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The Born rule is a rule that a probability we observe a small particle like an electron is proportional to the 

square of the absolute value of the wave function. In this paper, we try to derive the Born rule from the 

many-worlds interpretation. 
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Figure 4-25: The number of elementary events is the square of the number of elementary states. 

 

Many researchers have tried to derive the Born rule (also called Born's rule, Born's law, or probability 

interpretation) from Many-Worlds Interpretation (MWI). However, no one succeeds. Thus, the derivation of 

Born’s rule had become an important issue for MWI. We try to derive Born’s rule by introducing an 

elementary event of probability theory to the quantum theory as a new method. 

 

We interpret the wave function as a manifold like a three-dimensional sphere, and interpret the absolute 

value of the wave function as the surface area of the manifold. We suppose that the manifold exists in the 

discrete space that has lattice points. We interpret a point on the surface of the manifold as a state that we 
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cannot divide any more, an elementary state. We draw an arrow from any point to any point. We interpret an 

arrow as an event that we cannot divide any more, an elementary event. 

 

Probability is proportional to the number of elementary events, and the number of elementary events is the 

square of the number of elementary states. The number of elementary states is proportional to the surface 

area of the manifold, and the surface area of the manifold is the absolute value of the wave function. 

Therefore, the probability is proportional to the square of the absolute value of the wave function. 
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1 Introduction 

1.1 Subject 

According to Born’s rule, an observed probability of a particle is proportional to the square of the absolute 

value of the wave function. On the other hand, according to the many-worlds interpretation, we observe the 

particle of the various places in the various events. It is the subject of this paper to derive Born’s rule by 

counting the number of the events. 

 

1.2 The importance of the subject 

Wave function collapse and Born’s rule are the principle of the quantum mechanics. We can eliminate the 

wave function collapse from the quantum mechanics by Many-Worlds Interpretation (MWI), but we cannot 

eliminate Born’s rule. 

 

For this reason, many researchers have tried to derive Born’s rule from MWI. However, it has not 

resulted in the success. Therefore, it has become an important subject to derive Born’s rule. 

 

1.3 Past derivation method 

Hugh Everett III2 claimed that he derived Born’s rule from Many-Worlds Interpretation (MWI) in 1957. 

After that, many researchers claimed that they derived Born’s rule from the method that is different from the 

method of Everett. James Hartle3 claimed in 1968, Bryce DeWitt4 claimed in 1970 and Neil Graham5 

claimed in 1973 that they derived Born’s rule. 
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However, Adrian Kent pointed out that their method of deriving Born’s rule was insufficient6 in 1990. 

David Deutsch7 tried to derive Born’s rule.in 1999. Sumio Wada8 also tried it in 2007. However, many 

researchers do not agree on the methods of deriving Born’s rule. 

 

1.4 New derivation method of this paper 

In the probability theory, we explain the probability by the concept of the elementary event. Therefore, we 

might be able to explain the probability of the quantum theory by the same concept. We try to derive the 

probability of the quantum theory by introducing a concept of the elementary event to the quantum theory as 

the new method of this paper. 

 

2 Traditional method of deriving and the problem 

2.1 The Born rule 

Max Born9 proposed the Born rule in 1926. It is also called Born’s rule, the Born law, the Born's law, or 

the probability interpretation. Born’s rule is a principle of quantum mechanics. We express the state of the 

particle by the wave function ψ (x) in quantum mechanics. We show an example of the wave function in the 

following figure. 

 

 

Figure 2-1: An example of a wave function 

 

The observed probability of a particle is proportional to the square of the absolute value of the wave 

function. We express the observed probability P (x) of a particle at the position x as follows. 

 

 𝑃(𝑥) = |𝜓(𝑥)|2 (2.1) 

 

According to the Copenhagen interpretation that is a general interpretation of quantum mechanics, we 

cannot mention the state of the particle before the observation because the wave function does not exist 

physically. However, the wave function might exist physically. One of the interpretations based on the 

existence of a wave function is a many-worlds interpretation. 

 

2.2 Everett's many-worlds interpretation 

Everett proposed Many-Worlds Interpretation (MWI) in order to deal with the universal wave function. 

He tried to derive Born’s rule from the measure theory. 

 

For example, we consider the Stern-Gerlach experiment. 
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We express the state vector of the spin of an electron by the eigenstate vector of the spin along the z-axis 

direction as follows. 

 𝑎|𝜓⟩ = 𝑎1|𝑧 +⟩ + 𝑎2|𝑧 −⟩ (2.2) 

The coefficients a and ak are complex number. 

 

Here, we have normalized |ψ>, |z+> and, |z->. 

 ⟨𝜓|𝜓⟩ = 1 (2.3) 

 ⟨𝑧 + |𝑧 +⟩ = 1 (2.4) 

 ⟨𝑧 − |𝑧 −⟩ = 1 (2.5) 

 

In order to derive the probability, Everett introduced a new concept, measure. He expressed the measure 

by a positive function m (a). He requested the following equation for the measure. 

 𝑚(𝑎) = 𝑚(𝑎1) + 𝑚(𝑎2) (2.6) 

He adduced a probability conservation law to justify the request. We write the function m (a) satisfying 

the above equation by using a positive constant c as follows. 

 𝑚(𝑎) =  𝑐|𝑎|2 (2.7) 

 𝑚(𝑎1) =  𝑐|𝑎1|2 (2.8) 

 𝑚(𝑎2) =  𝑐|𝑎2|2 (2.9) 

Andrew Gleason10 generally proved the above equation in 1957. His proof is called the Gleason's 

theorem. Everett considered the infinite time measurement, and concluded that the measure behaves like the 

probability. However, MWI of Everett has the basis problem and the probability problem. I will explain 

them in the following sections. 

 

2.2.1 The basis problem of many-worlds interpretation 

If we define the measure by using a particular basis, we need to show how to select a particular basis. 

However, Everett did not show how to select a particular basis in his paper. 

 

For example, we consider the Stern-Gerlach experiment. We express a spin state of any direction by 

superposition of the upward spin state along z-axis and the downward spin state along z-axis. Therefore, we 

express the wave function of an electron by the basis of the spin eigenstate along z-axis as follows. 

 𝑎|𝜓⟩ = 𝑎1|𝑧 +⟩ + 𝑎2|𝑧 −⟩ (2.10) 

We express the measure of the spin eigenstate along z-axis as follows. 

 𝑚(𝑎1) = |𝑎1|2 (2.11) 

 𝑚(𝑎2) = |𝑎2|2 (2.12) 

On the other hand, we also express the wave function of an electron by the basis of the spin eigenstate 

along x-axis as follows. 

 𝑎|𝜓⟩ = 𝑏1|𝑥+⟩ + 𝑏2|𝑥 −⟩ (2.13) 

We express the measure of the spin eigenstate along x-axis as follows. 
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 𝑚(𝑏1) = |𝑏1|2 (2.14) 

 𝑚(𝑏2) = |𝑏2|2 (2.15) 

If the measure of Everett is a quantity that has a physical meaning, it should not change by choice of a 

basis of eigenstate. Therefore, we need a method to choose a specific basis. Everett did not show the 

method. 

 

2.2.2 The probability problem of many-worlds interpretation 

Everett tried to derive Born’s rule from the measure theory. Then, Everett did not give the physical 

meaning to the measure. However, to request the conservation law of the probability for the equation of the 

measure is equivalent to defining the measure as the probability. Therefore, it is circular reasoning to show 

that measure acts like a probability for infinite time measurement. 

 

If the number of worlds is proportional to the measure, it is necessary to clarify the mechanism by which 

the number is proportional to the measure of a world. If the number of worlds is not proportional to the 

measure, it is necessary to explain how the probability of occurrence of a world is proportional to the 

measure. 

 

3 Review of existing ideas 

3.1 Universal Wave function of Wheeler and DeWitt 

John Wheeler and Bryce DeWitt11 proposed the universal wave function in 1967. We have the wave 

function by the Hamiltonian operator H and the ket vector |ψ> as follows. 

 

 𝐻|𝜓⟩  =  0 (3.1) 

 

This ket vector |ψ> is not a normal function but a functional. 

 

A functional is mathematically almost equivalent to a function of many variables. Since the discussion 

based on the functional is difficult, we use a function of many variables for discussion in this paper. The 

following sections describe the many-particle wave function, which is a function of many variables. 

 

3.2 Barbour's many-particle wave function of the universe 

Julian Barbour12 expressed the universe by using the many-particle wave function in his book The End of 

Time in 1999. 

 

We suppose that the number of the particles in the universe is n, and the k-th particle's position is rk = (xk, 

yk, zk). Then we express the many-particle wave function ψ as follows. 

 

 𝜓 = 𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛) (3.2) 

 

The many dimensional space expressing the positions of all the particles is called configuration space. 
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Figure 3-1: Many-particle wave function 

 

The configuration space expresses all the possible worlds those exist physically in the past, the present, 

and the future, because a point in the configuration expresses the positions of all the particles. In other 

words, many-particle wave function expresses all the possible worlds in many-worlds interpretation. 

 

If the combination of the positions of all particles of a world is decided, the state of the clock of the world 

will be decided. If the state of the clock of the world is decided, the time of the clock of the world is decided. 

Therefore, many-particle wave function does not need time as the argument of the function. 

 

It is possible to choose a position or a momentum as a basis of a wave function. This paper chooses the 

position as a basic basis, since we always observe a position finally by an experiment. 

 

The number of particles changes in the quantum field theory. Therefore, it is impossible to express the 

quantum field by the many-particle wave function. We need a functional in order to express the quantum 

field. On the other hand, it is possible to express the functional by many-variable function approximately. 

Then, we use many-variable function, many-particle wave function in order to argue easily in this paper. 

 

We express the probability P that we observe a world in the configuration space as follows. 

