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Abstract 

We try to derive the Born rule from the many-worlds interpretation in this paper. 

 

Although many researchers have tried to derive the Born rule (probability interpretation) from 

Many-Worlds Interpretation (MWI), it has not resulted in the success. For this reason, derivation of 

the Born rule had become an important issue of MWI. We try to derive the Born rule by introducing 

an elementary event of probability theory to the quantum theory as a new method. 

 

We interpret the wave function as a manifold like a torus, and interpret the absolute value of the 

wave function as the surface area of the manifold. We put points on the surface of the manifold at a 

fixed interval. We interpret each point as a state that we cannot divide any more, an elementary 

state. We draw an arrow from any point to any point. We interpret each arrow as an event that we 

cannot divide any more, an elementary event. 

 

Probability is proportional to the number of elementary events, and the number of elementary 

events is the square of the number of elementary state. The number of elementary states is 

proportional to the surface area of the manifold, and the surface area of the manifold is the absolute 

value of the wave function. Therefore, the probability is proportional to the absolute square of the 

wave function. 
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1 Introduction 

1.1 Subject 

According to Born rule, the probability of observing a particle is proportional to the absolute 

square of the wave function. On the other hand, according to the many-worlds interpretation, we 

observe the particle of the various places in the various events. It is the subject of this paper to 

derive the Born rule by counting the number of the events. 

 

1.2 The importance of the subject 

Wave function collapse and Born rule are principle of the quantum mechanics. We can eliminate 

the wave function collapse from the quantum mechanics by Many-Worlds Interpretation (MWI), 

but we cannot eliminate the Born rule. 

 

For this reason, many researchers have tried to derive the Born rule from MWI. However, it has 

not resulted in the success. Therefore, it has become an important subject to derive the Born rule. 

 

1.3 Past derivation method 

Hugh Everett III2 claimed that he derived the Born rule from Many-Worlds Interpretation (MWI) 

in 1957. After that, many researchers claimed that they derived the Born rule from the method that 

is different from the method of Everett. James Hartle3 claimed in 1968, Bryce DeWitt4 claimed in 

1970 and Neil Graham5 claimed in 1973 that they derived the Born rule. 
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However, Adrian Kent pointed out that their method of deriving Born rule was insufficient6 in 

1990. Though David Deutsch7 in 1999, Sumio Wada8 in 2007 tried to derive the Born rule, many 

researchers do not agree the method of deriving the Born rule in 2012. 

 

1.4 New derivation method of this paper 

In the probability theory, we explain the probability by the concept of the elementary event. 

Therefore, we might be able to explain the probability of the quantum theory by the same concept. 

We try to derive the probability of the quantum theory by introducing a concept of the elementary 

event to the quantum theory as the new method of this paper. 

 

2 Traditional method of deriving and the problem 

2.1 Born rule 

Max Born9 proposed Born rule in 1926. It is also called "probability interpretation." Born rule is a 

principle of quantum mechanics. We express the state of the particle by the wave function ψ (x) in 

quantum mechanics. We see an example of a wave function in the following figure. 

 

 

Figure 2.1: An example of a wave function 

 

We observe the particle with a probability that is proportional to the absolute square of the wave 

function. We write the probability "P (x)" of observing the particle at the position "x" as follows. 

 

 𝑃(𝑥) = |𝜓(𝑥)|2 (2.1) 

 

According to the Copenhagen interpretation that is a general interpretation of quantum 

mechanics, we cannot mention the state of the particle before observation because the wave 

function does not exist physically. However, the wave function might exist physically. One of the 

interpretations based on the existence of a wave function is a many-worlds interpretation. 

 

2.2 Everett's many-worlds interpretation 

Everett proposed Many-Worlds Interpretation (MWI) in order to deal with the universal wave 

function. He tried to derive the Born rule from the measure theory. 

 

We express a ket vector "|ψ>" in the Hilbert space that represents the state of the system by 

certain basis vectors "|ψk>" as follows. 
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 |𝜓 > = ∑ 𝑎𝑘|𝜓𝑘 >

𝑛

𝑘=1

  (2.2) 

 

Here, we have normalized "|ψ>" and "|ψk>." The coefficients "a" and "ak" are complex number. 

In order to derive the probability Everett introduced a new concept, measure. He expressed the 

measure by a positive function "m (a)." He requested the following equation for the measure. 

 

 𝑚(𝑎) =  ∑ 𝑚(𝑎𝑘)

𝑛

𝑘=1

 (2.3) 

 

He adduced the probability conservation law to justify the request. We write the function "m (a)" 

satisfying the above equation by using a positive constant "c" as follows. 

 

 𝑚(𝑎) =  𝑐|𝑎|2 (2.4) 

 

Andrew Gleason10 generally proved the above equation in 1957. His proof is called "Gleason's 

theorem." Everett considered the infinite time measurement, and concluded that the measure 

behaves like the probability. However, MWI of Everett has "basis problem" and "probability 

problem." I will explain them in the following sections. 

 

2.2.1 Basis problem of many-worlds interpretation 

If we define the measure by using a particular basis, we need to show how to select a particular 

basis. However, Everett did not show how to select a particular basis in his paper. 

 

2.2.2 Probability problem of many-worlds interpretation 

Everett tried to derive the Born rule from the measure theory. Then, Everett did not give the 

physical meaning to the measure. However, to request the conservation law of the probability for 

the equation of measure is equivalent to define the measure as the probability. Therefore, it is 

circular reasoning to show that measure acts like a probability for infinite time measurement. 

 

If the number of each world is proportional to the measure, it is necessary to clarify the 

mechanism by which each number is proportional to the measure of the world. If the number of 

each world is not proportional to the measure, it is necessary to explain how the probability of 

occurrence of each world is proportional to the measure. 

 

3 Review of existing ideas 

3.1 Universal Wave function of Wheeler and DeWitt 

John Wheeler and Bryce DeWitt11 proposed the Universal wave function in 1967. We have the 

wave function by the Hamiltonian operator "H" and the ket vector "|ψ>" as follows. 

 

 𝐻|𝜓 > =  0 (3.1) 
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This ket vector "|ψ>" is not a normal function but a functional. 

 

A functional is mathematically almost equivalent to a function of many variables. Since the 

discussion based on the functional is difficult, we use a function of many variables for discussion in 

this paper. The following sections describe the many-particle wave function, which is functions of 

many variables. 

