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Abstract

This paper derives the reflection integral equation of the zeta function by the complex analysis.

Many researchers have attempted proof of Riemann hypothesis, but have not been successful.
The proof of this Riemann hypothesis has been an important mathematical issue. In this paper, we
attempt to derive the reflection integral equation by the complex analysis as preparation proving
Riemann hypothesis.

We obtain a generating function of the inverse Mellin-transform. We obtain new generating
function by multiplying the generating function with exponents and reversing the sign. We derive
the reflection integral equation from inverse Z-transform of the generating function.

We derive the summation equation, the asymptotic expansion, Faulhaber’s formula, and
Norlund—Rice integral from the reflection integral equation.
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1 Introduction

1.1 Issue

Many researchers have attempted proof of Riemann hypothesis, but have not been successful.
The proof of this Riemann hypothesis has been an important mathematical issue. In this paper, we
attempt to derive the reflection integral equation by the complex analysis as preparation proving
Riemann hypothesis.

1.2 Importance of the issue
Proof of the Riemann hypothesis is one of the most important unsolved problems in mathematics.

For this reason, many mathematicians have tried the proof of Riemann hypothesis. However,
those trials were not successful. One of the methods proving Riemann hypothesis is interpreting the
zeros of the zeta function as the eigenvalues of a certain operator. However, the operator was not
found until now. The reflection integral equation is considered to be one of the operators. For this
reason, derivation of the reflection integral equation is an important issue.

1.3 Research trends so far

Leonhard Euler introduced the zeta function in 1737. Bernhard Riemann expanded the argument
of the function to the complex number in 1859.

David Hilbert and George Polya? suggested that the zeros of the function were probably
eigenvalues of a certain operator around 1914. This conjecture is called "Hilbert-Polya conjecture.

Zeev Rudnick and Peter Sarnak? are studying the distribution of zeros by random matrix theory in
1996. Shigenobu Kurokawa is studying the field with one element* around 1996. Alain Connes®
showed the relation between noncommutative geometry and the Riemann hypothesis in 1998.
Christopher Deninger® is studying the eigenvalue interpretation of the zeros in 1998.

1.4 New derivation method of this paper

We obtain a generating function of the inverse Mellin-transform. We obtain new generating
function by multiplying the generating function with exponents and reversing the sign. We derive
the reflection integral equation from inverse Z-transform of the generating function.

(Reflection integral equation)

2140



£-9)= £ - B(s,t)g(t);'—ﬂt_i L.1)

We derive the summation equation, the asymptotic expansion, Faulhaber’s formula, and
NOrlund—Rice integral from the reflection integral equation.

(Summation equation)

C 1
£(s) = ; TR TA 12)

2  Confirmations of known results
In this chapter, we confirm known results.

2.1  Mellin transform
Hjalmar Mellin’ published Mellin transform in 1904.
(Mellin transform)

f(s) = M[F(x)] (2.1)

f(s) = j xSLF (x)dx (2.2)
0

If the function f (s) is analytic in the strip S = {a < Re(s) < b}, and if it tends to zero uniformly as
Im(s) — +oo for any real value ¢ between a and b the following line integral converges absolutely.
(Inverse Mellin transform)

F(z) =M [f(s)] (2.3)
F(2) =I | fz(ss ) Zd—; 2.4)
S ={a < Re(s) < b} (2.5)

The real part of the strip S needs to be greater than the real part of all poles of the integrand. The
strip S is shown below. The white circles mean poles.
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Figure 2.1: The strip S of the inverse Mellin transform

We can express the inverse Mellin transform by the following contour integration.
(Inverse Mellin transform)

F(z)=M[f(s)] (2.6)
_f f(s) ds
F(z)= o 2ri 2.7)

The circuit of integration C circles around all poles of the integrand. For example, we suppose the
circuit of integration C =C,+Cr as follows. The white circles mean poles.
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Figure 2.2: The circuit of integration of the inverse Mellin transform

If the line integration of the path Cr is 0, the contour integration of the circuit of integration C
equals the line integration of the path C,. Then we have the following formula.

§ () ds _ jmd_ 28)
C o

s ; s ;
75 2ri Liw  Z° 27

2.2 Hurewicz’s Z-transform

Witold Hurewicz & published Z-transform in 1947. When the function F (z) is holomorphic over
the domain D = {0<|z|< R}, the function can be transformed to the series which converges
uniformly in wider sense over the domain.

(Z-transform)

F(z)=Z[f(n)] (2.9
— (n)

F = — 2.10

) Z ; (2.10)

D={0<|z| <R} (2.11)
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Therefore, when the minimum distance between origin and poles is R the domain D of the Z-
transform is shown below.

Im(2)

v

Re(2)

Figure 2.3: The domain of the Z-transform

The inverse Z-transform is the contour integration along the circuit of integration oD circles the
domain D.