 𝑃 = |𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛)|2 (3.3) 

 

In order to consider the reason why we express the probability by this equation, we will review the 

probability theory in the following section. 

3.3 Laplace's Probability Theory 

Pierre-Simon Laplace13 summarized the classical probability theory in 1814. He described the following 

calculation method of the probability. 

 

The probability of an event is the ratio of the number of cases favorable to it, to the number of all 

cases possible when nothing leads us to except that any one of these cases should occur more than 

any other, which renders them, for us, equally possible. 

 

This "equally possible" case is an elementary event in probability theory. All elementary events have a 

same probability of occurrence. 

 

An elementary event is also called an atomic event. In this paper, we call "equally possible" case an 

elementary event. 

 

We suppose that the number of all elementary events is Na, and the number of elementary events of an 

event is N. Then, we express the probability P of occurrence of the event as follows. 
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 𝑃 =
𝑁

𝑁𝑎
∝ 𝑁 (3.4) 

 𝑁 ≪ 𝑁A (3.5) 

 

For example, we suppose that the five balls are in the bag. Three of five balls are red and two balls are 

blue. We suppose that the probability of the event that we take out the red ball is P. Then, the probability is 

3/5. 

 
 

r-1 

r-2 

b-1 

b-2 

r-3 

Event R 

Event B 

Elementary event 

Elementary event 

 

Figure 3-2: Event is a set of elementary events 

 

We explain the reason by the concept of an elementary event. According to the probability theory, we 

interpret the event that we take out a ball as an elementary event. We interpret an event as a set of 

elementary events. 

 

In order to derive Born’s rule, we need to find elementary events of quantum theory. An elementary event 

of probability theory generally we cannot divide anymore, so it is expected that an elementary event of 

quantum theory also cannot be divided anymore. 

 

3.4 Penrose's spin networks 

Roger Penrose14 proposed spin networks in 1971. According to the spin networks, we express the space as 

a graph with a line that connects a point and the other point. This graph is called spin network. Since the 

space-time is discrete, the space-time has a minimum length and minimum time. 
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Point 
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Figure 3-3: Penrose's spin network 

 

In this paper, though we do not use a spin network, we assume that space-time is discrete as well as by 

this theory and the space is a graph that connects the points. In this paper, we assume that the minimum 

length is Planck length ℓ𝑃 and the minimum time is Planck time tP. 

 

 ℓ𝑃 = √
ℏ𝐺

𝑐3
≈ 1.6 × 10−35[𝑚] (3.6) 

 𝑡𝑃 = √
ℏ𝐺

𝑐5
≈ 5.4 × 10−44[𝑠] (3.7) 

 

We call the minimum domain that is constructed by the Planck length elementary domain. 

 

If the space-time is discrete, we need to review the theory that has been constructed based on the 

continuous space-time. Therefore, in the next section, we review what happens in the path integral in the 

case of discrete space-time. 

3.5 Feynman's path integral 

Richard Feynman15 proposed path integral in 1948. It provides a new quantization method. In the path 

integral, we need to take the sum of all the possible paths of the particle. 

We express the probability amplitude K (b, a) from the position a to the position b as follows. 

 

 𝐾(𝑏, 𝑎) = ∫ 𝐷𝑥(𝑡) exp (
𝑖

ℏ
𝑆[𝑏, 𝑎])

𝑏

𝑎

 (3.8) 

 

The probability amplitude K (b, a) is called propagator. The symbol Dx (t) represents the sum of the 

probability amplitudes for all paths. We express the wave functions by the propagator as follows. 

 

 𝜓(𝑏, 𝑡𝑏) = 𝐾(𝑏, 𝑎)𝜓(𝑎, 𝑡𝑎) (3.9) 

 

In the path integral, an event that a particle moves from a position a to the other position b is made to 

correspond to the propagator K (b, a). We get the wave function of time tb by multiplying the propagator K 

(b, a) to a wave function of time ta. 
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As shown in the following figure, there is not only a normal path of α but also the other path of β to travel 

long distance in a short period of time. Such path might have a speed that is greater than the speed of light. 

Since the path is contrary to the special relativity, the path is not allowed. In this paper, we call such a 

movement of the path long distance transition. 

 
 

ta 

t 

x a 

K(b,a) 

tb 

b 

tP 

Path β Path α 

O 
 

Figure 3-4: Feynman's path integral 

 

Generally, the textbook of a path integral explains as follows.  

 

The sum of a minutely different path near a path α becomes large. On the other hand, the sum of a 

minutely different path near a path β becomes small. For this reason, long distance transition is suppressed 

and the path β does not remain.  

 

Then, what happens after the minimum time tP? We express the propagator from a position a to a position 

b after a minimum time tP as follows. 

 

 𝐾(𝑏, 𝑎) = exp (
𝑖

ℏ
𝑆[𝑏, 𝑎]) (3.10) 

 

In this paper, we assume the discrete time. Since we cannot divide minimum time any more, when the 

departure point and the point of arrival are decided, it cannot take a minutely different path near a path β. 

For this reason, we cannot suppress long distance transition and the path β remains. 

 

Therefore, if we apply the path integral to the discrete space-time and the position of a particle is 

determined like a delta function of the Dirac, long distance transition occurs after the minimum time tP. 

 

 𝜓(𝑥′, 𝑡𝑏) = 𝐾(𝑥′, 𝑥)𝛿(𝑥 − 𝑎) (3.11) 

 



11/55 

 

 

ta 

t 

x a 

ψ (x’, tb)=K(x’, x) δ(x − a) 

tb 
tP 

Path β Path α 

O 
 

Figure 3-5: Long distance transition in the path integral 

 

However, we do not observe the long distance transition. We deduce the reason is that the position of the 

particle is distributed with a normal distribution like the following figure. 

 

 

Figure 3-6: A wave function of a localized state 

 

Therefore, position x is distributed with deviation Δx, momentum p is also distributed with deviation Δp. 

According to the Uncertainty Principle, the product of Δx and Δp is close to the Planck constant ℏ/2. 
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 𝛥𝑥 𝛥𝑝 ≈
ℏ

2
 (3.12) 

 

We call the state of the wave function with a normal distribution localized state. 

 

We express a wave function of a particle with momentum p as follows. 

 

 𝜓(𝑥) = exp (
𝑖

ℏ
𝑝𝑥) (3.13) 

We suppose that this particle has a mass m and the velocity v. The momentum is shown below. 

 𝑝 = 𝑚𝑣 (3.14) 

We get the following formula by substituting this formula to the wave function. 

 𝜓(𝑥) = exp (
𝑖

ℏ
𝑚𝑣𝑥) (3.15) 

We express the velocity v by the moving distance x and the Planck length tP. 

 𝑣 =
𝑥

𝑡𝑃
 (3.16) 

We get the following formula by substituting this formula to the wave function. 

 𝜓(𝑥) = exp (𝑖
𝑚

ℏ𝑡𝑃
𝑥2) (3.17) 

From the above formula, the wavelength of the wave function is long at the short range. On the other 

hand, the wavelength of the wave function is short at the long range. 

 

In the short distance, the sum of the path integral of localized state becomes large. On the other hand, in 

long distance, the sum of the path integral of localized state becomes small. We call this phenomenon 

“suppression of long distance transition due to localized states.” 

 

If the state is localized state, the long distance transition does not occur after the minimum time tP. 

Therefore, the localized state is localized near the place after the time tP. For this reason, we deduce that 

network structure of the path integral is realized, as shown in the following figure. 
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t’’=t’+tP 

t 

x 

x 

x’’ 

x’ 

 (x,t’) 

 (x,t’’) 

Network structure of 

path integral 

O 
 

Figure 3-7: Network structure of the path integral 

 

In this paper, we call the network structure of “path network structure of the path integral.” 

 

We suppose that there is an event AB that is a transition from a state A to a state B. If the state A has three 

positions and the state B has three positions, the event AB has 3 × 3 = 9 paths. 

 

In "network structure of the integral path," the number of paths is the square of the number of positions. 

On the other hand, according to Born’s rule, the probability becomes the square of the absolute value of the 

wave function. In this paper, we discuss the similarities of these squares. 

3.6 Dirac's quantum field theory 

Paul Dirac16 proposed the quantum field theory to explain the emission and absorption of electromagnetic 

waves in 1927. We express the fundamental commutation relation17 of the quantum field theory in the case 

of one-dimensional space as follows. 

 

 [𝜓(𝑥), 𝜋(𝑦)] = 𝑖ℏ𝛿(𝑥 − 𝑦) (3.18) 

 

Then ψ is the field and π is the conjugate operator of the field ψ. The variable x and y are positions. The 

function δ is Dirac's delta function. 

 

This commutation relation is similar to the following commutation relation between position x and 

momentum p. 

 

 [𝑥, 𝑝] = 𝑖ℏ (3.19) 

 

This indicates that field ψ is a physical quantity that has a property similar to the position x. In this paper, 

we call the physical quantity “positional physical quantity.” 

 

We got a field ψ(x) by the first quantization for the position x. On the other hand, the field ψ(x) is 

"positional physical quantity" like the position x. Therefore, we get a new field Ψ(x, ψ(x)) by the second 
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quantization for the field ψ. We call the field Ψ(x, ψ(x)) the second wave function. We express the second 

wave function Ψ(x, ψ(x)) in the following figure. 

 

 

x 

ψ(x) 

Ψ(x,ψ(x)) 

O 

 

Figure 3-8: The second wave function 

 

It is possible to interpret the second wave function Ψ(x, ψ(x)) as a functional Φ [ψ(x)]. We express the 

functional Φ [ψ(x)] by the many-particle wave function ψ (x1, x2, x3, …, xn) approximately. To argue a point 

easily, we use many-particle wave functions by this paper. 

 

3.7 Kaluza-Klein theory 

Theodor Kaluza18 proposed in 1921 and Oskar Klein19 proposed in 1926 the extra space like a one-

dimensional circle, in order to unify the electromagnetic field and gravity. This theory is called Kaluza-

Klein theory. 