 

3.2 Barbour's many-particle wave function of the universe 

Julian Barbour12 expressed the universe by using the many-particle wave function in his book 

"The End of Time" in 1999. 

 

We suppose that the number of the particles in the universe is n, and the k-th particle's position is 

rk = (xk, yk, zk). Then we express the many-particle wave function ψ as follows. 

 

 𝜓 = 𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛) (3.2) 

 

The many dimensional space expressing the positions of all the particles is called "configuration 

space." 

 
 

x2 

x1 

|| 

 

Figure 3.1: Many-particle wave function 

 

The configuration space expresses all the possible worlds that exist physically in the past, the 

present and the future, because a point in the configuration expresses the positions of all the 

particles. In other words, many-particle wave function expresses all the possible worlds in many-

worlds interpretation. 

 

If the combination of the positions of the all particles of a certain world is decided, the state of the 

clock of the world will be decided. If the state of the clock of the world is decided, the time of the 

clock of the world is decided. Therefore, many-particle wave function does not need time as the 

argument of the function. 

 

The probability P that we observe each world in the configuration space is shown below. 

 

 𝑃 = |𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛)|2 (3.3) 

 

In order to consider the reason why we express the probability by this equation, we will review 

the probability theory in the following section. 
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3.3 Laplace's Probability Theory 

Pierre-Simon Laplace13 summarized the classical probability theory in 1814. He defined 

probability as follows. 

 

If equally possible case exists, the probability of the expected event is the ratio of the 

number of the suitable cases for the expected event to the number of all cases. 

 

This "equally possible case" is an elementary event in probability theory. All the elementary 

events have a same probability of occurrence. 

 

We suppose that the number of all elementary events is "NΩ,” and the number of elementary 

events of a certain event "N." Then we express the probability of occurrence of the event "P" as 

follows. 

 

 𝑃 =
𝑁

𝑁𝛺
∝ 𝑁 (3.4) 

 𝑁 ≪ 𝑁𝛺 (3.5) 

 

For example, we suppose that the five balls are in the bag. Three of five balls are red and two 

balls are blue. We suppose that the probability of the event that we take out the red ball is P. Then, 

the probability is 3/5. 

 
 

r-1 

r-2 

b-1 

b-2 

r-3 

Event R 

Event B 

Elementary event 

Elementary event 

 

Figure 3.2: Event is a set of elementary events 

 

We explain the reason by the concept of an elementary event. According to the probability 

theory, we interpret the event that we take out each ball as an elementary event. We interpret an 

event as a set of elementary events. 

 

In order to derive the Born rule, we need to find "elementary event" of quantum theory. An 

elementary event of probability theory generally we cannot divide any more, so it is expected that 

an elementary event of quantum theory also cannot be divided anymore. 
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3.4 Penrose's spin networks 

Roger Penrose14 proposed spin networks in 1971. According to the spin networks, we express the 

space as a graph with a line that connects a point and the other point. This graph is called "spin 

network." Since the space-time is discrete, the space-time has a minimum length and minimum 

time. 

 
 

Point 

Line 
 

Figure 3.3: Penrose's spin network 

 

In this paper, though we do not use a spin network, we assume that space-time is discrete as well 

as by this theory and the space is a graph that connects the points. In this paper, we assume that the 

minimum length is Planck length "ℓP" and the minimum time is Planck time "tP." 

 

 ℓ𝑃 = √
ℏ𝐺

𝑐3
≈ 1.6 × 10−35[𝑚] (3.6) 

 𝑡𝑃 = √
ℏ𝐺

𝑐5
≈ 5.4 × 10−44[𝑠] (3.7) 

 

We call the minimum domain that is constructed by the Planck length "elementary domain." 

 

If the space-time is discrete, we need to review the theory that has been constructed based on the 

continuous space-time. Therefore, in the next section, we review what happens in the path integral 

in the case of discrete space-time. 

3.5 Feynman's path integral 

Richard Feynman15 proposed path integral in 1948. It provides a new quantization method. In the 

path integral, we need to take the sum of all the possible paths of the particle. 

We express the probability amplitude K (b, a) from the position "a" to the position "b" as follows. 

 

 𝐾(𝑏, 𝑎) = ∫ 𝐷𝑥(𝑡) 𝑒𝑥𝑝 (
𝑖

ℏ
𝑆[𝑏, 𝑎])

𝑏

𝑎

 (3.8) 

 

The probability amplitude "K (b, a)" is called "propagator." The symbol Dx (t) represents the sum 

of the probability amplitudes for all paths. The "exp (
𝑖

ℏ
𝑆[𝑏, 𝑎])" is called the phase factor. 
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We express the wave functions by the propagator "K (b, a)" as follows. 

 

 𝜓(𝑏, 𝑡𝑏) = 𝐾(𝑏, 𝑎)𝜓(𝑎, 𝑡𝑎) (3.9) 

 

In the path integral, an event that a particle moves from a position "a" to the other position "b" is 

made to correspond to the propagator "K (b, a)". We get the wave function of time "tb" by 

multiplying the propagator "K (b, a)" to a wave function of time "ta." 

 

As shown in the following figure, there is not only a normal path of "α" but also the other path of 

"β" to travel long distance in short period of time. Such path might have a speed that is greater than 

the speed of light. Since the path is contrary to the special relativity, the path is not allowed. In this 

paper, we call such a movement of the path "long-distance transition." 

 
 

ta 

t 

x a 

K(b,a) 

ta 

b 

tP 

Path β Path α 

 

Figure 3.4: Feynman's path integral 

 

Generally, the textbook of a path integral explains as follows.  

 

The sum of a minutely different path near a path of "α" becomes large. On the other hand, the 

sum of a minutely different path near a path of "β" becomes small. For this reason, long-distance 

transition is suppressed and the path of "β" does not remain.  

 

Then, what happens after the minimum time "TP"? We express the propagator from a position of 

"a" to a position of "b" after minimum time "tP" as follows. 

 

 𝐾(𝑏, 𝑎) = exp (
𝑖

ℏ
𝑆[𝑏, 𝑎]) (3.10) 

 

In this paper, we assume the discrete time. Since we cannot divide minimum time any more, 

when the departure point and the point of arrival are decided, it cannot take a minutely different 
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path near a path of "β." For this reason, we cannot suppress long-distance transition and the path of 

"β" remains. 

 

Therefore, if we apply path integral to the discrete space-time and the position of a particle is 

determined like a delta function of the Dirac, long-distance transition occurs after the minimum 

time "tP." 