(Inverse Z-transform)

f(n)=ZF(2)] (2.12)

_ n-1 £
f(n)= " 27 F(2) P (2.13)

2.3 Cauchy’s residue theorem
Augustin-Louis Cauchy published residue theorem® in 1831.

We suppose that the function F (z) has isolated singularities ck on the domain D inside of the
simple closed curve 6D and is holomorphic on both the domain D and the closed curve oD except
for the isolated singularities. Then, we have the following formula.

(Residue theorem)
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§ F(z)d—z_z Res F(z)dz (2.14)
5 2ri

2.4 Euler's gamma function

Leonhard Euler® introduced the gamma function as a generalization of the factorial in 1729.
The gamma function is defined by the following equation.
(Definitional integral formula of the gamma function)

r(s)= J‘xs‘le‘xdx (2.15)
0

Hermann Hankel published the following integral representation! in 1863.
(Contour integration of gamma function)

1 s1.z 02
=5 e? —
r(l—s) i 27 (2.16)

The integral path of gamma function is the path y in the following figure. The white circles mean
poles.
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Figure 2.4: The integral path of gamma function

The gamma function has the following formula.
(Euler’s reflection formula)

T 1

rd-s)= —
=9 = s ) (2.17)
The gamma function satisfies the following equations.
nl=T(n+1) (2.18)
I'(s+1) =sI(s) (2.19)
The gamma function has the following definitional integral formula.
F(SS) :jxs—le—qxdx (2.20)
q 0

2.5 Euler’s beta function

Leonhard Euler introduced the beta function in 1768 in his book*?. We can express the Beta
function by using the gamma functions.
(Definitional formula of the beta function)
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C(s)'(1)

BED =T

(2.21)

We can obtain the following reflection formula of Beta function from reflection formula of the
gamma function.
(Reflection formula of Beta function)
zsin(z(s+t-1) 1
sin(zs)sin(zt) B(s,t—1)(t-1)

B-s1-t)= (2.22)

2.6 Riemann zeta function

Bernhard Riemann®® expanded the argument of the zeta function to the complex number in 1859.
The definitional series of the function is shown below.
(The definitional series)

1 1 1 1
é(S)=1—S+2—S+3—S+---= P (2.23)
k=1
The function is also defined by the following formula.
(Definitional integral formula)

X

_ L [T e
;(s)_r(s) L X dx (2.24)

1-e7*

We can interpret the above formula as the following Mellin transform.
(Mellin transform)

g(s) = M[G(2)] (2.25)
g(s) = jxs‘lG(x)dx (2.26)
0
c)=_ 2.27)
1-e7?
g(s) =< (s)I'(s) (2.28)

The inverse Mellin transform of the function is shown below.
(Inverse Mellin transform)
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G(z) =M [g(s)]

Go=g L) &
c 2° 2ri

-7

G(z2)=

1—e7*

9(s) =< (s)I'(s)

The contour integration of the function is shown below.

(The contour integration)

(6) _fea et dz
1—e? 27i

ra-sy J,

(2.29)

(2.30)

(2.31)

(2.32)

We can interpret the above formula as the following the inverse Z-transform.

(Inverse Z-transform)

h(s) =Z7'[H(2)]

h(s) =§zs‘lH(z)2d—7:i
V4

z

e

H(Z)_l—e
_4(9)

h(s)_l“(l—s)

The integral path y is shown in the following figure. The white circles mean poles.
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Figure 2.5: The integral path of zeta function

The Z-transform of the function as follows.
(Z-transform)

H(z) = Z[h(s)] (2.38)

Ha)=:E:T? (2.39)

§=—0

eZ

H(z) = (2.40)

1-—e?

h(S) _ éI(S)

=9 (2.41)

The generating functions of Mellin transform and Z-transform have the following relations.
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H(z) = —e%G(2) (2.42)

H(z) =G(-2) (2.43)

Riemann showed the following formula.
(Riemann’s reflection formula)

2 T
gl-s)= @y I'(s) COS(E SJC (s) (2.44)

Riemann proposed the following conjecture.
(Riemann hypothesis)
Nontrivial zeros all have real part 1/2.

We express the examples of nontrivial zeros p1 and p2 in the following figure and equation. The
black circles are zeros and the white circle means a pole.

A :
Im(s) :
..
@/

° —0 -
- ol 12| 1 Re(s)
oy
I‘ P
1 1-p2
*

Figure 2.6: Nontrivial zeros of zeta function

12 /40



oy = % +i(14.13--) (2.45)

oy = % +i(21.02--) (2.46)

Since the proof of the Riemann hypothesis has not been successful, it has been an important
mathematical issue.

2.7 Bernoulli polynomials

Jakob Bernoulli introduced Bernoulli numbers in 1713 in his book!. Seki Takakazu also
introduced Bernoulli numbers in 1712 in his book®® independently. Bernoulli numbers are defined
by Bernoulli polynomials. The definition of Bernoulli polynomials is shown below.

