed to m∩(θ1),

m∩(θ2), m∩(θ3) with respect to their corresponding sums of columns, i.e. 0.9, 0.9, 0.2 respectively.

Thus: w12(θ1)/0.9 = w12(θ2)/0.9 = w12(θ3)/0.2 = 0.99/2 = 0.495. Hence: w12(θ1) = 0.9 ·0.495 =

0.4455, w12(θ2) = 0.9 · 0.495 = 0.4455 and w12(θ3) = 0.2 · 0.495 = 0.0990. Finally the result of the

PCR1 rule of combination is given by

mPCR1(θ1) = 0 + 0.4455 = 0.4455

mPCR1(θ2) = 0 + 0.4455 = 0.4455

mPCR1(θ3) = 0.01 + 0.099 = 0.109

This is an acceptable result if we don’t want to introduce the partial ignorances (epistemic partial

uncertainties). This result is close to Murphy’s arithmetic mean combination rule [8], which is the

following (M index standing here for the Murphy’s rule) :

mM (θ1) = (m1(θ1) + m2(θ1))/2 = (0.9 + 0)/2 = 0.45

mM (θ2) = (m1(θ2) + m2(θ2))/2 = (0 + 0.9)/2 = 0.45

mM (θ3) = (m1(θ3) + m2(θ3))/2 = (0.1 + 0.1)/2 = 0.10

4.3.2 Fusion with the Dempster’s rule

The use of the Dempster’s rule of combination yields here to the counter-intuitive result mDS(θ3) = 1.

This example is discussed in details in [11] where several other infinite classes of counter-examples

to the Dempster’s rule are also presented.

4.3.3 Fusion with the Smets’ rule

Based on the open-world model with TBM, the Smets’ rule of combination gives very little informa-

tion, i;e. mS(θ3) = 0.01 and mS(∅) = k12 = 0.99.

4.3.4 Fusion with the Yager’s rule

The Yager’s rule of combination transfers the conflicting mass k12 onto the total uncertainty and thus

provides little specific information since one gets mY (θ3) = 0.01 and mY (θ1 ∪ θ2 ∪ θ3) = 0.99.
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4.3.5 Fusion with the Dubois & Prade and DSmT rule

In zadeh’s example, the hybrid DSm rule and the Dubois-Prade rule give the same result: m(θ3) =

0.01, m(θ1 ∪ θ2) = 0.81, m(θ1 ∪ θ3) = 0.09 and m(θ2 ∪ θ3) = 0.09. This fusion result is more

informative/specific than previous rules of combination and is acceptable if one wants to take into

account all aggregated partial epistemic uncertainties.

4.4 EXAMPLE 4 (WITH TOTAL CONFLICT)

Let’s consider now the 4D case with the frame Θ = {θ1, θ2, θ3, θ4} and two independent equi-reliable

sources of evidence with the following Bayesian belief assignment matrix (where columns 1, 2, 3 and

4 correspond to elements θ1, θ2, θ3 and θ4 and rows 1 and 2 to belief assignments m1(.) and m2(.)

respectively)

M12 =

⎡
⎣0.3 0 0.7 0

0 0.4 0 0.6

⎤
⎦

4.4.1 Fusion with the PCR1 rule

Using the PCR1 rule of combination, one gets k12 = 1 and

m∩(θ1) = m∩(θ2) = m∩(θ3) = m∩(θ4) = 0

We distribute the conflict among m∩(θ1), m∩(θ2), m∩(θ3) and m∩(θ4) proportionally with their sum

of columns, i.e., 0.3, 0.4, 0.7 and 0.6 respectively. Thus:

w12(θ1)

0.3
=

w12(θ2)

0.4
=

w12(θ3)

0.7
=

w12(θ4)

0.6
=

w12(θ1) + w12(θ2) + w12(θ3) + w12(θ4)

0.3 + 0.4 + 0.7 + 0.6
=

1

2
= 0.5

Then w12(θ1) = 0.3 · 0.5 = 0.15, w12(θ2) = 0.4 · 0.5 = 0.20, w12(θ3) = 0.7 · 0.5 = 0.35 and

w12(θ4) = 0.6 · 0.5 = 0.30 and add them to the previous masses. One easily gets:

mPCR1(θ1) = 0.15 mPCR1(θ2) = 0.20

mPCR1(θ3) = 0.35 mPCR1(θ4) = 0.30

In this case the PCR1 combination rule gives the same result as Murphy’s arithmetic mean com-

bination rule.