 

 𝜓(𝑥′, 𝑡𝑏) = 𝐾(𝑥′, 𝑥)𝛿(𝑥 − 𝑎) (3.11) 

 
 

ta 

t 

x a 

ψ(x',tb)=K(x',x)δ(x-a) 

tb 

tP Path β 
Path α 

 

Figure 3.5: Long-distance transition in the path integral 

 

However, we do not observe the long-distance transition. We deduce the reason is that the 

position of the particle is distributed with a normal distribution like the following figure. 

 

Figure 3.6: A wave function of a localized state 

 

Therefore, position x is distributed with deviation “Δx,” momentum "p" is also distributed with 

deviation "Δp." According to the Uncertainty Principle, the product of "Δx" and "Δp" is close to 

Planck constant "ħ/2." 

-0.5

 0

 0.5

 1

 1.5

-4 -2  0  2  4

exp(-x**2)
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 𝛥𝑥 𝛥𝑝 ≈
ℏ

2
 (3.12) 

 

We call the state of the wave function with a normal distribution "localized state." 

 

In the short distance, the sum of the phase factor of localized state becomes large. On the other 

hand, in long distance, the sum of the phase factor of localized state becomes small. We call this 

phenomenon "suppression of long-distance transition due to localized states." 

 

If the state is localized state, the long-distance transition does not occur after the minimum time 

"TP." Therefore, the localized state is localized near place after the time tP. For this reason, we 

deduce that network structure of the path integral is realized, as shown in the following figure. 

 
 

t’ 

t’’=t’+tP 

t 

x 

x 

x’’ 

x’ 

(x,t’) 

(x,t’’) 

Network structure of 

path integral 

 
Figure 3.7: Network structure of path integral 

 

In this paper, we call the network structure of path "network structure of path integral." 

 

We suppose that there is an event "A-B" that is a transition from a state "A" to a state "B." If the 

state "A" has three positions and the state "B" has three positions, the event "A-B" has 3 × 3 = 9 

paths. 

 

In "network structure of the integral path", the number of paths is the square of the number of 

positions. On the other hand, according to the Born rule, the probability becomes the absolute 

square of the wave function. In this paper, we discuss the similarities of these "square." 

3.6 Dirac's quantum field theory 

Paul Dirac16 proposed the quantum field theory to explain the emission and absorption of 

electromagnetic waves in 1927. We express the fundamental commutation relation17 of the quantum 

field theory in the case of one-dimensional space as follows. 
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 [𝜓(𝑥), 𝜋(𝑦)] = 𝑖ℏ𝛿(𝑥 − 𝑦) (3.13) 

 

Then "ψ" is the field and "π" is the conjugate operator of the field "ψ." The variable "x" and "y" 

are position. The function "δ" is Dirac's delta function. 

 

This commutation relation is similar to the following commutation relation between position "x" 

and momentum "p." 

 

 [𝑥, 𝑝] = 𝑖ℏ (3.14) 

 

This indicates that field "ψ" is a physical quantity that has a property similar to the position "x." 

In this paper, we call the physical quantity "positional physical quantity." 

 

We got a field "ψ (x)" by the first quantization for the position "x." On the other hand, the field ψ 

(x) is "positional physical quantity" like the position "x." Therefore, we get a new field Ψ [ψ (x)] by 

the second quantization for the field "ψ." We call the field "Ψ [ψ (x)]" "second wave function." We 

express the second wave function "Ψ [ψ (x)]" in the following figure. 
 

ψ(x2) 

ψ(x1) 

Ψ[ψ(x)] 

 

Figure 3.8: The second wave function 

 

If we express the position by using the number n of the points x1, x2, x3, ..., xn we express the 

second wave function as a wave of the n-dimensional space. In the view of 3-dimensional normal 

space, it becomes a functional. 

 

Normally, we need to express the universal wave function by a functional rather than a function 

of many variables. On the other hand, the functional is mathematically almost equivalent to the 

function of many variables. Therefore, in this paper, we discuss by using the many-particle wave 

function in order to simplify the discussion. 

 

3.7 Kaluza-Klein theory 

Theodor Kaluza18 proposed in 1921 and Oskar Klein19 proposed in 1926 the introduction of extra 

space that is ultra-fine round, in order to unify the electromagnetic field and gravity. This theory is 

called "Kaluza-Klein theory." 

Though normal space is three-dimensional space, if we consider general relativity in the four-

dimensional space, we explain the electromagnetic field. 

We express a new space ψ4 by using a normal space G3 and an extra space S1 like a one-

dimensional circle as follows. 
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 𝜓4 = 𝐺3 × 𝑆1 (3.15) 

 
 

Three-dimensional 

normal space G3 

Extra space S1 

like a one-dimensional 

circle 

New space 

ψ4=G3×S1 

 

Figure 3.9: Kaluza-Klein theory 

 

 

We use a term of "space" as a same meaning of a manifold in this paper. 

 

We express the solid angle of the manifold as the subscript or the argument of the manifold in 

this paper. For example, we express the manifold G3 specified with the solid angle γ by Gγ or “G 

(γ).” We also express the manifold S1 specified with the angle φ by Sφ or “S (φ).” 

 

In this paper, we interpret the symbol "G (γ)" of the manifold as a vector in a high-dimensional 

space (for example space ψ4). 

 

In order to interpret the wave function as a manifold we assume that there are extra spaces like 

Kaluza-Klein theory. In order to interpret the wave function as a manifold we need to define the 

superposition of the manifold like a superposition of the wave function. Therefore, we consider the 

superposition of the manifold in the next section. 

 

3.8 Cartan's differential form 

Elie Cartan20 defined differential form in 1899 in order to describe manifold by the method that is 

independent to the coordinates. In order to define the superposition of the manifold, we use this 

differential form. 

 

We sum the complex numbers of wave functions every position for the superposition of a wave 

function. Therefore, we deduce that we sum the surface areas of manifolds at every solid angle for 

the superposition of manifolds. 

 

We express the surface area S of the manifold ψ by a solid angle ω and surface element “ds (ω)” 

as follows. 

 

 𝑆 = ∫ 𝑑𝑠(𝜔) (3.16) 

 

However, the surface area S that is integrated with “ds” may become zero because the surface 

element “ds” of differential form may become negative. To avoid this case, we define the surface 

area S by the sum of the absolute value of the surface element as follows. 
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 𝑆 = ∫ |𝑑𝑠(𝜔)| (3.17) 

 

 

We express the surface element ds (ω) by using total differential h (ω) and elementary solid angle 

dω as follows. 