(Bernoulli polynomials)

0

qx
X~ _ Z—B” (@) yn (2.47)

e* -1 n!
n=0

The above series are called “formal power series” because it does not converge over the whole
domain. The convergent radius is 27 because the minimum distance between origin and poles is 2n
for the generating function.

Im(z)
67l

47O

v

Re(2)

A47iO

-67i O

Figure 2.7: The convergent radius of Bernoulli polynomials
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2.8 Bernoulli numbers

We suppose that Bn(q) is Bernoulli polynomials. There are the following two kinds of definitions
of Bernoulli numbers Bh.

Bn =B (0) (2.48)

Bn = Bn (1) (249)

In this paper, in order to unite with the definition of Bernoulli function explained later, the latter
definition is adopted. At the former and the latter, there is the following difference by n = 1.

B,(0) =—1/2 (2.50)

B,(1)=1/2 (2.51)

Bernoulli polynomials Bn(1) equals to Bn(0) except n = 1. The definition of Bernoulli numbers is
shown below.
(Definitional series of Bernoulli numbers)

xe* — B
=y —2x" (2.52)
e’ -1 n!

n=0

Bernoulli numbers has the following formula for even positive integer n.
(Reflection formula of Bernoulli numbers)

@% ) 2 B, (2.53)

¢(n) =

Bernoulli numbers has the following formula for natural number n.
(Formula of Bernoulli numbers)

£(=n)= —% (2.54)

According to Vich’s book®®, we can express Bernoulli numbers by Z-transform as follows.

@/z)et?  _[B,

In this paper, we express the Z-transform of Bernoulli numbers as shown below.
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H(2) = Z[h(s)]

S=—00

z

e
H(z)_l_ez
_ _Bl—s
"

3 Derivation of the reflection integral equation

3.1 The framework of the method to derivation

The inverse Mellin transform of zeta function is shown below.

G(z) =M [g(s)]

6()=98 =
75 2ri

6=

1-e7*

g(s) =< (s)I'(s)

The inverse Z-transform of the function is shown below.

h(s) = Z ' [H(2)]
h(s) :§zs_lH (z)d—z_
¥ 2

z

e
H(z)_l_ez
_ ()
)= i)

(2.56)

(2.57)

(2.58)

(2.59)

(3.1)

(3.2)

3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The generating functions of Mellin transform and Z-transform have the following relations.
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H(z) =-e°G(2) (3.9)

H(z) =G(-2) (3.10)

The framework of the method to derivation is shown below.

G(z) =M [g(s)] h(s)=Z'[H(2)]

Figure 3.1: The framework of the method to derivation

We can obtain the reflection integral equation by the anticlockwise path.
(Reflection integral equation)

dt
¢(-s) =§ —B(s,t)d(t) — (3.11)
c 2ri
This paper explains this derivation method.

3.2 Derivation of the reflection integral equation from the inverse Mellin transform
Inverse Mellin transform of the zeta function is shown below.

16 /40



G(z) =M g(t)] (3.12)

G(Z): @i

o 2ri (3.13)
G(2)= ::_Z (3.14)
gty =<®re (3.15)

The circuit of integration C of the inverse Mellin transform needs to circle around all poles of the
integrand. Then we adopt the following circuit of integration C. The white circles mean poles.

Time

Re(t)

O

Figure 3.2: The integral path of the inverse Mellin transform

On the other hand, Inverse Z-transform of the function is shown below.
(Inverse Z-transform)
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h(s) = Z [H (2)] (3.16)

_ s—1 dZ
h(S)—iz H(Z)_Zﬂi (3.17)
H(z) = 3.18
(2) ol (3.18)
_6(s)
h(s) = Tios) (3.19)

We can deform the equation of the inverse Z-transform as follows.

_ s-1 z E
h(s) = £ 1 e G(Z)}zm (3.20)

We obtain the following equation by substituting the equation of the inverse Mellin transform.

ol f 00 at ] dz
h(s)_iz { e£ .t 272'i}272i (3.22)

In order to integrate the above equation for the variable z, we deform the above equation as

follows.
h(s):if_“; -t-1g2 dZJ 0-9- (3.22)
c \Jy 2ri

We apply the following formula to the above equation.
(Reflection integral formula of the gamma function)

1 s-1.7 0z
=¢pz7e —
I(l—s) ffy 27 (3.23)
Then we can get the following equation.
Z(s) 1 dt
2 | —— () —
rd-s) Jo \I'@-s+t) ()4”()27[i (3:24)

Here, we simplify the above equation by using the following the beta function.

(. y) - OC)

Tt y) (3.25)

As the result, we can obtain the following equation.
(Reflection integral equation)
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£-5)= §C— B(s,t)c(t)z‘”'—ﬂ‘_i (3.26)

Here, we replaced s with 1-s.
The integral path is the path C in the following figure. The white circles mean poles.