4.4.2 Fusion with the Dempster’s rule

In this example, the Dempster’s rule can’t be applied since the sources are in total contradiction

because k12 = 1. Dempster’s rule is mathematically not defined because of the indeterminate form

0/0.
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4.4.3 Fusion with the Smets’ rule

Using open-world assumption, the Smets’ rule provides no specific information, only mS(∅) = 1.

4.4.4 Fusion with the Yager’s rule

The Yager’s rule gives no information either: mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 1 (total ignorance).

4.4.5 Fusion with the Dubois & Prade and DSmT rule

The hybrid DSm rule and the Dubois-Prade rule give here the same result:

m(θ1 ∪ θ2) = 0.12 m(θ1 ∪ θ4) = 0.18 m(θ2 ∪ θ3) = 0.28 m(θ3 ∪ θ4) = 0.42

4.5 EXAMPLE 5 (CONVERGENT TO IDEMPOTENCE)

Let’s consider now the 2D case with the frame of discernment Θ = {θ1, θ2} and two independent equi-

reliable sources of evidence with the following Bayesian belief assignment matrix (where columns

1 and 2 correspond to elements θ1 and θ2 and rows 1 and 2 to belief assignments m1(.) and m2(.)

respectively)

M12 =

⎡
⎣0.7 0.3

0.7 0.3

⎤
⎦

The conjunctive consensus yields here:

m∩(θ1) = 0.49 and m∩(θ2) = 0.09

with conflict k12 = 0.42.

4.5.1 Fusion with the PCR1 rule

Using the PCR1 rule of combination, one gets after distributing the conflict proportionally among

m∩(θ1) and m∩(θ2) with 0.7 + 0.7 = 1.4 and 0.3 + 0.3 = 0.6 such that

w12(θ1)

1.4
=

w12(θ2)

0.6
=

w12(θ1) + w12(θ2)

1.4 + 0.6
=

0.42

2
= 0.21

whence w12(θ1) = 0.294 and w12(θ2) = 0.126 involving the following result

mPCR1(θ1) = 0.49 + 0.294 = 0.784 mPCR1(θ2) = 0.09 + 0.126 = 0.216

4.5.2 Fusion with the Dempster’s rule

The Dempster’s rule of combination gives here:

mDS(θ1) = 0.844828 and mDS(θ2) = 0.155172
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4.5.3 Fusion with the Smets’ rule

Based on the open-world model with TBM, the Smets’ rule of combination provides here:

mS(θ1) = 0.49 mS(θ2) = 0.09 mS(∅) = 0.42

4.5.4 Fusion with the other rules

The hybrid DSm rule, the Dubois-Prade rule and the Yager’s give here:

m(θ1) = 0.49 m(θ2) = 0.09 m(θ1 ∪ θ2) = 0.42

4.5.5 Behavior of the PCR1 rule with respect to idempotence

Let’s combine now with the PCR1 rule four equal sources m1(.) = m2(.) = m3(.) = m4(.) with

mi(θ1) = 0.7 and mi(θ2) = 0.3 (i = 1, . . . , 4). The PCR1 result4 is now given by

m1234
PCR1(θ1) = 0.76636 m1234

PCR1(θ2) = 0.23364

Then repeat the fusion with the PCR1 rule for eight equal sources mi(θ1) = 0.7 and mi(θ2) = 0.3

(i = 1, . . . , 8). One gets now:

m1...8
PCR1(θ1) = 0.717248 m1...8

PCR1(θ2) = 0.282752

Therefore mPCR1(θ1) → 0.7 and mPCR1(θ2) → 0.3. We can prove that the fusion using PCR1 rule

converges towards idempotence, i.e. for i = 1, 2

lim
n→∞

[m ⊕ m ⊕ . . . ⊕ m](θi)︸ ︷︷ ︸
n times

= m(θi)

in the 2D simple case with exclusive hypotheses, no unions, neither intersections (i.e. with Bayesian

belief assignments).