We express a new space M4×S1 by using a normal four-dimensional space-time M4 and an extra space S1 

like a one-dimensional circle as follows. 

 

 M × S1 (3.20) 

 

 

Figure 3-9: Kaluza-Klein theory 

 

 

3.8 Euler’s formula 

Euler published the following formula in 1748. 

(Euler’s formula) 

M4× S1 

S1 

M4 
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 exp(𝑖𝜙) = cos 𝜙 + 𝑖 sin 𝜙 (3.21) 

Imaginary number i satisfies the following equation. 

 𝑖2 = −1 (3.22) 

We express the complex number as follows.  

 𝑠 = 𝑡 + 𝑖𝑥 ∈ ℂ (3.23) 

 𝑡, 𝑥 ∈ ℝ (3.24) 

We express the complex conjugate as follows. 

 �̅� = 𝑡 − 𝑖𝑥 ∈ ℂ (3.25) 

We express the complex function as follows. 

 𝑓(𝑠) ∈ ℂ (3.26) 

We express the square of the absolute value of the complex number as follows. 

 |𝑠|2 = 𝑠�̅� (3.27) 

We use the following symbols as follows. 

 Re(𝑠) =
1

2
(𝑠 + �̅�) = 𝑡 (3.28) 

 Im(𝑠) =
1

2
(𝑠 − �̅�) = 𝑖𝑥 (3.29) 

 

 

3.9 Cauchy-Riemann equation 

Augustin Louis Cauchy20 introduced the following equation in 1814 for complex analysis. Riemann21 

used the following equation in 1851. 

(Cauchy-Riemann equation) 

 
𝜕𝑓

𝜕𝑡
+ 𝑖

𝜕𝑓

𝜕𝑥
= 0 (3.30) 

We express the above equation shortly as follows. 

(Cauchy-Riemann equation) 

 
𝜕𝑓

𝜕�̅�
= 0 (3.31) 

 

Cauchy introduced the following formula. 

(Cauchy's integral formula) 

 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑖𝑆

𝑓(𝑡)

(𝑡 − 𝑠)
 (3.32) 

S is the contour path. 

3.10 Hamilton’s Quaternion 

William Rowan Hamilton22 proposed the quaternion in 1843. 
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 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (3.33) 

We express the quaternion as follows. 

 𝑠 = 𝑡 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 ∈ ℍ (3.34) 

 𝑡, 𝑥, 𝑦, 𝑧 ∈ ℝ (3.35) 

We express the quaternion conjugate as follows. 

 �̅� = 𝑡 − 𝑖𝑥 − 𝑗𝑦 − 𝑘𝑧 ∈ ℍ (3.36) 

We express the quaternion function as follows. 

 𝑓(𝑠) ∈ ℍ (3.37) 

We express the square of the absolute value of the quaternion as follows. 

 |𝑠|2 = 𝑠�̅� (3.38) 

We use the following symbols as follows. 

 Re(𝑠) =
1

2
(𝑠 + �̅�) = 𝑡 (3.39) 

 Im(𝑠) =
1

2
(𝑠 − �̅�) = 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (3.40) 

 

3.11 Cauchy-Riemann-Fueter equation 

Fueter 23 introduced the following equation in 1934 for quaternionic analysis. 

(Cauchy-Riemann-Fueter equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
+ 𝑘

𝜕𝑓

𝜕𝑧
= 0 (3.41) 

We express the above equation shortly as follows. 

(Cauchy-Riemann-Fueter equation) 

 
𝜕𝑓

𝜕�̅�
= 0 (3.42) 

 
𝜕

𝜕�̅�
=

𝜕

𝜕𝑡
+ 𝑖

𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
 (3.43) 

 

Fueter introduced the following formula. 

(Cauchy-Fueter integral formula) 

 𝑓(𝑠) = ∮
( )

| |
( ) (3.44) 

Here, S3 is a three-dimensional closed surface. The detail of the quaternionic analysis was described in the 

Anthony Sudbery’s paper24 in 1979. 

 

We use the following formula.  

(Integral formula of quaternion) 
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 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑢𝑆

𝑓(𝑡)

(𝑡 − 𝑠)
 (3.45) 

Here, u is a unit quaternion. 

 

Please refer to the following paper for the integral formula of quaternion.  

・Derivation of the reflection integral equation of the zeta function by the quaternionic analysis 

[2014/5/18]  

http://www.geocities.jp/x_seek/Quaternion_e.htm 

 

 

3.12 Cartan's differential form 

Elie Cartan25 defined differential form in 1899 in order to describe manifold by the method that is 

independent to the coordinates.  

Though the differential form dω is infinitesimal, we use difference form δω of finitesimal  

 

We express the surface area A of the manifold S as follows. 

 𝐴 = ∫ ℎ(𝜔)|𝑑𝜔|
𝑆

 (3.46) 

We express the difference form δS of the surface area of the manifold S as follows. 

 𝛿𝑆(𝜔) = ℎ(𝜔) 𝛿𝜔 (3.47) 

 

 
 

Manifold S 

Solid angle ω 

Difference form 

δS(ω)=h(ω)δω 

 

Figure 3-10: Manifold 

 

 

Here, we express the difference form δS1 of the surface area of the manifold S1 as follows. 

 𝛿𝑆1(𝜔) = ℎ1(𝜔) 𝛿𝜔 (3.48) 

Then, we express the difference form δS2 of the surface area of the manifold S2 as follows. 

http://www.geocities.jp/x_seek/Quaternion_e.htm
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 𝛿𝑆2(𝜔) = ℎ2(𝜔) 𝛿𝜔 (3.49) 

 

We get the following manifold S as the superposition of the manifold S1 and S2. 

 𝑆 = 𝑆1 + 𝑆2 (3.50) 

 

We sum the complex numbers of wave functions every position for the superposition of a wave function. 

Therefore, we deduce that we sum the surface areas of manifolds at every solid angle for the superposition 

of manifolds. 

 

Then, we express the difference form δS of the manifold S as follows. 

 𝛿𝑆(𝜔) = 𝛿𝑆1(𝜔) + 𝛿𝑆2(𝜔) (3.51) 

Therefore, we have the following formula for the spherical harmonics. 

 ℎ(𝜔) = ℎ1(𝜔) + ℎ2(𝜔) (3.52) 

We define the superposition of the manifolds by the above formula. 
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4 A new method of deriving 

4.1 Universe of Two-dimensional space-time 

 

4.1.1 Closed path of Two-dimensional space-time 

We consider the universe U of two-dimensional space-time. 

 

We express the world line s of the particle by a complex number. 

 𝑠 = 𝑡 + 𝑖𝑥 (4.1) 

 𝑖2 = −1 (4.2) 

We express the wave function of this particle as follows. 

 𝜓(𝑡, 𝑥) ∈ ℂ (4.3) 

We suppose that particles are generated by pair production and destroyed by pair annihilation. 

 

 

 

Figure 4-1: Pair production and pair annihilation 

 

 

We express the closed path C by the circle C of radius R as follows. 
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Figure 4-2: Closed path C 

 

We express this closed path as follows. 

 𝑠 = 𝑟 exp(𝑖𝜃)  (4.4) 

We express the circumference a of this circle C as follows. 

 𝑎 = ∫ 𝑟
2𝜋

0

|𝑖 exp(𝑖𝜃)|𝑑𝜃 (4.5) 

Here we introduce the complex solid angle ω. 

 𝜔 = exp(𝑖𝜃) (4.6) 

 𝑑𝜔 = 𝑖 exp(𝑖𝜃) 𝑑𝜃 (4.7) 

We express the closed path as follows. 

 𝑠 = 𝑡 + 𝑖𝑥 = 𝑟𝜔 (4.8) 

Then we express the circumference a of this circle C as follows. 

 𝑎 = ∫ 𝑟
𝐶

| 𝑑𝜔| (4.9) 

We express the difference form of the circumference a as follows. 

 𝛿𝑠(𝜔) = 𝑟 𝛿𝜔 (4.10) 

 

4.1.2 Introduction of the absolute value of wave function 

We introduce a circle S as an extra space like Kaluza-Klein theory. 

 

We express the point on the circle C by matrix representation of a complex number as follows. 

s = t+ix 

Re(s) = t 

O 

C 

Im(s) = ix 

θ 
r 
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 𝐶 = 𝐸𝑇 + 𝐼𝑋 (4.11) 

 𝐼2 = −𝐸 (4.12) 

 𝐸 = (
1 0
0 1

) (4.13) 

 𝐼 = (
0 −1
1 0

) (4.14) 

We call the circle an amplitude circle or an amplitude 1-sphere. 

 

 

Figure 4-3: Amplitude 1-sphere S 

 

We express the circumference A of the amplitude 1-sphere S by the radius R and the solid angle Ω as 

follows. 

 𝐴 = ∫ 𝑅
𝑆

 |𝑑𝛺| (4.15) 

If the radius R is the function of r and ω, the circumference A becomes the function of r and ω. 

 𝐴(𝑟, 𝜔) = ∫ 𝑅(𝑟, 𝜔)
𝑆

 |𝑑𝛺| (4.16) 

We express the difference form δS of the sphere S. 

 𝛿𝑆(𝑟, ω, 𝛺) = 𝑅(𝑟, ω) 𝛿𝛺 (4.17) 

We interpret the circumference A as the absolute value of the wave function. 

 𝐴(𝑟, 𝜔) = |𝜓(𝑡, 𝑥)| (4.18) 

 

S = ET+IX 

Re(S) = ET 

O 

S 

Im(S) = IX 

Θ 
R 
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4.1.3 Introduction of the phase of wave function 

In order to introduce the phase of wave function, we rotate the sphere S. by the rotational transform angle 

Φ. We transform the sphere S to the new sphere S’ by the rotational transform which depends on ω. 