Time

—CO

Olo

<10
L
@

Re(t)

Figure 3.3: The integral path of the reflection integral equation of zeta function

4 Derivation of summation equation
We derive the summation equation from the reflection integral equation and residue theorem.

The reflection integral equation is shown below.
(Reflection integral equation)

dt
¢(1-s) =§C— B0~ (4.1)

We replace the variable s to 1-s and
replace the variable t to 1-t in the above equation.

4“(s)=§C BL-s1-D¢(-1) 42)

The integral path Co is shown in the following figure. The white circles mean poles.
19/40
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Figure 4.1: The integral path of the reflection integral equation of zeta function

We can obtain the following reflection formula of Beta function from reflection formula of the

gamma function.
(Reflection formula of Beta function)

e :7Z'Sin(7Z'(S+t—1)) 1
Bl-s1-1) sin(zs)sin(zt) B(s,t—1)(t—1) (4.3)

Therefore, we can deform the reflection integral equation as follows.

zsin(z(s+t-1) ¢@-t)  dt

c()= . sin(rs)sin(zt) B(s,t-1(t-1) 2ri (4.4)

We can calculate the above integration by residue theorem as follows

N zsin(z(s+t-1) <@-t)dt
¢)= — tFieci sin(zs)sin(zt) B(s,t-1)(t-1) (45)

Here, ckis k-th pole. The singularities are 0, 1, 2, 4, 6, ...

We have the following equation for integer n.

20/ 40



zsin(z(s+t-1)) dt —
t—n sin(zs)sin(rt)

-1 (4.6)

We can express derive the following equation since all singularities are integer and the function (
(A-t)is 0 fort=3,5,7, -
(Summation equation)

£(s)= ; st Y (4.7)

We cannot calculate by the above equation because it is divergent. In order to solve the problem,
we derive asymptotic expansion of Hurwitz zeta function.

5 Confirmations of known results (Part 2)
In this chapter, we confirm known results.

5.1 Hurwitz zeta function

Adolf Hurwitz!" introduced the following generalized zeta function in 1882.
(Definitional series)

0

1 1 1 1
¢(s9)= + + o= 5.1
(@+0)° (@+)° (@+2 ;(CHK)S .

The relation between Hurwitz and Riemann zeta function is shown below.

1 1 1 1 1
é’(s): — 4t + + +e 5.2
{15 2° (q—l)s} {(q+0)s (q+1)° } 2
at
4(s)=zk—s+c<s,q) (5.3)
k=1

Hurwitz zeta function becomes Riemann zeta function when g = 1.
g(s)=g(s) (5.4)

Hurwitz zeta function is also defined by the following formula.
(Definitional integral formula)

1 o0 S_l_e_qx
Q) =—— — d 5.5
£(s,0) F(S)J; ™ (5.5)

We can interpret the above formula as the following Mellin transform.
(Mellin transform)
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g(s,q) = M[G(x,q)] (5.6)

9(s,q) = jxs‘lG(x, q)dx (5.7)
0
G(x,q)= e_q: (5.8)
—e
9(s,q) =< (s,q)I(s) (5.9)

Hurwitz zeta function has the following integration.
(Contour integration)

A CY) I W e¥  dz

Tl-s) e Py (5.10)
We can interpret the above formula as the following inverse Z-transform.
(Inverse Z-transform)
h(s,q) = Z7[H(z,9)] (5.11)
_ dz
h(s,q) =§ZS "H(z,0)—— (5.12)
y 2ri
H(zq) =2 (5.13)
z,q) = .
1-¢?
¢(s.a)
h(s,q) = 5.14
5.8 = 2 (5.14)
Bernoulli polynomials have the following formula for natural number n.
(Formula of Bernoulli polynomials)
£(-n,q) = —2nald) (5.15)

n+1

5.2 Euler—Maclaurin formula

Euler'® discovered the following formula in 1738. After that, Maclaurin®® also discovered the
same formula in 1742 independently.
(Euler—Maclaurin formula)
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q
= J‘ f (x)dx (5.16)
P

S=%f(p)+f(p+1)+--~+f(q—1)+%f(q) (5.17)
S—1= Z%(f (D gy — <D (p))+ R (5.18)
k=2

In the above formula, R is an error term.