 

 𝑑𝑠(𝜔) = ℎ(𝜔) 𝑑𝜔 (3.18) 

 

Then, we express the surface area of the manifold ψ as follows. 

 

 𝑆 = ∫ |ℎ(𝜔) 𝑑𝜔| (3.19) 

 
 

Manifold ψ 

Solid angle ω 

Surface element ds(ω)=h(ω)dω 

 

Figure 3.10: Manifold 

 

Now, we express the surface element ds2 of a manifold ψ2 as follows. 

 

 𝑑𝑠2 = 𝑑𝑠2(𝜔) (3.20) 

 

Then, we express the surface element ds3 of the other manifold ψ3 as follows. 

 

 𝑑𝑠3 = 𝑑𝑠3(𝜔) (3.21) 

 

In order to get a manifold ψ1, we calculate the superposition of manifold ψ2 and ψ3. 

 

 𝜓1 = 𝜓2 + 𝜓3 (3.22) 

 

We express the surface element ds1 of the manifold ψ1 as follows. 
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 𝑑𝑠1(𝜔) = 𝑑𝑠2(𝜔) + 𝑑𝑠3(𝜔) (3.23) 

 

We define the superposition of the manifold as the above equation. 

 

4 A new method of deriving 

4.1 Elementary event of many-worlds interpretation 

In the case of the Copenhagen interpretation, we cannot introduce an elementary event to the 

quantum theory, because we always observe one event at one observation. 

 

Therefore, we introduce the elementary events to quantum mechanics by embracing the Many-

Worlds Interpretation (MWI) in this paper. In MWI all the events those occur in one observation 

occur. However, one observer cannot observe all the events at the same time, because the observer 

itself is involved in each event. 

 

If we interpret an event of quantum theory as a set of elementary events, we can derive the 

probability that each event occurs from the number of the elementary events. If the event R or event 

B occur in some observations, a world branched to the world that event R occurs and the other 

world that event B occurs in the MWI. 

 

For example, if the number of elementary events of the event R is three, and B is two, the 

probability of occurrence of the event R is 3/5. We call a world that an elementary event occurs 

"elementary world." We interpret a world as a set of elementary worlds. 

 
 

r-1 

r-2 

b-1 

b-2 

r-3 

World that 

event R occurs 

World that 

event B occurs 

Elementary 

world that  

elementary 

event r-1 

occurs 

Elementary 

world that  

elementary 

event b-1 

occurs 

 

Figure 4.1: World is a set of elementary world in many-worlds interpretation 

 

The concrete implementation method of the elementary events is described in the following 

sections. 
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4.2 Elementary state of many-worlds interpretation 

In the wave function of a many-particle system in configuration space (many-particle wave 

function), we call the state that positions of all particles are decided "position eigenstate." 

 

However, in the actual experiment, each particle spreads in the narrow range. Therefore, actual 

state spreads in the narrow range in configuration space. We call the state "localized state." 

 
 

x2 

x1 

Position eigenstate 

Localized state 

|ψ| 
Elementary state 

 

Figure 4.2: Elementary state in configuration space 

 

In addition, we interpret a wave function of "position eigenstate" as a manifold. We interpret an 

absolute value of the wave function as the surface area of the manifold. We put a point on the 

surface of the manifold at a fixed interval. We interpret the point as "elementary state." The number 

of the elementary events is proportional to an absolute value of the wave function, because the 

number of the elementary events is proportional to the surface area of the manifold. 

 

In the discussion of this paper, there is no difference between the discussion using the many-

particle wave function and the discussion using the wave function of one particle. Therefore, in the 

discussion of this paper, we do not use the many-particle wave function but the wave function of 

one particle. 

 

4.3 Geometric interpretation of the wave function 

In order to consider the geometric interpretation of the wave function, we introduce the extra 

space like the Kaluza-Klein theory. 

 

Because a complex wave function has two degrees of freedom, two-dimensional manifolds are 

candidates. There are manifolds with boundary and manifolds without boundary. Because the 

normal three-dimensional space does not have a boundary, we choose the candidates in the 

manifolds without boundary. Two-dimensional manifolds without boundary are as follows. 

 

Two-dimensional sphere: S2 

Two-dimensional torus: S1 × S1 = T2 

Two-dimensional real projective plane: RP2 

Klein bottle: K2 

 

A complex number has an absolute value and a phase. Because the phase is periodical quantity, 

we consider that we use S1 in order to express the phase. Then we pick up a two-dimensional torus 

manifold T2 including the S1. We express the torus as follows. 
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Figure 4.3: Torus 

 

 𝑋 = cos(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼)) (4.1) 

 𝑌 = sin(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼)) (4.2) 

 𝑍 = 𝑅𝛼 sin(𝛼) (4.3) 

 

Wherein coordinates X, Y, Z are used for showing the figure and has nothing to do with the 

coordinates x, y, z of the normal space. 

 

We call the circle of major radius of this torus "phase circle." We call the circle of minor radius 

of this torus "amplitude circle." 

 

We suppose that the angle is φ, the position is q, and the radius is Rφ of the phase circle. 

We suppose that the angle is α, the position is a, and the radius is Rα of the amplitude circle. 

 

We express the space T2 as the direct product space of the phase circle and the amplitude circle as 

follows. 

 

 𝑇𝜑𝛼 = 𝑆𝜑 × 𝑆𝛼 (4.4) 

 

We call the space "torus space." 

We express the position b = (q, a) on the torus space T2 by the solid angle β = (φ, α) as follows. 

 

 𝑏 = 𝑇(𝛽) (4.5) 
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Torus space T
2
 

Solid angle β 

Position b=T(β) 

 

Figure 4.4: Torus space 

 

We express the position r = (x, y, z) of the normal space G3 by the solid angle γ = (ξ, η, ζ) as 

follows. 

 

 𝑟 = 𝐺(𝛾) (4.6) 

 

We express the wave space ψ5 as the direct product space of a torus space T2 and a normal space 

G3 as follows. 

 

 𝜓𝛽𝛾 = 𝑇𝛽 × 𝐺𝛾 (4.7) 

 

 

 

Three-dimensional 

normal space G3 

Wave space 

ψ5=T2×G3 

Torus space T2 

 

Figure 4.5: Wave space 

 

We express the position w = (b, r) of the wave space ψ5 by the solid angle ω = (β, γ) as follows. 