 𝑃(𝜔): 𝑆(𝑟, 𝜔) → 𝑆′(𝑟, 𝜔) (4.19) 

We define the rotational transform of the rotational transform angle Φ that depends on ω as follows. 

 𝑃(𝜔) = exp(𝐼𝛷(𝜔)) (4.20) 

We express the function Φ (ω) by the natural number n as follows. 

 𝛷(𝜔) = 𝑛𝜔 (4.21) 

We interpret the rotational angle Φ as the phase of the wave function. 

 𝛷(𝜔) = arg(𝜓(𝑡, 𝑥)) (4.22) 

 

We transform the sphere S by the rotational transform as follows. 

 𝛿𝑆′(𝑟, 𝜔, 𝛺′) = exp(𝐼𝛷(𝜔)) 𝛿𝑆(𝑟, 𝜔, 𝛺) (4.23) 

 

 

Figure 4-4: Rotation of the amplitude 1-sphere S 

 

 

We define the superposition of a sphere S1 and a sphere S2 as follows. 

 𝛿𝑆(𝑟, 𝜔, 𝛺) = 𝛿𝑆1(𝑟, 𝜔, 𝛺) + 𝛿𝑆2(𝑟, 𝜔, 𝛺) (4.24) 

The superposition of the sphere and the sphere that is rotated by the angle 180 degrees is zero. 

 𝛿𝑆′(𝑟, 𝜔, 𝛺) = exp(𝐼𝜋) 𝛿𝑆(𝑟, 𝜔, 𝛺) (4.25) 

 0 = 𝛿𝑆(𝑟, 𝜔, 𝛺) + 𝛿𝑆′(𝑟, 𝜔, 𝛺) (4.26) 

 

The direct product of the closed path C of the particle and the sphere S becomes a torus T. 

 𝑇 = 𝐶 × 𝑆 (4.27) 

 𝛿𝑇(𝜔, 𝛺) = 𝛿𝐶(𝜔) × 𝛿𝑆(𝑟, 𝜔, 𝛺) (4.28) 

 𝛿𝑇(𝜔, 𝛺) = 𝑟(𝜔)𝛿𝜔 𝑅(𝑟, 𝜔, 𝛺) 𝛿𝛺 (4.29) 

We call this torus T a torus world-sheet. 

 

 

ET 

O 

S 

IX Θ 
R 

S’ ET’ IX’ 
Θ

’ 
R’ 

 

O’ 

 

Φ(ω) 
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Torus world-sheet T 

Solid angle (ω, Ω) 
δT(ω,Ω) 

 

Figure 4-5: The torus world-sheet 

 

 

Here, we introduce the following new solid angle ν. 

 𝜈 = (𝜔, 𝛺) (4.30) 

Here we introduce the following new solid radius ρ. 

 𝜌 = (𝑟, 𝑅) (4.31) 

Here we introduce the following new function f (ρ, ν). 

 𝑓(𝜌, 𝜈) = 𝑟(𝜔) 𝑅(𝜔, 𝛺) (4.32) 

We express the torus world-sheet T by the function f (ρ, ν) as follows. 

 𝛿𝑇(𝜌, 𝜈) =  𝑓(𝜌, 𝜈)𝛿𝜈 (4.33) 

The torus world-sheet is twisted like a helical torus as the following figure. 

 

 

Figure 4-6: The torus world-sheet is twisted like a helical torus. 

 

This dimension of the torus world-sheet is same as the dimension of the universe because the universe is 

two-dimensional space-time in this section. 

 

θ 

 

O 
  

ET 

IX 

  
IX 

ET 

Φ (ω) 
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Here we use a surprising idea. 

 

We interpret the torus world-sheet as a new space-time. We call the space-time toric space-time.  

We interpret the toric space-time an independent universe. We call the universe the second universe. 

 

It is possible to construct the third and the forth universe in the same way that we construct the second 

universe. We construct many universes by repeating the same way. We call these universes hierarchical 

universe. 

 

4.1.4 Hierarchical universe 

We show the hierarchical universe as follows. 

 

Figure 4-7: Hierarchical universe 

 

We express the above hierarchical universe by the following symbol. 

 ⋯ → 𝑈1 → 𝑈2 → 𝑈3 → ⋯ (4.34) 

 

 

4.1.5 Equations 

We express the position s by the complex number as follows. 

 𝑠 = 𝜏 + 𝑖𝑥 ∈ ℂ (4.35) 

Then the wave function becomes a complex function. 

 𝑓(𝑠) ∈ ℂ (4.36) 

We assume that the complex function is an analytic function. 

Analytic functions satisfy the Cauchy-Riemann equation. 

(Cauchy-Riemann equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
= 0 (4.37) 

We call the equation path differential equation. 

 

We define the complex conjugate as follows. 

 �̅� = 𝜏 − 𝑖𝑥 ∈ ℂ (4.38) 

Then we express the path differential equation shortly as follows. 

U1 U2 U3 



25/55 

 

 
𝜕

𝜕�̅�
𝑓(𝑠) = 0 (4.39) 

 

Analytic function satisfy the Cauchy's integral formula. 

(Cauchy's integral formula) 

 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑖

𝑓(𝑡)

(𝑡 − 𝑠)𝑆

 (4.40) 

S is the contour path. 

We interpret the Cauchy's integral formula as the path integral equation of Feynman’s path integral. 

 

 

 

Im(t)=ix 

Re(t) = τ 

O 

f(t) 

f(t) 

f(t) 

f(t) 

 f(t) 

 

f(t) 

f(t) 

f(t) 

f(t) 

f(t) 

 

f(t) 

f(t) 

S 

f(s) 

 

 

Figure 4-8: The path integral equation of Feynman’s path integral 

 

We interpret that the particle on the circle S transit from the position t to the position s for the long 

distance directly. 

We call the new interpretation the path integral of space-time view that is different from the traditional 

Feynman’s path integral. 

 

It is possible to use these equations for wave functions of each universe because the wave functions of 

each universe are complex functions. 
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4.2 Universe of four-dimensional space-time 

4.2.1 Closed path of four-dimensional space-time 

We consider the universe U of four-dimensional space-time.  

 

We express the world line s of the particle by quaternion. 

 𝑠 = 𝑡 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (4.41) 

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (4.42) 

We express the wave function of this particle as follows. 

 𝜓(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℂ (4.43) 

We suppose that particles are generated by pair production and destroyed by pair annihilation. 

 

 

 

Figure 4-9: Pair production and pair annihilation 

 

 

We express the closed path s by the circle C of radius r as follows. 
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Figure 4-10: Closed path C 

 

We express this closed path as follows. 

 𝑠 = 𝑟 exp(𝑖𝜃)  (4.44) 

We express the circumference a of this circle C as follows. 

 𝑎 = ∫ 𝑟
2𝜋

0

|𝑖 exp(𝑖𝜃) |𝑑𝜃 (4.45) 

Here we introduce the quaternionic solid angle ω. 

 𝜔 = exp(𝑖𝜃) (4.46) 

 𝑑𝜔 = 𝑖 exp(𝑖𝜃) 𝑑𝜃 (4.47) 

We express the closed path as follows. 

 𝑠 = 𝑡 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 = 𝑟𝜔 (4.48) 

Then we express the circumference a of this circle C as follows. 

 𝑎 = ∫ 𝑟
𝐶

 |𝑑𝜔| (4.49) 

We express the difference form of the circumference a as follows. 

 𝛿𝑠(𝜔) = 𝑟 𝛿𝜔 (4.50) 

 

 

4.2.2 Introduction of the absolute value of wave function 

We introduce a three-dimensional sphere (3-sphere) S as an extra space like Kaluza-Klein theory. 

 

We express the point S on the 3-sphere by matrix representation of quaternion. 

s = t+ix+jy+kz 

 

Re(s) = t 

O 

C 

Im(s) = ix+jy+kz 
 

θ  
 

r 
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 𝑆 = 𝐸𝑇 + 𝐼𝑋 + 𝐽𝑌 + 𝐾𝑍 (4.51) 

 𝐼2 = 𝐽2 = 𝐾2 = 𝐼𝐽𝐾 = −𝐸 (4.52) 

 

𝐸 = (
(

1 0
0 1

) (
0 0
0 0

)

(
0 0
0 0

) (
1 0
0 1

)
) 

(4.53) 

 

𝐼 = (
(

0 −1
1 0

) (
0 0
0 0

)

(
0 0
0 0

) − (
0 −1
1 0

)
) 

(4.54) 

 

𝐽 = (
(

0 0
0 0

) (
1 0
0 1

)

− (
1 0
0 1

) (
0 0
0 0

)
) 

(4.55) 

 

𝐾 = (
(

0 0
0 0

) (
0 −1
1 0

)

(
0 −1
1 0

) (
0 0
0 0

)
) 

(4.56) 

 

 

We call the circle amplitude 3-sphere. 

 

 

Figure 4-11: Amplitude 3-sphere S 

 

We express the circumference A of the amplitude 3-sphere S by the radius R and the solid angle Ω as 

follows. 

S = T+IX+JY+KZ 

Re(S) = ET 

O 

S 

Im(S)=IX+JY+KZ 

Θ   
R 
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 𝐴 = ∫ 𝑅3

𝑆

 |𝑑𝛺| (4.57) 

If the radius R is the function of r and ω, the circumference A becomes the function of r and ω. 

 𝐴(𝑟, 𝜔) = ∫ 𝑅3(𝑟, 𝜔)
𝑆

 |𝑑𝛺| (4.58) 

We express the difference form δS of the sphere S. 

 𝛿𝑆(𝑟, 𝜔, 𝛺) = 𝑅3(𝑟, 𝜔) 𝛿𝛺 (4.59) 

We interpret the circumference A as the absolute value of the wave function. 