5.3 Asymptotic expansion
Euler?® calculated the value of the zeta function by Euler—Maclaurin formula in 1755.

(Asymptotic expansion)
r
—S
By (s+k-2)!
S E =41 —+ R 5.19

In the above formula, R is an error term. Detail method to derive the above formula is shown in

the book?! written by Edwards in 1974.
We can reform the above formula as follows.

g-1

CNCLUNB DGk 5 20
;(S) ;ks - kl F(S)qs+k -1 ( ' )

Here we used the following equation.
1-s
By I'(s+k-1
B Lsrk - (5.21)

k! s+k-1
i OL

S—

5.4 Faulhaber's formula
Johann Faulhaber?? published the formula of the sum of powers in 1631. We can express the

formula for natural number n as below.
(Faulhaber’s formula)

q n
n _L n+1-k
kZl:k _ ”*1;( 1) ( jB (0)q (5.22)

We can express the above formula by using Bernoulli polynomial Bk (1) as follows.
(Faulhaber’s formula)
23140



g-1

n_i ” _n\k n+l n+1-k
Dk —M;( 1) ( . jBk(l)q (5.23)

k=1

In this paper, we express the above formula by Bernoulli number By as follows.
(Faulhaber’s formula)

g-1 n
1 n+1
K" = —1)k B, g1k 5.24
> n+1§()(kjkq (524)
k=1 k=0

5.5 Ramanujan master theorem

Srinivasa Ramanujan obtained the following theorem? about 1910.
(Ramanujan master theorem)

o0

F= Y Sy (5.25)
n=0
I N e
f( S)_F(s) J;x F(x)dx (5.26)

We have the above equations for the following the Bernoulli number and zeta function.

- X
e -1
f(n) =B, (5.28)
f(=s)=s¢(s+1) (5.29)
This theorem suggests that the following relation.
ca-s)=-= (5.30)
5.6 Woon's introduction of continuous Bernoulli numbers
S. C. Woon?* introduced continuous Bernoulli numbers in 1997.
Bernoulli numbers has the following formula for natural number n.
(Formula of Bernoulli numbers)
£(-n)=-na (5.31)

n+1
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Woon extended these Bernoulli numbers to the continuous Bernoulli function, and showed the
following formula for the complex number s.
(Formula of Bernoulli function)
B(s)
S

Cl-s)=— (5.32)

In this paper we use the following notation for Bernoulli function based on the notation for
Bernoulli numbers.
(Formula of Bernoulli function)

gA-s)= —% (5.33)

We can obtain the following equation by substituting the above formula to “Riemann’s reflection
formula”.

2
s 2 [ jé” (s) (5.34)

We can obtain the following equation by deforming the above formula.
(Reflection formula of Bernoulli function)

27)° 1 1
S)=— B 5.35
<) 2 T(s+1)cos(rs/2) ° (5:35)
The above formula becomes the following formula for even positive integer s.
s S
=202 2", (5.36)
The above formula equals to the following formula for even positive integer n.
(Reflection formula of Bernoulli numbers)
+1
=L n2"s, (5.37)

The above result suggests that the validity of "Formula of Bernoulli function."

5.7 Norlund-Rice integral

Niels Erik Norlund®® published Nérlund—Rice integral in 1924.
(Norlund-Rice integral)

Z(”J(—l)k f(k):§ B(n+1,—t)f(t)d—t_ (5.38)
— k c 2ri

Here the path C circles around poles c, ..., n for positive integer c. B(X, y) is Euler’s Beta
function.
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Philippe Flajolet?® published Poisson—Mellin-Newton cycle in 1985 for Nérlund—Rice integral.

(Poisson—Mellin—Newton cycle)
1 n
F(x) = — ap X (5.39)

¢ n=0
f(s) = J‘ O;S‘lF(x)dx (5.40)
0
o pank NI(E-n) f(t) dt
=1 ifc T(t+1) T(~t)27i (541)

|
fEx=MIF(] |
|

I
. _(_1)n§ NCt-n) f@t) dt :
"o . T+ T(-t) 27i

Figure 5.1: Poisson—Mellin—Newton cycle

6 Derivation of asymptotic expansion

We cannot calculate by the summation equation of zeta function because it is divergent. In order
to solve the problem, we derive the asymptotic expansion from summation equation of Hurwitz zeta
function.

6.1 Relation between Riemann and Hurwitz zeta function
We show the relation between the Riemann and Hurwitz zeta function.
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()= Z%* £(5,9) 6.1)

We derive the asymptotic expansion from the above relation.

6.2 Derivation of summation equation of Hurwitz zeta function

Hurwitz zeta function is defined by the following formula.
(Definitional integral formula)

say-——[ 1=
¢(s.q J- X X (6.2)
I'(s) e -1
The formula can be expressed by the generating function of Mellin transform.
1 oos—1
£(s,q)= —jx G(x,q)dx (6.3)
I°(s) Jo
We can obtain the following equation by deforming the above formula.
1 OOs—l —gX
é(s,q)=—jx e”"H (x) ix (6.4)
We can obtain the following equation by substituting the equation of Z-transform.
1 [os S0
£(s,q) = —IXS (6.5)
I'(s)Jo I'(t)
D={0<|X <27} (6.6)

The Z-transform converges over the domain D. Therefore, we can commute the order of the
integration and the summation over the domain.

In order to integrate the above equation for the variable x, we deform the above equation as
follows.