 

 𝑤 = 𝜓(𝜔) (4.8) 

 

 

We interpret the angle of the phase circle as the phase of the wave function. 
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The sign of the wave function changes when the phase φ is shifted by π radians. It is shown as 

follows. 

 

 𝜓(𝜑) = −𝜓(𝜑 + 𝜋) (4.9) 

 

Therefore, summation of ψ (φ) and ψ (φ + π) become zero. 

 

In the case of the torus Tφα, the sign of the surface element ds does not change though the phase φ 

is shifted by π radians. It is shown as follows. 

 

 𝑑𝑠(𝜑, 𝛼) = 𝑑𝑠(𝜑 + 𝜋, 𝛼) (4.10) 

 

Therefore, summation of ds (φ, α) and ds (φ + π, α) does not become "0." For this reason, we 

cannot interpret the torus as the wave function. 

 

Then, we increase or decrease the radius Rα of the amplitude circle with the proportional to the 

cosine function of φ. We change the figures and the equation as follows. 

 

 

Figure 4.6: Wave function of the particle of spin 1 

 

 𝑋 = cos(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼) × cos (𝜑)) (4.11) 

 𝑌 = sin(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼) × cos (𝜑)) (4.12) 

 𝑍 = 𝑅𝛼 sin(𝛼) × cos (𝜑) (4.13) 

 

In the case of the torus Tφα, the sign of the surface element ds changes when the phase φ is shifted 

by π radians. It is shown as follows. 
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 𝑑𝑠(𝜑, 𝛼) = −𝑑𝑠(𝜑 + 𝜋, 𝛼) (4.14) 

 

Therefore, summation of ds (φ, α) and ds (φ + π, α) becomes zero. For this reason, we can 

interpret this torus as the wave function. 

 

We might be able to express the wave function of a particle of spin 1 by using the torus.  

4.4 Introduction of an elementary state to the quantum theory 

We express the wave function ψ (x, t) by Dirac delta function as follows. 

 

 𝜓(𝑥, 𝑡) = ∫ 𝑎(𝑦, 𝑡)𝛿(𝑥 − 𝑦)𝑑𝑦 (4.15) 

 

We interpret the state a (y, t) as the state that the position y of the particle is fixed, "position 

eigenstate." Then we compose the elementary state that cannot be separated any more by dividing 

the "position eigenstate." 

 

We divided the surface by using "elementary domain" and we suppose that each domain has one 

elementary state. 
 

Elementary state 

Planck length 

Planck length 

Planck 

length 

Elementary 

domain 

 

Figure 4.7: Elementary state of many-worlds interpretation 

 

 Since the surface area S of the manifold is the absolute of the wave function ψ (x, t), we can 

describe the number M (x, t) of the elementary state by using Planck length ℓP as follows. 

 

 𝑀(𝑥, 𝑡) =
𝑆

ℓ𝑃
2 =

|𝜓|

ℓ𝑃
2  (4.16) 

 

4.5 Application of path integral to the field 

In quantum field theory, we quantize the field itself. One method of quantization is the path 

integral. Therefore, we apply the path integral to the field itself. 
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We were able to apply the path integral to the position x that is the "positional physical quantity." 

Therefore, we deduce that we can apply the path integral to the field ψ that is "positional physical 

quantity." Then, we apply the path integral to the new function Ψ [ψ (x, t)]. 

 

There was a network structure of the path integral for the position x that is "positional physical 

quantity." Therefore, we apply a network structure of the path integral for the field ψ that is 

"positional physical quantity" like the following figure. 

 
 

t’ 

t’’=t’+tp 

t 

ψ 

ψ’’ 

ψ’ 

Δψ 

Ψ[ψ(x,t’)] 

Ψ[ψ(x,t’’)] 

 

Network structure of 

path integral 

x 

 
Figure 4.8: Application of network structure of path integral to field itself 

 

We call the space that is specified by position ψ "second wave space" Ψ. 

 

In the above figure, we apply "network structure of the path integral" to the region that is smaller 

than Δψ. 

 

4.6 Introduction of elementary event to the quantum theory  

We introduce a new concept, elementary event to the quantum theory in this paper. 

  

We express an event as a transition from one state to the other state in quantum theory. Therefore, 

we express an elementary event as a transition from one elementary state to the other elementary 

state. 

  

We interpret an elementary state as a point. We interpret an elementary event as an arrow from a 

point to the other point. Since we can draw a line from any point to any point, we deduce that an 

elementary event from any elementary state to any elementary state exists. 

 

If the arrow from the point A to the point B exists, the arrow from the point B to the point A also 

exists conversely. If the number of points is M, the number of arrows becomes M2. In other words, 

if the number of elementary states is M, the number of elementary events becomes M2. 
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Though there is no clear evidence of the existence of an elementary event, we deduce it by the 

following reasons. 

 

 

 
 

t 

x 

Localized 

State 

w 

Position 

eigenstate 

Elementary 

state 

Localized event 

Path eigen event 

Elementary 

event 

t' t''=t'+tp 

x' 

x'' 

x''' 

 
Figure 4.9: Elementary event and elementary state of many-worlds interpretation 

 

We assume that an elementary event of quantum theory has the same properties as elementary 

events of probability theory. In other words, the probability of occurrence of an event is 

proportional to the number of elementary events those are included in the event. 

 

In addition, we define the event that is transition from any position eigenstate to any position 

eigenstate "path eigen event." The path eigen event is a set of elementary events. 

 

Actual state is localized by the uncertainty principle. We call the state "localized state. We call 

the event from any localized state to any localized state "localized event." 

 

If we apply the path integral to the discrete space-time, the long-distance transition from position 

eigenstate occurs. However, "long-distance transition" is suppressed due to the localized states. It 

means that the number of elementary events of localized event that is Long-distance transition is 

very rare. 

 

The existence of an elementary state and an elementary event suggests that an existence 

probability and a probability of occurrence are different concepts. If the number of elementary 

states of a certain state is "m,” the state's existence probability is proportional to "m." If the number 

of elementary events of a certain event is "n,” the event's existence probability is proportional to 

"n." 
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4.7 Derivation of the Born rule 

This section describes how to derive this probability. 

 

We express the observation probability P (x, t) of the particle by the wave function ψ (x, t) as 

follows. 

 

 𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 (4.17) 

 

On the other hand, we express the probability P based on the Laplace's definition of probability 

as follows. 