 𝐴(𝑟, 𝜔) = |𝜓(𝑡, 𝑥, 𝑦, 𝑧)| (4.60) 

 

4.2.3 Introduction of the phase of wave function 

In order to introduce the phase of wave function, we rotate the sphere S. by the rotational transform angle 

Φ. We transform the sphere S to the new sphere S’ by the rotational transform which depends on ω. 

 𝑃(𝜔): 𝑆(𝑟, 𝜔) → 𝑆′(𝑟, 𝜔) (4.61) 

 

We define the rotational transform of the rotational transform angle Φ that depends on ω as follows. 

 𝑃(𝜔) = exp(𝐼𝛷(𝜔)) (4.62) 

We express the function Φ (ω) by the natural number n as follows. 

 𝛷(𝜔) = 𝑛𝜔 (4.63) 

We interpret the rotational angle Φ as the phase of the wave function. 

 𝛷(𝜔) = arg(𝜓(𝑡, 𝑥, 𝑦, 𝑧)) (4.64) 

 

We transform the sphere S by the rotational transform as follows. 

 𝛿𝑆′(𝑟, 𝜔, 𝛺′) = exp(𝐼𝛷(𝜔)) 𝛿𝑆(𝑟, 𝜔, 𝛺) (4.65) 

 

 

Figure 4-12: Rotation of the amplitude 3-sphere S 

 

 

We define the superposition of a sphere S1 and a sphere S2 as follows. 

ET 

O 

S 

IX Θ 
R 

S’ ET’ IX’ 
Θ’ R’ 

 

O’ 

 

Φ(ω) 
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 𝛿𝑆(𝑟, 𝜔, 𝛺) = 𝛿𝑆1(𝑟, 𝜔, 𝛺) + 𝛿𝑆2(𝑟, 𝜔, 𝛺) (4.66) 

The superposition of the sphere and the sphere that is rotated by the angle 180 degrees is zero. 

 𝛿𝑆′(𝑟, 𝜔, 𝛺) = exp(𝐼𝜋) 𝛿𝑆(𝑟, 𝜔, 𝛺) (4.67) 

 0 = 𝛿𝑆(𝑟, 𝜔, 𝛺) + 𝛿𝑆′(𝑟, 𝜔, 𝛺) (4.68) 

 

The direct product of the closed path C of the particle and the sphere S becomes a manifold like a torus T. 

 𝑇 = 𝐶 × 𝑆 (4.69) 

 𝛿𝑇(𝜔, 𝛺) = 𝛿𝐶(𝜔) × 𝛿𝑆(𝑟, ω, 𝛺) (4.70) 

 𝛿𝑇(𝜔, 𝛺) = 𝑟(𝜔)𝛿𝜔 𝑅(𝑟, 𝜔, 𝛺) 𝛿𝛺 (4.71) 

We call this manifold T a torus world-sheet. 

 
 

Torus world-sheet T 

Solid angle (ω,Ω) 
δT(ω,Ω) 

 

Figure 4-13: The torus world-sheet 

 

Here we introduce the following new solid angle ν. 

 𝜈 = (𝜔, 𝛺) (4.72) 

Here we introduce the following new solid radius ρ. 

 𝜌 = (𝑟, 𝑅) (4.73) 

Here we introduce the following new function f (ρ, ν). 

 𝑓(𝜌, 𝜈) = r(𝜔) 𝑅(𝜔, 𝛺) (4.74) 

We express the torus T by the function f (ρ, ν) as follows. 

 𝛿𝑇(𝜌, 𝜈) =  𝑓(𝜌, 𝜈)𝛿𝜈 (4.75) 

The torus world-sheet is twisted like a helical torus as the following figure. 
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Figure 4-14: The torus world-sheet is twisted like a helical torus. 

 

This dimension of the torus world-sheet is same as the dimension of the universe because the universe is 

four-dimensional space-time in this section. 

 

Here we use a surprising idea. 

 

We interpret the torus world-sheet as a new space-time. We call the space-time toric space-time.  

We interpret the toric space-time an independent universe. We call the universe the second universe. 

 

It is possible to construct the third and the forth universe in the same way that we construct the second 

universe. We construct many universes by repeating the same way. We call these universes hierarchical 

universe. 

 

4.2.4 Hierarchical universe 

We show the hierarchical universe as follows. 

 

 

Figure 4-15: Hierarchical universe 

 

We express the above hierarchical universe by the following symbol. 

 ⋯ → 𝑈1 → 𝑈2 → 𝑈3 → ⋯ (4.76) 

 

 

4.2.5 Equations 

We express the position s by the quaternion number as follows. 

θ 

O 
  

ET 

IX 

  
IX 

ET 

Φ(ω) 

U1 U2 U3 
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 𝑠 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 ∈ ℍ (4.77) 

Then, the wave function becomes a quaternionic function. 

 𝑓(𝑠) ∈ ℍ (4.78) 

We assume that quaternionic functions are analytic functions. 

Analytic functions satisfy the Cauchy-Riemann-Fueter equation. 

(Cauchy-Riemann-Fueter equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
+ 𝑘

𝜕𝑓

𝜕𝑧
= 0 (4.79) 

We call the above equation path differential equation in this paper.  

 

We define the quaternionic conjugate as follows. 

 �̅� = 𝜏 − 𝑖𝑥 − 𝑗𝑦 − 𝑘𝑧 ∈ ℍ (4.80) 

Then we express the path differential equation shortly as follows. 

 
𝜕

𝜕�̅�
𝑓(𝑠) = 0 (4.81) 

Analytic functions satisfy the integral formula of quaternion. 

(Integral formula of quaternion) 

 

 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑢𝑆

𝑓(𝑡)

(𝑡 − 𝑠)
 (4.82) 

Here, u is a unit quaternion. 

We interpret the integral formula of quaternion as the path integral equation of Feynman’s path integral. 
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Re(t) = τ 

O 

f(t) 

f(t) 
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f(t) 

f(t) 

f(t) 

f(t) 

 

f(t) 

f(t) 

S1 

f(s) 

 

 

Figure 4-16: Path integral equation of Feynman’s path integral 

 

We interpret that the particle on the circle S1 transit from the position t to the position s for the long 

distance directly. 

We call the new interpretation a space-time view path integral that is different from the traditional 

Feynman’s path integral. 

 

It is possible to use these equations for the wave function of each universe because the wave functions of 

each universe are quaternionic functions. 

 

 

4.3 Normal space 

We express the surface area a of the normal space U as follows. 

 𝑎 = ∫ 𝑟3𝑑𝜔
𝑈

 (4.83) 

We express the difference form of the normal space U as follows. 

 𝛿𝑠(𝜔) = 𝑟3𝛿𝜔 (4.84) 

Here we replace the r3 to the function f (ω). 

 𝑓(𝜔) = 𝑟3 (4.85) 

Then we express the following formula. 
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 𝛿𝑠(𝜔) = 𝑓(𝜔)𝛿𝜔 (4.86) 

We interpret the above formula like the following figure. 

We call the interpretation manifold view. 

 

 

Figure 4-17: Manifold view of the normal space U 

 

Here we rewrite the formula as follows by a new function f (r, ω). 

 𝛿𝑠(𝑟, 𝜔) = 𝑓(𝑟, 𝜔)𝛿𝜔 (4.87) 

We interpret the above formula like the following figure.  

We call the interpretation spherical harmonics view. 

 

 

Figure 4-18: Spherical harmonics view of the normal space U 
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S 
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Re(s) = t 

O S Im(s) =ix+jy+kz 

θ  
r 

U 

f (r,ω) 

f (r,ω) 



35/55 

 

In the spherical harmonics view, we interpret the function f (r, ω) as the spherical harmonics. 

The spherical harmonics f (r, ω) is the solution of the Laplace equation of the spheric polar coordinates. 

Therefore, spherical harmonics f (r, ω) satisfies the following Laplace equation. 

 (𝜕𝑠̅
2 + 𝜕𝑠

2)𝑓 = 0 (4.88) 

Here, we used the following symbols. 

 𝜕𝑠̅ =
𝜕

𝜕𝑡
+ 𝑖

𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
 (4.89) 

 𝜕𝑠 =
𝜕

𝜕𝑡
− 𝑖

𝜕

𝜕𝑥
− 𝑗

𝜕

𝜕𝑦
− 𝑘

𝜕

𝜕𝑧
 (4.90) 

 

 

 

4.4 Wave space-time 

We express the normal space-time U by the radius r and the solid angle ω as follows. 

 𝛿𝑠(𝑟, ω) = 𝑓(𝑟, ω)𝛿𝜔 (4.91) 

We express the amplitude 3-sphere S by the radius R and the solid angle Ω as follows. 

 𝛿𝑆(𝑅, 𝛺) = 𝐹(𝑅, 𝛺)𝛿𝛺 (4.92) 

We define the wave space-time W as the direct product of the normal space-time U and the amplitude 3-

sphere S as follows. 

 𝛿𝑊(𝑟, 𝜔, 𝑅, 𝛺) = 𝛿𝑠(𝑟, 𝜔) × 𝛿𝑆(𝑟, 𝜔, 𝑅, 𝛺) (4.93) 

 𝛿𝑊(𝑟, 𝜔, 𝑅, 𝛺) = 𝑓(𝑟, 𝜔)𝛿𝜔 𝐹(𝑟, 𝜔, 𝑅, 𝛺)𝛿𝛺 (4.94) 

Here we introduce the new solid angle. 

 𝜈 = (𝜔, 𝛺) (4.95) 

Here we introduce the new radius.  

 𝜌 = (𝑟, 𝑅) (4.96) 

Here we introduce the new function. 

 𝑔(𝜌, 𝜈) = 𝑓(𝑟, 𝜔) 𝐹(𝑟, 𝜔, 𝑅, 𝛺) (4.97) 

Then we express the wave space-time shortly.  