— 1 Y _C(l_t) Oos+t—2 —gXx
g(s,q)_r(s); N0 Ox e dx (6.7)

We apply the following equation to the above equation.
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O jxs‘le‘qxdx (6.8)
S
q 0

As the result, we can obtain the following equation.

1 NO-¢(L-t) T(s+t-1)
s,q) = 6.9
{e0= 1 g o (6.9)
t=0
Here, we simplify the above equation by using the following the beta function.
1 '(x+
= (x+) (6.10)
B(x,y) T()r(y)
As the result, we can obtain the following equation.
(Summation equation)
C 1 ca-t
$,9)= 6.11
¢(s.0) Z B(s,t-1)(t-1) ¢ (6.11)

Therefore, we can express the summation equation Riemann zeta function as follows.
(Summation equation)

_\' 1 -1 -y
é(s)—kZl:ks + 20D e (6.12)

The solution of the above equation reaches an infinite value because the convergent radius of
“definitional series of Bernoulli function” is 2.

However, the numerical calculation of the summation equation is possible if we choose
appropriate g and integration domain.

6.3 Derivation of asymptotic expansion
In this section we derive the asymptotic expansion from the summation equation.

We can express the summation equation Riemann zeta function as follows.
(Summation equation)

g-1 o0
_\' 1 -1 g(A-k)
£(s)= kzl: o ; BEKDK-D g (6.13)

We can obtain the following equation by replacing beta function to gamma function.
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g-1 0
g(s):ZiJrZ -I'(s+k-1) <(1-k) (6.14)
k* LTk -1k -1) g
k=1 k=0
We can deform the above equation by Formula of Bernoulli polynomials as follows.
1 N -I(s+k-1) kB
£(s) = Z +Z vkl Kb (6.15)
k* Tk -1)(k -1) gs*1
k=1 k=0
We can deform the above equation as follows.
1 \OB, [(s+k-1)
k I'(s+k-—
S) = —+ —_ 6.16
C( ) st ki F(S)qs+k_1 ( )
k=1 k=0

The solution of the above equation reaches an infinite value because the convergent radius of
“definitional series of Bernoulli function” is 2z. Therefore, we change the upper limit of summation
to a variable r which depends on the variable g.

g-1
1 N BI(s+k-)
£(s) = kzﬂ:ks 0 T (6.17)

The above equation equals to asymptotic expansion.

7  Derivation of Faulhaber's formula
In this section we derive Faulhaber's formula from the summation equation.

We can express Riemann zeta function as follows for natural number n and integer k.
(Summation equation)

g-1 )

1 -1 ¢1-k)
é/(n) Zk_n ZB(n,k—l)(k—l) qn+k—l (7-1)

k=1 =0

We can derive the following asymptotic expansion as shown in the previous section.
(Asymptotic expansion)

g-1
1, Bk F(n+k 1)

We replace the variable n to —n in the above equation.

By F(=n+k-1) nik
Z ~£(n)- Z i (7.3)

We can deform the above equation by Euler’s reflection formula as follows.
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an ) Z sin(z(n+1)) T(n+1)q™* 7.4
k! sin(z(n—k +2)) T(n—k+2)
We have the following equation for natural number n and integer k.
sin(z(n +1))

: = (- 75
sin(z(n—k +2)) =D (7:5)
Therefore, we can obtain the following equation.
B I(n+1g"*™*
k" =& (-n +Z k k 7.6
Z s ) I'(n—k+2) (7.6)
We have the following equation for natural number n and integer k > n+2.
_ 7.7
I'n-k+2) (7.7
Therefore, we can obtain the foIIowing equation.
By , .k [(n+Dg"*
F(n Kk + 2)

k= n+2

According to the above result, we can change the upper limit of summation to n+1 of the

equation (7.6).
n+1-k
Zk“ - n>+Z w ot 09

We can express the following equation by using the factorial.

n+1 n+1-k
Z =¢(- n)+Z( 1) kn,'(i qk+1)| (7.10)

We can express the following equation by using the binomial coefficient.

g-1
Z e n)+—2( 1) [””] B g™ (7.11)
k=1

k=0

We can deform the above equation by Formula of Bernoulli polynomials as follows.
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g-1

n+1
) Y et e

k=1

We have the following equation for natural number n and integer k = n+1.

Bn+1 n+1 n+1-k
— B
n+1 n+1( ) ( 4

Therefore, we can obtain the following equation.

n+1 Z( 1) n+1 B n+1-k O
n+1 n+1 K

k=n+1

According to the above result, we can deform the equation as follows.

- 1 - n+1
kn — Z _1 k B n+1-k
Z n+1 - K 4
k=1 k=0
The above equation equals to Faulhaber's formula.

8 Derivation of Nérlund-Rice integral

8.1 Derivation of the reflection integral formula
We suppose new function H (z) for arbitrary function G (z) as follows.

H(z) = -e%G(2)

We obtain new function g(s) from Mellin transform of the function G (z).
g(s) =M[G(2)]

The inverse Mellin transform is shown below.