 

 𝑃 =
𝑁

𝑁𝛺
 (4.18) 

 

Here NΏ is the number of all elementary events and N is the number f the elementary events those 

are expected. If NΏ is sufficiently larger than N, P is proportional to N. 

 

 𝑃 ∝ 𝑁 (4.19) 

 

Actual state is localized state. We apply the "network structure of path integral" to the localized 

state. Since "long-distance transition" does not occur for localized state, the length of transition is 

small after minimum time tP. 
 

The number N (x', t') of elementary events of the localized state “ψ (x', t') Δx” is proportional to 

the surface area of the manifold. We apply the "network structure of path integral" to the position 

on the surface area of the manifold. 

 

 Since the manifold after the minimum time almost same as the original manifold, we 

approximate it by the same manifold. We express the number M (x, t) of elementary states on the 

surface area of the manifold as follows. 

 

 𝑀(𝑥, 𝑡) =
𝑆

ℓ𝑃
2

Δ𝑥

ℓ𝑃

=
|𝜓|Δ𝑥

ℓ𝑃
3  (4.20) 

 

The number N of elementary events is the number of the transition from all elementary states at 

time t' to all elementary states at time t''. Therefore, the number N of the elementary events is the 

square of the number M of the elementary states. 

 

 𝑁 = 𝑀2 (4.21) 

 

We express those elementary events in the following figure. 
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Figure 4.10: The number of elementary events is the square of the number of elementary states 

 

According to the uncertainty principle, deviation Δp of momentum is almost constant if Δx is 

almost constant. Therefore, the number of elementary events is proportional to the absolute square 

of the wave function. 

 

 𝑃 ∝ 𝑁 = 𝑀2 = (
𝑆

ℓ𝑃
2

Δ𝑥

ℓ𝑃

)

2

=
(Δ𝑥)2|𝜓|2

ℓ𝑃
6 ∝ |𝜓|2 (4.22) 

 

 

The probability of occurrence of an event is proportional to the number of the elementary events 

that is involved in the event. The number of the elementary events is proportional to the absolute 

square of the wave function. Therefore, the probability of occurrence of an event is proportional to 

the square of the absolute value of the wave function. 
 

5 Conclusion 

We explained the method to derive the Born rule from many-worlds interpretation and 

probability theory. 

 

Probability is proportional to the number of the elementary events. The number of the elementary 

events is the square of the number of elementary state because we apply the "network structure of 

path integral" to the elementary state. The number of the elementary states is proportional to the 

absolute value of the wave function. Therefore, the probability is proportional to the absolute value 

of the wave function. 
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6 Supplement 

6.1 Supplement of the many-particle wave function 

We call an elementary state, a position eigenstate and a localized state for the universe 

"elementary world", "position eigen world" and "localized world" respectively. 

 

In addition, we call an elementary event, a path eigen event and a localized event for the universe 

"elementary history", "path eigen history" and "localized history" respectively. 

 
 

t 

x 

Localized 

world 
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Position eigen 

world 

Elementary 

world 

Localized history 

Path eigen 

history 

Elementary 

history 

t' t''=t'+tP 
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x'' 

x''' 

 
Figure 6.1: Elementary history and elementary world of many-worlds interpretation 

 

We interpret one point of the configuration space of the many-particle wave function as the state 

that the positions of all particles are determined. The state is "position eigen world." 

 

In the view of classical mechanics, the point is our world. In the view of the quantum mechanics, 

localized world is our world. 

 

I guess that the absolute value of the many-particle wave function of the universe is most nearly 

zero in the almost area. The domain that the absolute value is large is localized like a network 

structure. 

 

6.2 Supplement of the method of deriving the Born rule 

The simplest way to derive the Born rule from Many-Worlds Interpretation (MWI) is that we 

connect the number of the world to the probability. 
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If the probability of occurrence of event A is higher than the probability of occurrence of event B, 

we deduce that the number of the world that event A occurred is greater than the number of the 

world that event B occurred. 

 

For example, we suppose that we make the 100 planets those are exactly same as Earth. If the 

event A occurred on 80 planets and the event B occurred on 20 planets, then we interpret that the 

probability of the occurrence of the event A is 80%. 

 

However, it is not clear how to count the world. Therefore, we count the number of elementary 

worlds of the localized world that event A occurred.  

 

We express the number M of elementary worlds of the localized world by the wave function ψ 

(A) that event A occurred as follows. 

 

 𝑀 =
|𝜓(𝐴)|

ℓ𝑃
2 ×

(Δ𝑥)3𝑛

ℓ𝑃
3𝑛 =

|𝜓(𝐴)|(Δ𝑥)3𝑛

ℓ𝑃
2+3𝑛  (6.1) 

 

Δx is the position deviation, and n is the number of all particles. The number of elementary world 

is proportional to the absolute value of the wave function. On the other hand, the probability is 

proportional to the absolute square of the wave function. Therefore, we cannot explain the 

probability by using the number of the elementary worlds. 

 

To solve this problem, we explain the probability by using the number of the history. We express 

the number N of the elementary history of the localized history that event A occurred as follows. 

 

 𝑁 = 𝑀2 (6.2) 

 

The probability is proportional to the number of the elementary history. The number of the 

history is the square of the number of the elementary world. On the other hand, the number of the 

elementary worlds is proportional to the absolute values of wave functions. Therefore, the 

probability is proportional to the absolute square of wave functions. 

 

 𝑃 ∝ 𝑁 = 𝑀2 = (
|𝜓(𝐴)|(Δ𝑥)3𝑛

ℓ𝑃
2+3𝑛 )

2

=
(Δ𝑥)6𝑛

ℓ𝑃
4+6𝑛

|𝜓(𝐴)|2 ∝ |𝜓(𝐴)|2 (6.3) 

 

 

6.3 Supplement of basis problem in many-worlds interpretation 

In many-worlds interpretation, there is a problem that a particular basis of the wave function does 

not exist. 

 

For example, we consider the Stern-Gerlach experiment of the spin of electrons. In this 

experiment, we measure the spin by using a magnetic field gradient. Since the basis of the spin is 

determined by the direction of the gradient magnetic field, there is no particular basis for the spin. 

 

In this paper, we chose position as the particular basis. We could also choose the momentum as 

the particular basis, but we did not do so, because we express the basis of the momentum by using a 

set of the elementary state that the position is basis. 
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For spin, there is no way to select a particular basis. In this paper, we are considering the 

manifold of a particle of spin 1/2. We might be able to express the spin by using the manifold. 