Let Θ = {θ1, θ2} and the mass matrix

M1...n =

⎡
⎢⎢⎢⎢⎢⎢⎣

a 1 − a

a 1 − a
...

...

a 1 − a

⎤
⎥⎥⎥⎥⎥⎥⎦

4The verification is left to the reader.
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Using the general PCR1 formula, one gets for any A �= ∅,

lim
n→∞

m1...n
PCR1(θ1) = an + n · a ·

k1...n

n
= an + a[1 − an − (1 − a)n] = a

because limn→∞ an = limn→∞ (1 − a)n = 0 when 0 < a < 1; if a = 0 or a = 1 also limn→∞ m1...n
PCR1(θ1) =

a. We can prove similarly limn→∞ m1...n
PCR1(θ2) = 1 − a

One similarly proves the n-D, n ≥ 2, simple case for Θ = {θ1, θ2, . . . , θn}with exclusive elements

when no mass is on unions neither on intersections.

4.6 EXAMPLE 6 (MAJORITY OPINION)

Let’s consider now the 2D case with the frame Θ = {θ1, θ2} and two independent equi-reliable

sources of evidence with the following belief assignment matrix (where columns 1 and 2 correspond

to elements θ1 and θ2 and rows 1 and 2 to belief assignments m1(.) and m2(.) respectively)

M12 =

⎡
⎣0.8 0.2

0.3 0.7

⎤
⎦

Then after a while, assume that a third independent source of evidence is introduces with belief

assignment m3(θ1) = 0.3 and m3(θ2) = 0.7. The previous belief matrix is then extended/updated as

follows (where the third row of matrix M corresponds to the new source m3(.))

M123 =

⎡
⎢⎢⎢⎣

0.8 0.2

0.3 0.7

0.3 0.7

⎤
⎥⎥⎥⎦

4.6.1 Fusion with the PCR1 rule

The conjunctive consensus for sources 1 and 2 gives (where upper index 12 denotes the fusion of

source 1 and 2)

m12
∩ (θ1) = 0.24 m12

∩ (θ2) = 0.14

with conflict k12 = 0.62.

We distribute the conflict 0.62 proportionally with 1.1 and 0.9 respectively to m12
∩ (θ1) and m12

∩ (θ2)

such that
w12(θ1)

1.1
=

w12(θ2)

0.9
=

w12(θ1) + w12(θ2)

1.1 + 0.9
=

0.62

2
= 0.31

and thus w12(θ1) = 1.1 · 0.31 = 0.341 and w12(θ2) = 0.9 · 0.31 = 0.279.
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Using the PCR1 combination rule for sources 1 and 2, one gets:

m12
PCR1(θ1) = 0.24 + 0.341 = 0.581 m12

PCR1(θ2) = 0.14 + 0.279 = 0.419

Let’s combine again the previous result with m3(.) to check the majority rule (if the result’s trend

is towards m3 = m2). Consider now the following matrix (where columns 1 and 2 correspond to

elements θ1 and θ2 and rows 1 and 2 to belief assignments m12
PCR1(.) and m3(.) respectively)

M12,3 =

⎡
⎣0.581 0.419

0.3 0.7

⎤
⎦

The conjunctive consensus obtained from m12
PCR1(.) and m3(.) gives

m12,3
∩ (θ1) = 0.1743 m12,3

∩ (θ2) = 0.2933

with conflict k12,3 = 0.5324 where the index notation 12,3 stands here for the combination of the

result of the fusion of sources 1 and 2 with the new source 3. The proportionality coefficients are

obtained from

w12(θ1)

0.581 + 0.3
=

w12(θ2)

0.419 + 0.7
=

w12(θ1) + w12(θ2)

0.581 + 0.3 + 0.419 + 0.7
=

0.5324

2
= 0.2662

and thus:

w12(θ1) = 0.881 · 0.2662 = 0.234522 w12(θ2) = 1.119 · 0.2662 = 0.297878

The fusion result obtained by the PCR1 after the aggregation of sources 1 and 2 with the new source

3 is:

m12,3
PCR1(θ1) = 0.1743 + 0.234522 = 0.408822 m12,3

PCR1(θ2) = 0.2933 + 0.297878 = 0.591178

Thus m
12,3
PCR1 = [0.408822 0.591178] starts to reflect the majority opinion m2(.) = m3 = [0.3 0.7]

(i.e. the mass of θ1 becomes smaller than the mass of θ2).