G(z) =M g(s)]

We obtain new function h(s) from the inverse Z-transform of the function H (z).

h(s) = Z ' [H(2)]

The relation of the above functions is shown below.
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G(z) =M g(s)] h(s) =Z 7' [H(z)]

Figure 8.1: The inverse Mellin transform and the inverse Z-transform

The formula of the inverse Z-transform is shown below.

s d
h(s) = i z 1H(z)z—;i (85)

We can deform the formula of the inverse Z-transform as follows.

_ s-1 z E
h(s)-i A G(Z)}zm (8.6)

We substitute the formula of the inverse Mellin transform into the above formula.

_ g _erg 9O dt | dz
h(s)—£z { e£ . 2ﬂi}27ri (8.7)

We deform the above formula in order to integrate it by the variable z.

h(s) = § H s-t-1g7 d;}g(t)% ©.9)

We apply the following contour integration of gamma function to the above equation.

_12 dZ
I*Cl S) 27zi

(8.9)

As the result, we can obtain the following equation.
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-1 dt
h(S)zim_SH) g(t) P (8.10)

We define new functions ¢ (s) and y (s) as follows.

9(s)

¢(s) = (8.11)
I'(s)
x(s)=h(s)I'A-5s) (8.12)
Then we can deform the above formula as follows.
-r@d- s)F(t)
t
x(s) = § Fd st &( ) 2 (8.13)
We can express the above formula by Euler’s Beta function as follows.
(Reflection integral formula)
dt
x(s) =§ -BA-s,)g(t) — (8.14)
c 2ri

8.2 Derivation of the summation formula

We can obtain the summation formula by adopting residue theorem to the contour integral
(Summation formula)

m+1

x(s) = ZB( Y. 1) 1-1) (8.15)

Here the path C circles around poles c+1, ..., m+1 for positive integer d. B(x, y) is Euler’s Beta
function.

8.3 Derivation of Norlund-Rice integral

We can derive Norlund—Rice integral from the reflection integral formula and the summation
formula.

The summation formula is shown below.
(Summation formula)

m+1

x(s) = ZB(St R 1) —t) (8.16)

We replace the variable s to -n and the variable t to k +1 in the above equation.

33/40



x(=n) = Zmﬂ k)

Then we introduce the following new function f (k).
f (k) = ¢(-k)

We can express the formula by the function f (k).

o1
RIIETAL

We deform the above equation by Euler’s gamma function.

T(=n+k)
2n) = Zr( kD

We obtain the following formula by using Euler’s reflection formula.

N ST+ sin(z(n+D)
a n)_kZF(n—k+1)F(k+1)sin(7r(n—k+1))f(k)

We have the following equation for natural number n and integer k.

sin(z(n+1)) Ak
sin(yr(n—k+1))_( )

We can obtain the following formula.

OO ST
4 n)_kZ:r(n—k+1)r(k+1)( Do

We have the following equation for natural number n and integer &> n+1

1 J—
T(n—k+1)

Therefore we can change the variable m to n.

ONC ST
4 n)_kz_:r(n—k+1)r(k+1)( Do

We can express the following equation by using the factorial.
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—nl
2(-n) = Z o ®

We can express the following equation by using the binomial coefficient.

n

-1 = Z(EJ(—DK 10

k=c

On the other hand, the reflection integral formula is shown below.
(Reflection integral formula)

2(5) = § ~BA-5D90) 5 -
c 7l

We replace the variable s to -n and the variable t to -t in the above equation.

o) =§ - YD)
C 7l

We use the following function.
f(t) =4(-1)

Then, we obtain the following equation.

— 7(-n) :§ B(n+1-t)f (t)d—t_
c 2ri

Therefore, we can obtain the following equation.

Z( J( D F (k) = § B(n+1,—t)f(t)2d—7:i

k=c

The above equation equals to Noérlund—Rice integral.

9 Conclusion

We obtained the following results in this paper.
- We derived reflection integral equation.

- We derived summation equation.

- We derived asymptotic expansion.

- We derived Faulhaber’s formula.

- We derived Noérlund-Rice integral.

10 Future issues
The future issues are shown below.
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- To study the relation between the generating function of Z-transform and zeros.

- To study the eigenvalues of integral equation.