 𝛿𝑊(𝜌, 𝜈) = 𝑔(𝜌, 𝜈)𝛿𝜈 (4.98) 
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Nomal 4-spacetime U 

Amplitude 

3-sphere S 

Wave spacetime 

W = U × S 

 

Figure 4-19: Wave space-time 

 

The spherical harmonics g (ρ, ν) is the solution of Laplace equation of the spheric polar coordinates. 

Therefore, the spherical harmonics g (ρ, ν) satisfies the following harmonic equation. 

 (𝜕�̅�
2 + 𝜕𝑠

2 + 𝜕𝑆̅
2 + 𝜕𝑆

2)𝑔 = 0 (4.99) 

Here, we used the following symbols. 

 𝜕𝑠̅ =
𝜕

𝜕𝑡
+ 𝑖

𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
 (4.100) 

 𝜕𝑠 =
𝜕

𝜕𝑡
− 𝑖

𝜕

𝜕𝑥
− 𝑗

𝜕

𝜕𝑦
− 𝑘

𝜕

𝜕𝑧
 (4.101) 

 𝜕𝑆̅ =
𝜕

𝜕𝑡
+ 𝐼

𝜕

𝜕𝑥
+ 𝐽

𝜕

𝜕𝑦
+ 𝐾

𝜕

𝜕𝑍
 (4.102) 

 ∂𝑆 =
𝜕

𝜕𝑇
− 𝐼

𝜕

𝜕𝑋
− 𝐽

𝜕

𝜕𝑌
− 𝐾

𝜕

𝜕𝑍
 (4.103) 

 

 

4.5 Elementary event of many-worlds interpretation 

In the case of the Copenhagen interpretation, we cannot introduce an elementary event to the quantum 

theory, because we always observe one event at one observation. 

 

Therefore, we introduce elementary events to quantum mechanics by embracing the Many-Worlds 

Interpretation (MWI) in this paper. In MWI, all the events those occur in one observation occur. However, 

one observer cannot observe all the events at the same time, because the observer itself is involved in an 

event. 

 

If we interpret an event of quantum theory as a set of elementary events, we can derive the probability that 

an event occurs from the number of elementary events. If the event R or event B occurs in some 

observations, a world branched to the world that event R occurs and the other world that event B occurs in 

the MWI. 
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For example, if the number of elementary events of the event R is three, and B is two, the probability of 

occurrence of the event R is 3/5. We call a world that an elementary event occurs the elementary world. We 

interpret a world as a set of elementary worlds. 

 
 

r-1 

r-2 

b-1 

b-2 

r-3 

World that 

event R occurs 

World that 

event B occurs 

Elementary 

world that  

elementary 

event r-1 

occurs 

Elementary 

world that  

elementary 

event b-1 

occurs 

 

Figure 4-20: A world is a set of elementary worlds in many-worlds interpretation 

 

The concrete implementation method of elementary events is described in the following sections. 

 

4.6 Elementary state of many-worlds interpretation 

In the wave function of a many-particle system in configuration space (many-particle wave function), we 

call the position certain state that positions of all particles are decided a position certain state. 

 

However, in the actual experiment, a particle spreads in the narrow range. Therefore, actual state diffuses 

in the narrow range in configuration space. We can regard the state as the set of the position certain states. 

We call the state a localized state. 

 
 

x2 

x1 

Position certain state 

Localized state 

|ψ| 
Elementary 

state 

O 

 

Figure 4-21: Elementary state in configuration space 

 

In addition, we interpret a wave function of the position certain state (position eigenstate) as a manifold. 

We interpret an absolute value of the wave function as the surface area of the manifold. We put a point on 
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the surface of the manifold at a fixed interval. We interpret the point as an elementary state. The number of 

elementary events is proportional to an absolute value of the wave function, because the number of 

elementary events is proportional to the surface area of the manifold. 

 

In the discussion of this paper, there is no difference between the discussion using the many-particle wave 

function and the discussion using the wave function of one particle. Therefore, in the discussion of this 

paper, we do not use the many-particle wave function but the wave function of one particle. 

 

4.7 Introduction of an elementary state to the quantum theory 

We express the wave function ψ(x, t) by Dirac delta function as follows. 

 

 𝜓(𝑥, 𝑡) = ∫ 𝜓(𝑦, 𝑡)𝛿(𝑥 − 𝑦) 𝑑𝑦 (4.104) 

 

We interpret the state ψ(y, t) as the state that the position y of the particle is fixed, "position certain state." 

Then we compose the elementary state that cannot be separated any more by dividing the "position certain 

state." K. Sugiyama26 introduced the elementary in 1999. 

 

We divided the virtual high-dimensional Euclidean space by using "elementary domain" and we suppose 

that a lattice point is an elementary state. The position certain state is 1-sphere or 3-sphere and the lattice 

point on the sphere is an elementary states of the position certain state. 
 

Elementary 

state 
Planck length 

Planck length 

 

Elementary 

domain 

Position certain state 

 

Figure 4-22: Elementary state of many-worlds interpretation 

 

 Since the surface area S of the manifold is the absolute value |ψ (y, t)| of the wave function, we describe 

the number M (y, t) of the elementary state by using Planck length ℓ𝑃 as follows. 

 

 𝑀(𝑦, 𝑡) =
𝑆

ℓ𝑃
3 =

|𝜓(𝑦, 𝑡)|

ℓ𝑃
3  (4.105) 
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4.8 Application of path integral to the field 

In quantum field theory, we quantize the field itself.  

 

We interpret the field is an independent universe according to the hierarchical principle of this paper. 

Therefore, we apply the path integral to the field. 

 

We were able to apply the path integral to the position x that is the "positional physical quantity." 

Therefore, we deduce that we can apply the path integral to the field ψ that is "positional physical quantity." 

Then, we apply the path integral to the following new function. 

 𝛹(𝑥, 𝑡, 𝜓(𝑥, 𝑡)) (4.106) 

 

There was a network structure of the path integral for the position x that is "positional physical quantity." 

Therefore, we apply a network structure of the path integral for the field ψ that is "positional physical 

quantity" like the following figure. 

 

 

t' 

t''=t'+tP 
t 

ψ 

ψ'' 

ψ' 

Δψ 

Ψ(x,t',ψ(x,t')) 

Ψ(x,t''ψ(x,t'')) 
 Network structure of 

path integral 

x 
 

Figure 4-23: Application of network structure of path integral to field itself 

 

We call the space-time that the new wave function Ψ exists is the second universe. 

In the above figure, we apply the "network structure of the path integral" to the region that is smaller than 

Δψ. 

 

4.9 Introduction of elementary event to the quantum theory  

We introduce a new concept, elementary event to the quantum theory in this paper. 

  

We express an event as a transition from one state to the other state in quantum theory. Therefore, we 

express an elementary event as a transition from one elementary state to the other elementary state. 
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We interpret an elementary state as a point. We interpret an elementary event as an arrow from a point to 

the other point. Since we can draw a line from any point to any point, we deduce that an elementary event 

from any elementary state to any elementary state exists. 

 

If the arrow from the point A to the point B exists, the arrow from the point B to the point A also exists 

conversely. If the number of points is M, the number of arrows becomes M2. In other words, if the number of 

elementary states is M, the number of elementary events becomes M2. 

 

Though there is no clear evidence of the existence of an elementary event, we deduce it by the following 

reasons. 

 

 

 

 

t 

x 
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Figure 4-24: Elementary event and elementary state of many-worlds interpretation 

 

We assume that an elementary event of quantum theory has the same properties as elementary events of 

probability theory. In other words, the probability of occurrence of an event is proportional to the number of 

elementary events those are included in the event. 

 

In addition, we define the event that is a transition from any position certain state to any position certain 

state "path certain event." The path certain event is a set of elementary events. 

 

Actual states are localized by the uncertainty principle. We call the states localized states. We call the 

event from any localized state to any localized state a "localized event." 

 

If we apply the path integral to the discrete space-time, the long distance transition from position certain 

state occurs. However, "long distance transition" is suppressed due to the localized states. It means that the 

number of elementary events of localized event that is Long distance transition is very rare. 
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The existence of an elementary state and an elementary event suggests that an existence probability and a 

probability of occurrence are different concepts. If the number of elementary states of a state is m, the state's 

existence probability is proportional to m. If the number of elementary events of an event is n, the event's 

existence probability is proportional to n. 

 

4.10 Derivation of Born’s rule 

This section describes how to derive this probability. 

 

We express the observation probability P (x, t) of the particle by the wave function ψ (x, t) as follows. 

 

 𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 (4.107) 

 

On the other hand, we express the probability P based on the Laplace's calculation method of the 

probability as follows. 

 

 𝑃 =
𝑁

𝑁𝑎
 (4.108) 

 

Here Na is the number of all elementary events and N is the number of elementary events those are 

expected. If Na is sufficiently larger than N, the probability P is proportional to N. 

 

 𝑃 ∝ 𝑁 (4.109) 

 

Actual state is localized state. We apply the "network structure of path integral" to the localized state. 

Since "long distance transition" does not occur for localized state, the length of transition is small after a 

minimum time tP. 
 

The number M (x', t') of elementary events of the localized state ψ (x', t') Δx is proportional to the surface 

area of the manifold. We apply the "network structure of path integral" to the position on the surface area of 

the manifold. 

 

 Since the manifold after the minimum time almost same as the original manifold, we approximate it by 

the same manifold. We express the number M (x, t) of elementary states on the surface area of the manifold 

as follows. 

 

 𝑀(𝑥, 𝑡) =
𝑆

ℓ𝑃
3

Δ𝑥

ℓ𝑃
=

|𝜓|Δ𝑥

ℓ𝑃
4  (4.110) 

Therefore, the number of the elementary state is proportional to the absolute value of the wave function if 

the Δx is almost constant. 