 

6.4 Interpretation of time in many-worlds interpretation 

The position of all particles is different for each point in the configuration space of many-particle 

wave function. Therefore, we define the time for each point in the configuration space. Since a 

point corresponds to a position eigen world, we interpret the time as a parameter to classify the 

position eigen worlds. 

 

A position eigen world transits the minimum length continuously in the configuration space. I 

guess that we feel the transition as a time.  

 
 

t''=t’+tP 

t'''=t''+tP 
t 

t' 

Elementary world 

Elementary history 

x 
 

Figure 6.2: Many-worlds interpretation and arrow of time 

 

If a transition of a direction exists, the transition of the opposite direction also exists. However, 

since there are many "elementary worlds" of future more overwhelmingly than the number of 

elementary worlds of past, we feel that our elementary world always transits to elementary world of 

the future. In this way, many-worlds interpretation explains the arrow of time by. 

 

6.5 Supplement of Long-distance transition 

In this paper, we have been thinking about one particle is localized in one place. Here we 

consider the wave function of one particle that was localized in one place at a certain time. We 

suppose that the wave function was separated and localized in two places. We call the state "many 

localized states." In this case, what would happen? 

 

Elementary event exists between any two elementary states. The world does not become disorder 

because long-distance transition is suppressed due to the "localized state". We determine the 

number of elementary events between two localized states only by the number of elementary states 

of the two localized states. 
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Therefore, if there are "many localized states", the transition between the states those are 

localized in two places will occur. 

 
 

t''+tP 

t'' 

t 

x 

t' 

 

Figure 6.3: Long-distance transition between localized states 

 

I call the phenomenon "localized long-distance transition" or "localized shift." 

 

Then, will localized shift between localized states those have different time occur? 

 

In this case, since the elementary event exists between any two elementary states, the localized 

shift occurs, too. 

 

I do not deduce that the localized teleport send information, because we cannot send any 

information by using EPR correlation. 

 

7 Future Issues 

Future issues are shown as follows. 

 

(1) Formulation by the manifold 

(2) Formulation for the quantum field theory 

(3) Formulation by the finite group theory 

(4) Formulation by the principle 

(5) Formulation for the spin 

(6) Formulation for the relativistic mechanics 

(7) Formulation for the gravity theory 

 

We consider some of these issues in the following chapters. 

 

8 Consideration of the future issues 

8.1 Consideration of the formulation by the manifold 

Since the wave space ψφαγ which is the direct product space of torus space Tφα = Sφ × Sα and 

normal space Gγ is a function of φ, α and γ, we express ψ (φ, α, γ) like a function. 
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 𝑇𝜑𝛼 = 𝑆𝜑 × 𝑆𝛼 (8.1) 

 𝜓𝜑𝛼𝛾 = 𝑇𝜑𝛼 × 𝐺𝛾 (8.2) 

 𝜓𝜑𝛼𝛾 = 𝜓(𝜑, 𝛼, 𝛾) (8.3) 

 

We express the surface S (γ) in the position γ of the wave space ψ (φ, α, γ) as follows. 

 

 𝑆(𝛾) = ∫ |ℎ(𝜔) 𝑑𝜔| (8.4) 

 ℎ(𝜔, 𝛾) = 𝜓(𝜑, 𝛼, 𝛾) (8.5) 

 𝜔 = (𝜑, 𝛼) (8.6) 

 

When the radius of the angle α becomes the maximum value for the angle φ, we interpret the 

angle φ as the angle φmax (γ). Then we express the wave function of ψ (γ) as follows. 

 

 𝜓(𝛾) = 𝑆(𝛾) exp(𝑖 𝜑𝑚𝑎𝑥(𝛾)) (8.7) 

 

The above result means that we can interpret the wave space as the wave function. 

 

8.2 Consideration of the formulation for the quantum field theory 

Position eigenstate includes information on the absolute value of the wave function and the phase 

information. On the other hand, the elementary state does not include the information about the 

absolute value of the wave function and the phase information. Therefore, for the elementary state, 

we cannot use the logic of "deterrence of long-distance transition localized states." In order to solve 

this problem, consider the quantum field theory. The theory is also called "second quantization."  

 

In the quantum field theory, we set the commutation relation to the height of the wave function 

itself. This means that the height of the wave function spread. Therefore, the new wave function, 

"second wave function" Ψ [ψ (r)] exists. It has an argument of the height of the wave function. 

 

We interpret "an elementary state" of this paper as the position eigenstate of the second wave 

function. Therefore, we call the new position eigenstate "second position eigenstate." If we define 

"second position eigenstate", we can also define "second localized state." Thus, we can use 

"suppression of long-distance transition due to localized states", again. 

 

However, if we require the "third position eigenstate" and "fourth position eigenstate", the logic 

becomes infinite regress. I guess we can solve the problem by using the formulation of a finite 

group. 

 

If the second wave function Ψ [ψ (r)] exists, the second wave space Ψ exists. We express the 

second wave space Ψ by the second torus Tβ and a wave space ψω. This is a functional. 
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 𝛹 = 𝑇𝛽[𝜓𝜔] (8.8) 

 

When the number of the points is d in the wave space ψω, we can interpret the above function as 

follows. 

 

- The second wave function Ψ is the vector function in the two-dimensional space Tβ. 

- The argument of the vector function is the vector ψω in the d-dimensional space. 

 

As the result, we interpret the second wave function Ψ as the vector in the (d + 2) dimensional 

space. We interpret the functional as the vector function that has a vector as the argument. 

 

 

8.3 Consideration of the formulation by the finite group 

We consider how to formulate mathematically elementary state. Because the elementary state is 

defined in the discrete wave space, we consider the formulation of a finite group. 

 

In this paper, we express the group specified the index m as Wm. When the order of the group is 

Mw, we interpret the group Wm as the Mw-dimensional vector Mw. 

 

We suppose that there is a finite group Wm that has Mw elements and acts to d-dimensional 

discrete wave space Vm. We call this finite group "wave group." 

 

We express m-th element of the wave group Wm as d-dimensional matrix wm. Then, w1 is the unit 

matrix. We express m-th point of the wave space Vm as vm. If we act all matrix wm to one point v1 of 

the wave space Vm, we get all points of the wave space Vm. 