If now we apply the PCR1 rule for the 3 sources taken directly together, one gets

m123
∩ (θ1) = 0.072 m123

∩ (θ2) = 0.098

with the total conflicting mass k123 = 0.83.

28 IJAMAS, Vol. 3, No. J05, June 2005



Applying the proportionalization from M123, one has

w123(θ1)

0.8 + 0.3 + 0.3
=

w123(θ2)

0.2 + 0.7 + 0.7
=

w123(θ1) + w123(θ2)

3
=

0.83

3

Thus, the proportionalized conflicting masses to transfer onto m123
∩ (θ1) and m123

∩ (θ2) are respectively

given by

w123(θ1) = 1.4 ·
0.83

3
= 0.387333 w123(θ2) = 1.6 ·

0.83

3
= 0.442667

The final result of the PCR1 rule combining all three sources together is then

m123
PCR1(θ1) = 0.072 + 0.387333 = 0.459333 m123

PCR1(θ2) = 0.098 + 0.442667 = 0.540667

The majority opinion is reflected since m123
PCR1(θ1) < m123

PCR1(θ2). Note however that the PCR1 rule of

combination is clearly not associative because (m12,3
PCR1(θ1) = 0.408822) �= (m123

PCR1(θ1) = 0.459333)

and (m12,3
PCR1(θ2) = 0.591178) �= (m123

PCR1(θ2) = 0.540667).

If we now combine the three previous sources altogether with the fourth source providing the

majority opinion, i.e. m4(θ1) = 0.3 and m4(θ2) = 0.7 one will get

m1234
∩ (θ1) = 0.0216 m123

∩ (θ2) = 0.0686

with the total conflicting mass k1234 = 0.9098.

Applying the proportionalization from mass matrix

M1234 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.8 0.2

0.3 0.7

0.3 0.7

0.3 0.7

⎤
⎥⎥⎥⎥⎥⎥⎦

yields

w1234(θ1) = [0.8 + 0.3 + 0.3 + 0.3] ·
0.9098

4
w1234(θ2) = [0.2 + 0.7 + 0.7 + 0.7] ·

0.9098

4

and finally the followwing result

m1234
PCR1(θ1) = 0.0216 + [0.8 + 0.3 + 0.3 + 0.3] ·

0.9098

4
= 0.408265

m1234
PCR1(θ2) = 0.0686 + [0.2 + 0.7 + 0.7 + 0.7] ·

0.9098

4
= 0.591735

Hence m1234
PCR1(θ1) is decreasing more and more while m1234

PCR1(θ2) is increasing more and more, which

reflects again the majority opinion.
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4.7 EXAMPLE 7 (MULTIPLE SOURCES OF INFORMATION)

Let’s consider now the 2D case with the frame Θ = {θ1, θ2} and 10 independent equi-reliable sources

of evidence with the following Bayesian belief assignment matrix (where columns 1 and 2 correspond

to elements θ1 and θ2 and rows 1 to 10 to belief assignments m1(.) to m10(.) respectively)

M1...10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

0.1 0.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The conjunctive consensus operator gives here

m∩(θ1) = (0.1)9 m∩(θ2) = 0

with the conflict k1...10 = 1 − (0.1)9.

4.7.1 Fusion with the PCR1 rule

Using the general PCR1 formula (17), one gets

m1...10
PCR1(θ1) = (0.1)9 + c1...10(θ1) ·

k1...10

10
= (0.1)9 + (1.9) ·

1 − (0.1)9

10
= (0.1)9 + (0.19) · [1 − (0.1)9]

= (0.1)9 + 0.19 − 0.19 · (0.1)9 = (0.1)9 · 0.81 + 0.19 ≈ 0.19

m1...10
PCR1(θ2) = (0.9)9 + c1...10(θ2) ·

k1...10

10
= (0.9)9 + (8.1) ·

1 − (0.1)9

10
= (0.9)9 + (0.81) · [1 − (0.1)9]

= (0.9)9 + 0.81 − 0.81 · (0.1)9 = (0.1)9 · 0.19 + 0.81 ≈ 0.81

The PCR1 rule’s result is converging towards the Murphy’s rule in this case, which is mM (θ1) =

0.19 and mM(θ2) = 0.81.