 𝑀(𝑥, 𝑡) ∝ |𝜓| (4.111) 

 

According to the uncertainty principle, the deviation Δp of momentum is almost constant if Δx is almost 

constant. Therefore, the number M of the elementary state approximately does not change. 
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 𝑀(𝑥, 𝑡) ∼ 𝑀(𝑥, 𝑡 + 𝑡𝑃) (4.112) 

 

The number N of elementary events is the number of transitions from all elementary states at time t' to all 

elementary states at time t''. Therefore, the number N of elementary events is the square of the number M of 

elementary states. 

 𝑁 = 𝑀2 (4.113) 

 

We express those elementary events in the following figure. 
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Figure 4-25: The number of elementary events is the square of the number of elementary states. 

 

The probability P is proportional to the number of the elementary events N. 

 𝑃 ∝ 𝑁 (4.114) 

On the other hand, the number N of the elementary events is equal to the square of the number M of 

elementary states. 

 𝑁 = 𝑀2 (4.115) 

The number M of elementary events is proportional to the absolute value of the wave function. 

 𝑀 ∝ |𝜓| (4.116) 

Therefore, the probability P is proportional to the square of the absolute value of the wave function. 
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 𝑃 ∝ |𝜓|2 (4.117) 

We derived the Born's rule by the above method. 
 

5 Conclusion 

We explained the method to derive Born's rule from many-worlds interpretation and probability theory. 

 

Probability is proportional to the number of elementary events. The number of elementary events is the 

square of the number of elementary states because we apply the "network structure of path integral" to the 

elementary state. The number of elementary states is proportional to the absolute value of the wave function. 

Therefore, the probability is proportional to the absolute value of the wave function. 

 

 

6 Supplement 

6.1 Supplement of the many-particle wave function 

We call an elementary state, a position certain state and a localized state for the universe "elementary 

world," "position certain world" and "localized world" respectively. 

 

In addition, we call an elementary event, a path certain event and a localized event for the universe 

"elementary history", "path certain history" and "localized history" respectively. 
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Figure 6-1: Elementary history and elementary world of many-worlds interpretation 

 

We interpret one point of the configuration space of the many-particle wave function as the state that the 

positions of all particles are determined. The state is "position certain world." 

 

In the view of classical mechanics, the point is our world. In the view of the quantum mechanics, 

localized world is our world. 

 

I guess that the absolute value of the many-particle wave function of the universe is most nearly zero in 

the almost area. The domain that the absolute value is large is localized like a network structure. 

 

6.2 Supplement of the method of deriving Born's rule 

The simplest way to derive Born’s rule from Many-Worlds Interpretation (MWI) is that we connect the 

number of worlds to the probability. 

 

If the probability of occurrence of event A is higher than the probability of occurrence of event B, we 

deduce that the number of worlds those event A occurred is greater than the number of worlds those event B 

occurred. 

 

For example, we suppose that we make the 100 planets those are exactly same as Earth. If the event A 

occurred on 80 planets and the event B occurred on 20 planets, then we interpret that the probability of the 

occurrence of the event A is 80%. 
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However, it is not clear how to count the world. Therefore, we count the number of elementary worlds of 

the localized world that event A occurred.  

 

We express the number M of elementary worlds of the localized world by the wave function ψ that event 

A occurred as follows. 

 

 𝑀 =
|𝜓|

ℓ𝑃
3

(Δ𝑥)3𝑛

ℓ𝑃
3𝑛 =

|𝜓|(Δ𝑥)3𝑛

ℓ𝑃
3+3𝑛  (6.1) 

Δx is the position deviation, and n is the number of all particles. The number of elementary worlds is 

proportional to the absolute value of the wave function. 

 𝑀 ∝ |𝜓| (6.2) 

On the other hand, the probability is proportional to the square of the absolute value of the wave function. 

Therefore, we cannot explain the probability by using the number of the elementary worlds. 

 

To solve this problem, we explain the probability by using the number of histories. We express the 

number N of elementary histories of the localized history that event A occurred as follows. 

 𝑁 = 𝑀2 (6.3) 

 

 

The probability is proportional to the number of elementary histories.  

 𝑃 ∝ 𝑁 (6.4) 

The number of histories is the square of the number of elementary worlds.  

 𝑁 = 𝑀2 (6.5) 

On the other hand, the number of the elementary worlds is proportional to the absolute values of the wave 

function.  

 𝑀 ∝ |𝜓| (6.6) 

Therefore, the probability is proportional to the square of the absolute value of the wave function. 

 𝑃 ∝ |𝜓|2 (6.7) 

 

6.3 Supplement of basis problem in many-worlds interpretation 

In many-worlds interpretation, the absence of a particular basis of the wave function is a problem. 

 

For example, we consider the Stern-Gerlach experiment of the spin of electrons. In this experiment, we 

measure the spin by using a magnetic field gradient. Since the basis of the spin is determined by the 

direction of the gradient magnetic field, there is no particular basis for the spin. 

 

In this paper, we chose position as the particular basis. We could also choose the momentum as the 

particular basis, but we did not do so, because we express the basis of the momentum by using a set of 

elementary states those the positions are basis. 

 

For spin, there is no way to select a particular basis. In this paper, we are considering the manifold of a 

particle of spin 1/2. We might be able to express the spin by using the manifold. 
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6.4 Interpretation of time in many-worlds interpretation 

The position of all particles is different for a point in the configuration space of many-particle wave 

function. Therefore, we define the time for a point in the configuration space. Since a point corresponds to a 

position certain world, we interpret the time as a parameter to classify the position certain worlds. 

 

A position certain world transits the minimum length continuously in the configuration space. I guess that 

we feel the transition as a time.  

 
 

t''=t’+tP 

t'''=t''+tP 
t 

t' 

Elementary world 

Elementary history 

x 
O 

 
Figure 6-2: Many-worlds interpretation and arrow of time 

 

If a transition of a direction exists, the transition of the opposite direction also exists. However, since there 

are many "elementary worlds" of future more overwhelmingly than the number of elementary worlds of 

past, we feel that our elementary world always transits to elementary world of the future. In this way, many-

worlds interpretation explains the arrow of time by. 

 

6.5 Supplement of Long distance transition 

In this paper, we have been thinking about one particle is localized in one place. Here we consider the 

wave function of one particle that was localized in one place at a time. We suppose that the wave function 

was separated and localized in two places. We call the state "many localized states." In this case, what would 

happen? 

 

Elementary event exists between any two elementary states. The world does not become disorder because 

long distance transition is suppressed due to the "localized state." We determine the number of elementary 

events between two localized states only by the number of elementary states of the two localized states. 

 

Therefore, if there are "many localized states," the transition between the states those are localized in two 

places will occur. 
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Figure 6-3: Long distance transition between localized states 

 

I call the phenomenon "localized long distance transition" or "localized shift." 

 

Then, will localized shift between localized states those have different time occur? 

 

In this case, since the elementary event exists between any two elementary states, the localized shift 

occurs, too. 

 

I do not deduce that the localized teleport send information, because we cannot send any information by 

using EPR correlation. 

 

6.6 The solution to the basis problem of MWI 

The basis problem is a problem that the status of a world changes by choosing the basis of spin. The cause 

of the problem is to count a world that the spin has one direction as one world. 

 

I showed that we can derive the spin from the rotation of 3-sphere in the following paper. 

・Derivation of two-valuedness and angular momentum of spin-1/2 from rotation of 3-sphere [2013/5] 

http://www.geocities.jp/x_seek/Spin_e.htm 

 

This means that a world that the spin has one direction is constructed from many worlds. Choosing the 

basis of spin is equivalent to changing the rotational axis of the 3-sphere. 

 

Therefore, we can solve the basis problem of MWI by the rotation of 3-sphere. 

7 Future Issues 

Future issues are shown as follows. 

 

(1) Consideration of the principle 

(2) Formulation for the quantum field theory 

(3) Consideration of the discrete space 

(4) Formulation for the relativistic mechanics 

(5) Formulation for the gravity theory 

 

We consider some of these issues in the following chapters. 

http://www.geocities.jp/x_seek/Spin_e.htm
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8 Consideration of the future issues 

 

 

8.1 Consideration of principles 

We consider the hierarchical principle and the event principle. 

 

8.1.1 Hierarchical principle 

I propose the following hierarchical principle. 

 

(1) Wave functions are quaternionic functions. 

(2) The direct product of the closed path of a particle and the wave function is the other universe. 

(3) Wave functions in the other universe are also quaternionic functions. 

 

We call the theory based on the hierarchy principle the hierarchy theory. 

 

8.1.2 Event principle 

I propose the following event principle. 

 

(1) An elementary event is the transition from an elementary state to the other elementary state. 

(2) Event probability of an event is proportional to the number of elementary events those the event 

includes. 

 

We call the theory based on the event principle the event theory. 

 

8.2 Consideration of formulation for the quantum field theory 

A position certain state has a phase and an absolute value of the wave function. Therefore, it is possible to 

use “suppression of long distance transition due to localized states” for the position certain state. On the 

other hand, an elementary state does not have a phase and an absolute value of the wave function. Therefore, 

it is impossible to use “suppression of long distance transition due to localized states” for the elementary 

state. In order to solve the problem, we consider the quantum field theory. 

 

In the quantum mechanics, the position and the momentum of a particle have a commutation relation. It 

means that the position of the particle is distributed. On the other hand, in the quantum field theory the 

amplitude and the general momentum of the wave function have a commutation relation. It means that the 

amplitude of the wave function is distributed. 

 

Then I propose the following new function. 

 𝛹(𝑥, 𝜓(𝑥)) (8.1) 

We call the function the second wave function because we get the wave function by the second 

quantization of the field. The second wave function exists in the second universe. The elementary state of 

the first universe is the position certain state of the second universe. Therefore, it is possible to use 

“suppression of long distance transition due to localized states” for the elementary state. 
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8.3 Consideration of discrete space 

8.3.1 Discrete space from 24-hypercube 

In this paper, we call the discrete space of the elementary state an event space. 