 

 𝑤𝑚 ∈ 𝑊𝑚 (8.9) 

 𝑣𝑚 ∈ 𝑉𝑚 (8.10) 

 𝑣m = 𝑤𝑚𝑣1 (8.11) 

 

We interpret the point as an elementary state because the point vm is a point of the wave space Vm. 

We also interpret the matrix wm as an elementary state because a point vm corresponds to a matrix 

wm uniquely. 

 

Because the elementary event is a transition from any elementary state to any elementary state, 

we can interpret a pair of a point vm and vn as an elementary event. We can also interpret a pair of 

matrix wm and wn as an elementary event. Therefore, we can express all elementary events by the 

direct product of Wm and Wn, a finite group Hmn as follows. 

 

 𝑊𝑚𝑛 = 𝑊𝑚 × 𝑊𝑛 (8.12) 

 

We call the finite group Wm "world group." We call the finite group Hmn "history group." The 

number of the elementary events is Mw
2

. 

 

8.4 Consideration of the construction by the principle 

We construct "event theory" by "event principle." 
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8.4.1 Event principle 

We propose the following "event principle." 

 

- A state is a set of elementary states. 

- An event is a set of elementary events. 

- An elementary event is a pair of elementary states. 

- A certain state's existing probability is proportional to the number of elementary states the state 

includes. 

- A certain event's occurring probability is proportional to the number of elementary events the 

event includes. 

 

8.5 Consideration of the formulation for spin 

In this section, we consider the manifold of the wave function of the particle of the spin 1/2. 

A particle rotates in the normal space Gγ. We suppose that the rotation angle of the spin θ. We 

express the rotation angle θ by the circle Sθ. We call the circle "normal circle." The direct product of 

the phase circle Sφ and the amplitude circle Sα and the normal circle Sθ is shown as follows. 

 

 𝜓𝜑𝛼𝜃 = 𝑆𝜑 × 𝑆𝛼 × 𝑆𝜃 (8.13) 

 

 

 

Figure 8.1: Direct product of circle and torus 

 

 𝑋 = cos(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼) × cos (𝜑 + 𝜃)) (8.14) 

 𝑌 = sin(𝜑)(𝑅𝜑 + 𝑅𝛼 cos(𝛼) × cos (𝜑 + 𝜃)) (8.15) 

 𝑍 = 𝑅𝛼 sin(𝛼) × cos (𝜑 + 𝜃) (8.16) 
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The sign of the wave function changes when the particle of the spin 1/2 rotates the angle θ = 2π in 

the normal space. The change of the sign of the wave function means the manifold is turned inside 

out. Though the particle rotates the angle θ = 2π, the manifold is not turned inside out. Therefore, 

this manifold does not express the wave function of the particle of spin 1/2. 

 

In order to express the wave function of the particle of spin 1/2, we divide the angle φ and θ by 2. 

 

 

Figure 8.2: Wave function of the particle spin 1/2 

 

 𝑋 = cos(𝜑) (𝑅𝜑 + 𝑅𝛼 cos(𝛼) × cos (
𝜑

2
+

𝜃

2
)) (8.17) 

 𝑌 = sin(𝜑) (𝑅𝜑 + 𝑅𝛼 𝑐𝑜𝑠(𝛼) × cos (
𝜑

2
+

𝜃

2
)) (8.18) 

 𝑍 = 𝑅𝛼 sin(𝛼) × cos (
𝜑

2
+

𝜃

2
) (8.19) 

 

When the node of the manifold rotates the angle θ = 2π, the manifold is turned inside out. 

Therefore, this manifold might express the wave function of the particle of spin 1/2. 

 

 

9 Appendix 

9.1 Definition of Terms 

We define terms in the following table. 
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Table 9.1: Normal space, etc. 

TERM DEFINITION 

Normal space Three-dimensional normal space 

Phase circle Extra space like circle that describes the phase of the wave function 

Amplitude circle Extra space like circle that describes the amplitude of the wave function 

Torus space Direct product space of the phase circle and the amplitude circle 

Wave space Direct product space of the torus space and the normal space 

 

Table 9.2: Elementary domain, etc. 

TERM DEFINITION 

Elementary domain The minimum domain of the wave space 

Elementary position Position of the wave space 

Elementary path An arrow from any elementary position to any elementary position 

Normal domain The minimum domain of the normal space 

Normal position Position of the normal space 

Normal path An arrow from any normal position to any normal position 

 

Table 9.3: Elementary state, etc. 

TERM DEFINITION 

Elementary state Point of the wave space 

Position eigenstate State that the position is fixed 

Localized state State that the distribution is a normal distribution 

Elementary event A transition from any elementary state to any elementary state 

Path eigen event A transition from any position eigenstate to any position eigenstate 

Localized event A transition from any localized state to any localized state 

Elementary world Elementary state of the universe 

Position eigen world Position eigenstate of the universe 

Localized world Localized states of the universe 

Elementary history Elementary event of the universe 

Path eigen history Path eigen event of the universe 

Localized history Localized events of the universe 

 

Table 9.4: Wave space, etc. 

TERM DEFINITION 

Wave space Direct product space of the torus space and the normal space 

World space Wave space 

History space Direct product of the wave space 

Wave group The finite group which acts on the wave space 

World group Wave group 

History group Direct product of the world groups 
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Table 9.5: Localized displacement, etc. 

TERM DEFINITION 

Localized displacement Localized transition of short-distance 

Localized transition Localized transition 

Localized shift Localized transition of long-distance 

Localized teleportation Localized transition of ultra-long-distance 

 

9.2 Arrangement of Terms 

We arrange terms in the following table. 

 

Table 9.6: Wave space, etc. 

CATEGORY SPACE GROUP 

Normal Normal space - 

Phase Phase circle - 

Amplitude Amplitude circle - 

Torus space Torus space Torus group 

Wave space Wave space Wave group 

 

Table 9.7: Elementary domain, etc. 

CATEGORY ELEMENTARY NORMAL 

Domain Elementary domain Normal domain 

Position Elementary position Normal position 

Path Elementary path Normal path 

 

Table 9.8: Wave space, etc. 

CATEGORY ELEMENTARY EIGEN LOCALIZED 

State Elementary state Position eigenstate Localized state 

Event Elementary event Path eigen event Localized event 

World Elementary world Position eigen world Localized world 

History Elementary history Path eigen history Localized history 

 

Table 9.9: Wave space, etc. 

CATEGORY FUNCTION SPACE FINITE GROUP 

Wave Wave function Wave space Wave group 

World World function World space World group 

History History function History space History group 
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