4.7.2 Fusion with the Dempster’s rule

In this example, the Dempster’s rule of combination gives mDS(θ1) = 1 which looks quite surprising

and certainly wrong since nine sources indicate mi(θ1) = 0.1 (i = 2, . . . , 10) and only one shows

m1(θ1) = 1.
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4.7.3 Fusion with the Smets’ rule

In this example when assuming open-world model, the Smets’ rule provide little specific information

since one gets

mS(θ1) = (0.1)9 mS(∅) = 1 − (0.1)9

4.7.4 Fusion with the other rules

The hybrid DSm rule, the Dubois-Prade’s rule and the Yager’s rule give here:

m(θ1) = (0.1)9 m(θ1 ∪ θ2) = 1 − (0.1)9

which is less specific than PCR1 result but seems more reasonable and cautious if one introduces/takes

into account epistemic uncertainty arising from the conflicting sources if we consider that the major-

ity opinion does not necessary reflect the reality of the solution of a problem. The answer to this

philosophical question is left to the reader.

4.8 EXAMPLE 8 (BASED ON HYBRID DSm MODEL)

In this last example, we show how the PCR1 rule can be applied on a fusion problem characterized

by a hybrid DSm model rather than the Shafer’s model and we compare the result of the PCR1 rule

with the result obtained from the hybrid DSm rule.

Let’s consider a 3D case (i.e. Θ = {θ1, θ2, θ2}) including epistemic uncertainties with the two

following belief assignments

m1(θ1) = 0.4 m1(θ2) = 0.1 m1(θ3) = 0.3 m1(θ1 ∪ θ2) = 0.2

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ3) = 0.2

We assume here a hybrid DSm model [11] (chap. 4) in which the following integrity constraints

hold

θ1 ∩ θ2 = θ1 ∩ θ3 = ∅

but where θ2 ∩ θ3 �= ∅.

The conjunctive consensus rule extended to the hyper-power set DΘ (i.e. the Dedekind’s lattice

built on Θ with union and intersection operators) becomes now the classic DSm rule and we obtain

m∩(θ1) = 0.36 m∩(θ2) = 0.06 m∩(θ3) = 0.06 m∩(θ2 ∩ θ3) = 0.12
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One works on hyper-power set (which contains, besides unions, intersections as well), not on power

set as in all other theories based on the Shafer’s model (because power set contains only unions, not

intersections).

The conflicting mass k12 is thus formed together by the masses of θ1 ∩ θ2 and θ1 ∩ θ3 and is given

by

k12 = m(θ1 ∩ θ2) + m(θ1 ∩ θ3) = [0.4 · 0.2 + 0.6 · 0.1] + [0.4 · 0.2 + 0.6 · 0.2] = 0.14 + 0.26 = 0.40

= 1 − m∩(θ1) − m∩(θ2) − m∩(θ3) − m∩(θ2 ∩ θ3)

The classic DSm rule (denoted here with index DSmc) provides also

mDSmc(θ2 ∩ θ3) = 0.1 · 0.2 + 0.2 · 0.3 = 0.08 mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.04

but since θ3 ∩ (θ1 ∪ θ2) = (θ3 ∩ θ1) ∪ (θ3 ∩ θ2) = θ2 ∩ θ3 because integrity constraint θ1 ∩ θ3 = ∅ of

the model, the total mass committed to θ2 ∩ θ3 is finally

mDSmc(θ2 ∩ θ3) = 0.08 + 0.04 = 0.12

4.8.1 Fusion with the hybrid DSm rule

If one uses the hybrid DSm rule, one gets

mDSmh(θ1) = 0.36 mDSmh(θ2) = 0.06 mDSmh(θ3) = 0.06

mDSmh(θ1 ∪ θ2) = 0.14 mDSmh(θ1 ∪ θ3) = 0.26 mDSmh(θ2 ∩ θ3) = 0.12

4.8.2 Fusion with the PCR1 rule

If one uses the PCR1 rule, one has to distribute the conflicting mass 0.40 to the others according to

w12(θ1)