 

For example, we consider the 24-hypercube as the model of the event space. 24-hypercube γ24 is the direct 

product of the 24 one-dimensional cube γ1. 

 𝛾24 = 𝛾1 × 𝛾1 × 𝛾1 × ⋯ × 𝛾1 (8.2) 

We show the vertices, edges, faces, and cells of the 24-hypercube as below. 

 

Table 8-1: The number of vertices, edges, faces, and cells of the 24-hypercube 

Event space Faces Number 

𝐸0 Vertices (
24
0

) 224−0 

𝐸1 Edges (
24
1

) 224−1 

𝐸2 Faces (
24
2

) 224−2 

𝐸3 3-faces (Cells) (
24
3

) 224−3 

𝐸𝑘 k-faces (
24
𝑘

) 224−𝑘 

𝐸23 23-faces (
24
23

) 224−23 

𝐸24 24-faces (
24
24

) 224−24 

 

 

 

We use the following abbreviation. 

E-state: Elementary state 

E-event: Elementary event 

 

(3) 0-event space: Vertices is e-state. Edge is e-event and vertices in the 1-event space. 

(4) 1-event space: Vertices is e-state. Edge is e-event and vertices in the 2-event space. 

(5) 2-event space: Vertices is e-state. Edge is e-event and vertices in the 3-event space. 

 

We construct the following sequence of the event space by repeating the above process. 

 𝐸0 → 𝐸1 → 𝐸2 → 𝐸3 → ⋯ → 𝐸24 (8.3) 
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8.3.2 Discrete space Consideration from finite group  

We construct the discrete space from the finite group. 

 

The representation on the vector space V of the group G is the map from the group G to the general linear 

matrix GL (V). 

 𝜌: 𝐺 → 𝐺𝐿(𝑉) (8.4) 

 𝜌(𝑔ℎ) = 𝜌(𝑔)𝜌(ℎ) (8.5) 

 𝑔, ℎ ∈ 𝐺 (8.6) 

 𝜌(𝑔), 𝜌(ℎ) ∈ 𝜌(𝐺) (8.7) 

 

We use the symbol g as the abbreviation for the representation ρ (g) of the element of the group in this 

paper. We use the symbol G as the abbreviation for the set ρ (G) of the representation of the element of the 

group. 

 

We consider one fixed vector v1 in the vector space V. We transform the vector v1 to the vector v by the 

element g of the finite group G. Then vector v and element g have one-to-one onto mapping. Therefore, we 

interpret the element g as the vector v. 

 𝑣1 ∈ 𝑉 (8.8) 

 𝑔 ∈ 𝐺 (8.9) 

 𝑣 = 𝑔𝑣1 (8.10) 

We interpret an element g as an elementary state. We call the group world group. 

 

We consider the element of the direct product of the two world groups. 

 (𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 (8.11) 

We interpret an element as an elementary event. 

 

We construct a new group as the direct product of two world groups. 

 𝐻 = 𝐺 × 𝐺 (8.12) 

We call the group history group. 

 

8.3.3 Consideration of the uncertain status 

We consider the uncertain status. 

 

We define certain information entropy H for the observed information as follows. 

(Certain information entropy) 

 𝐻 = − ∑ 𝑃(𝑥𝑘) log(𝑃(𝑥𝑘))

𝑛

𝑘=1

 (8.13) 

 

We define the uncertain information entropy Q for the unobserved wave function f (x) as follows. 

(Uncertain information entropy) 
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 𝑃(𝑥) = |𝑓(𝑥)|2 (8.14) 

 𝑄 = − ∫ 𝑃(𝑥) log(𝑃(𝑥)) 𝑑𝑥 (8.15) 

 

We define uncertain information entropy Q for the unobserved angular momentum of the k-th particle as 

follows. 

(Uncertain information entropy) 

 𝑃1(𝑘) = |⟨𝑓|𝑥 +⟩ + ⟨𝑓|𝑥 −⟩|2 (8.16) 

 𝑃2(𝑘) = |⟨𝑓|𝑦 +⟩ + ⟨𝑓|𝑦 −⟩|2 (8.17) 

 𝑃3(𝑘) = |⟨𝑓|𝑧 +⟩ + ⟨𝑓|𝑧 −⟩|2 (8.18) 

 𝑄 = − ∑ ∑ 𝑃𝑠(𝑘)

𝑛

𝑘=1

3

𝑠=1

log(𝑃𝑠 (𝑘))   (8.19) 

 

We define the general information entropy G. 

(General information entropy)  

 𝐺 = 𝐻 + 𝑄 (8.20) 

This general information entropy conserves. 

 

(Law of general information entropy conservation) 

 δ𝐺 = δ𝐻 + δ𝑄 = 0 (8.21) 

 

Certain information entropy always increases by a thermodynamics second law. 

(Law of entropy increase) 

 δ𝐻 > 0 (8.22) 

 

However, certain information entropy has the following upper limit because of uncertainty principle. 

(Upper limit of certain information entropy) 

 𝐻 <
1

3
𝑄 (8.23) 

All the particle’s angular momentums of y-direction and z-direction become uncertain, when all the 

particle’s angular momentums of x-direction are observed. 

 

Certain information entropy increases when the wave function collapses. 

Uncertain information entropy increases when the wave function diffuses (anti-collapses). 

 

If we make a status uncertain status, uncertain information entropy increases. 
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8.3.4 Time in the hierarchical universe 

To consider time in the hierarchy universe, we consider the one-dimensional universe that has only one 

photon. The circumference is 1 meter. We make a stationary state of a photon in the universe. 

 

We suppose that the speed of light and the Planck’s constant is one. 

 

Table 8-2: Constant 

Quantity Before expansion After expansion 

Speed of light 1 [m/s] 1 [m/s] 

Planck’s constant 1 [g m2/s] 1 [g m2/s] 

 

Now, we suppose that the universe expands slowly. The circumference is 2 meters. The each quantity 

changes as follows. 

 

Table 8-3: Variation of the momentum of photon in the expansion of the universe 

Quantity Before expansion After expansion 

Circumference of the universe 1 [m] 2 [m] 

Wave number of the photon 1 1 

Wave length of the photon 1 [m] 2 [m] 

Frequency of the photon 1[1/s] 0.5[1/s] 

Momentum of the photon 1 [g m/s] 0.5 [g m/s] 

Time to go around the universe 1[s] 2 [s] 

 

I deduce the frequency of the photon is proportional to the radius of the universe from the above table. 

 

Next, we consider the one-dimensional universe that has only one electron. The circumference is 1 meter. 

We make a stationary state of an electron in the universe. For easy calculation, we suppose that the 

electron’s mass is 1 gram.  

 

Now, we suppose that the universe expands slowly. The circumference is 2 meters. The each quantity 

changes as follows. 

 

Table 8-4: Variation of the momentum of electron in the expansion of the universe 

Quantity Before expansion After expansion 

Circumference of the universe 1 [m] 2 [m] 

Wave number of the electron 1 1 

Wave length of the electron 1 [m] 2 [m] 

Frequency of the electron 0.1[1/s] 0.05[1/s] 

Momentum of the electron 0.1 [g m/s] 0.05 [g m/s] 

Time to go around the universe 10[s] 20 [s] 

Velocity of the electron 0.1 [m/s] 0.1 [m/s] 

Mass of the electron 1[g] 0.5[g] 

 

I deduce the mass of the electron is reverse proportional to the radius of the universe from the above table. 
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9 Appendix 

9.1 Definition of Terms 

We define terms in the following table. 

 

Table 9-1: Normal space and so on 

Term Definition 

Normal space Three-dimensional normal space 

Normal space-

time 

Fore-dimensional normal space-time 

Closed path Closed path of the particle generated by pair production and destroyed by pair 

annihilation 

 

Table 9-2: Elementary domain and so on 

Term Definition 

Elementary domain The minimum domain of the wave space 

Elementary position Position of the wave space 

Elementary path An arrow from any elementary position to any elementary position 

Normal domain The minimum domain of the normal space 

Normal position Position of the normal space 

Normal path An arrow from any normal position to any normal position 

 

Table 9-3: Elementary state and so on 

Term Definition 

Elementary state Point of the wave space 

Position certain state State having a certain position (position eigenstate) 

Localized state State that the distribution is a normal distribution 

Elementary event A transition from any elementary state to any elementary state 

Path certain event A transition from any position certain state to any position certain state 

Localized event A transition from any localized state to any localized state 

Elementary world Elementary state of the universe 

Position certain world Position certain state of the universe 

Localized world Localized states of the universe 

Elementary history Elementary event of the universe 

Path certain history Path certain event of the universe 

Localized history Localized events of the universe 

 

Table 9-4: Localized displacement and so on 

Term Definition 

Localized displacement Localized transition of short-distance 

Localized transition Localized transition 

Localized shift Localized transition of long distance 

Localized teleportation Localized transition of ultra-long distance 

 

9.2 Arrangement of Terms 

We arrange terms in the following table. 
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Table 9-5: Elementary domain and so on 

Category Elementary Normal 

Domain Elementary domain Normal domain 

Position Elementary position Normal position 

Path Elementary path Normal path 

 

Table 9-6: Elementary state and so on 

Category Elementary Certain Localized 

State Elementary state Position certain state Localized state 

Event Elementary event Path certain event Localized event 

World Elementary world Position certain world Localized world 

History Elementary history Path certain history Localized history 

 

 

Table 9-7: First normal space-time and so on 

Category First universe Second universe Third universe 

Normal space-time First normal space-time Second normal space-time Third normal space-time 

Particle First particle Second particle Third particle 

Position First position Second position Third position 

Path First path Second path Third path 

Wave function First wave function Second wave function Third wave function 
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