1.0
=

w12(θ2)

0.3
=

w12(θ3)

0.5
=

w12(θ1 ∪ θ2)

0.2
=

0.40

2
= 0.20

Thus one deduces w12(θ1) = 0.20, w12(θ2) = 0.06, w12(θ3) = 0.10 and w12(θ1 ∪ θ2) = 0.04.

Nothing is distributed to θ1 ∪ θ2 because its column in the mass matrix is [0 0]′, therefore its sum

is zero. Finally, one gets the following results with the PCR1 rule of combination:

mPCR1(θ1) = 0.36+0.20 = 0.56 mPCR1(θ2) = 0.06+0.06 = 0.12 mPCR1(θ3) = 0.06+0.10 = 0.16

mPCR1(θ1 ∪ θ2) = 0 + 0.0.4 = 0.04 mPCR1(θ2 ∩ θ3) = 0.12 + 0 = 0.12
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5. CONCLUSION

In this paper a very simple alternative rule to WAO has been proposed for managing the transfer

of epistemic uncertainty in any framework (Dempster-Shafer Theory, Dezert-Smarandache Theory)

which overcomes limitations of the Dempster’s rule yielding to counter-intuitive results for highly

conflicting sources to combine. This rule is interesting both from the implementation standpoint and

the coherence of the result if we don’t accept the transfer of conflicting mass to partial ignorances.

It appears as an interesting compromise between the Dempster’s rule of combination and the more

complex (but more cautious) hybrid DSm rule of combination. This first and simple Proportional

Conflict Redistribution (PCR1) rule of combination works in all cases no matter how big the conflict

is between sources, but when some sources become totally ignorant because in such cases, PCR1 (as

WAO) does not preserve the neutrality property of the vacuous belief assignment in the combination.

PCR1 corresponds to a given choice of proportionality coefficients in the infinite continuum family of

possible rules of combination (i.e. weighted operator - WO) involving conjunctive consensus pointed

out by Inagaki in 1991 and Lefèvre, Colot and Vannoorenberghe in 2002. The PCR1 on the power

set and for non-degenerate cases gives the same results as WAO; yet, for the storage proposal in a

dynamic fusion when the associativity is needed, for PCR1 it is needed to store only the last sum of

masses, besides the previous conjunctive rules result, while in WAO it is in addition needed to store

the number of the steps. PCR1 and WAO rules become quasi-associative. In this work, we extend

WAO (which herein gives no solution) for the degenerate case when all column sums of all non-

empty sets are zero, and then the conflicting mass is transferred to the non-empty disjunctive form

of all non-empty sets together; but if this disjunctive form happens to be empty, then one considers

an open world (i.e. the frame of discernment might contain new hypotheses) and thus all conflicting

mass is transferred to the empty set. In addition to WAO, we propose a general formula for PCR1

(WAO for non-degenerate cases). Several numerical examples and comparisons with other rules for

combination of evidence published in literature have been presented too. Another distinction between

these alternative rules is that WAO is defined on the power set 2Θ, while PCR1 is on the hyper-power

set DΘ. PCR1 and WAO are particular cases of the WO. In PCR1, the proportionalization is done

for each non-empty set with respect to the non-zero sum of its corresponding mass matrix - instead

of its mass column average as in WAO, but the results are the same as Ph. Smets has pointed out in

non degenerate cases. In this paper, one has also proved that a nice feature of PCR1, is that it works

in all cases; i.e. not only on non-degenerate cases but also on degenerate cases as well (degenerate

cases might appear in dynamic fusion problems), while the WAO does not work in these cases since it

gives the sum of masses less than 1. WAO and PCR1 provide both however a counter-intuitive result
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when one or several sources become totally ignorant that why improved versions of PCR1 have been

developed in companion papers [12, 13].
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