11 Appendix

11.1 Table of Z-transform

Table of Z-transform is shown below.

f(s) F(z) =Z[f(s)] Num.
g(s) e’
f(s)=——"— =
(s) Fd_s) F(2) - (11.2)
f(s) =18 F(-—% 11.2
(s) I'l-ys) (2)= 1+e? (11.2)
é’(S,q) eqz
f(s,q) =21 - .
=Ty F(z,0)=— (11.3)
f(s,q) = 1S Fza) =2 11.4
(s,q) Fd_s) (za)=r—; (11.4)
d(w,s,q) qz
f =——> —
G =" ) T e (115)
L(4,q,s) a7z
f(s,0,4A)=——"—+ F(z,q,4) = ,
(s,0,4) Tios) (29 = e (11.6)
The definition of the functions is shown below.
(Definitional integral formula of Riemann zeta function)
£(s)=—— ‘1e—dx (11.7)
r(s) |
(Definitional integral formula of Dirichlet?” eta)
1 ” s—1 e_X
S)=——| X ——dx (11.8)
1(s) F(s).[) Lo

(Definitional integral formula of Hurwitz zeta function)
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_1 e
¢(s,q) = F()j —de

(Definitional integral formula of Hurwitz eta function)

o0 _qX
75,6 = —— j 1y
I'(s) Jo 1+e7*

(Definitional integral formula of Lerch transcendent?®)

o0 _qX
D(W, s, q) = LJ‘ £ dx
F(S) 0 1—We_x

(Definitional integral formula of Lerch zeta function)

g o

_1
L(/I,q,S)—F(S)J; X oo

The formulas of the polynomials are shown below.

ca-n=-208

v _En@®
n(=n) = 5

c@-n,q)=- ol
n

oy En(@)
n(=n.q) = 5

d(w,1-n,q) ﬂn(g,w)

The definitions of the polynomials are shown below.

(Bernoulli polynomials)
e _Z”:Bn @ r
e’ -1 n!

n=0

(Euler polynomials)

37140

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)
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= X 11.19
e’ +1 n! ( )
n=0
(Apostol-Bernoulli polynomials 2°)
xe ¥ - ,W
EANNZICID (11.20)
we* -1 n!
n=0

11.2 Derivation of the reflection integral equation from the reflection integral formula

The reflection integral formula is shown below.
(Reflection integral formula)

dt
x(s) =§ —B(l-s,t)g(t) — (11.21)
c 27
We add the following condition.
H(-2)=G(2) (11.22)
Then we can obtain the following relation.
#(s) = x(s) (11.23)
In other words, the following two equations are equivalent.

G(-2) =—e’G(2) (11.24)

$(1-s) =§C - B(s,t)qé(t);'—ﬂt_i (11.25)

12 Bibliography?®°

! Mail: mailto:sugiyama_xs@yahoo.co.jp, Site: (http://www.geocities.jp/x_seek/index_e.html).

2 Andres Odlyzko, “Correspondence about the origins of the Hilbert—Polya Conjecture”, (1981).

% Zeev Rudnick; Peter Sarnak, “Zeros of Principal L-functions and Random Matrix Theory”,
Duke Journal of Mathematics 81 (1996): 269-322.

4Yu. I. Manin, “Lectures on zeta functions and motives (according to Deninger and Kurokawa)”,
Ast erisque No. 228 (1995), 4, 121-163.

% Alain Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta
function” (1998), http://arxiv.org/abs/math/9811068.

38/40


mailto:sugiyama_xs@yahoo.co.jp
http://www.geocities.jp/x_seek/index_e.html
http://www.dtc.umn.edu/~odlyzko/polya/index.html
http://www.math.tau.ac.il/~rudnick/pub.html
http://arxiv.org/abs/math/9811068

® C. Deninger, “Some analogies between number theory and dynamical systems on foliated
spaces”, Doc. Math. J. DMV. Extra Volume ICMI (1998), 23-46.

" Hjalmar Mellin, “Die Dirichlet'schen Reihen, die zahlentheoretischen Funktionen und die
unendlichen Produkte von endlichem Geschlecht”, Acta Math. 28 (1904), 37-64.

& Witold Hurewicz, “Filters and Servo Systems with Pulsed Data”, in Theory of Servomechanics.
McGraw-Hill (1947).

® Augustin-Louis Cauchy, “Mémoire sur les rapports qui existent entre le calcul des Résidus et le
calcul des Limites, et sur les avantages qu'offrent ces deux calculs dans la résolution des équations
algébriques ou transcendantes (Memorandum on the connections that exist between the residue
calculus and the limit calculus, and on the advantages that these two calculi offer in solving
algebraic and transcendental equations)”, presented to the Academy of Sciences of Turin,
November 27, (1831).

10| eonhard Euler, Euler's letter to Goldbach 15 october (1729) (O0715),
http://eulerarchive.maa.org/correspondence/correspondents/Goldbach.html

1 Hermann Hankel, “Die Euler'schen integrale bei unbeschrankter Variabilitit der Arguments”,
Zeitschrift fur Math. und Physik 9 (1863) 1-21.

12| eonhard Euler, E342 — “Institutionum calculi integralis volumen primum (Foundations of
Integral Calculus, volume 1), First Section, De integratione formularum differentialum, Chapter 9,
De evolutione integralium per producta infinita. (1768),
http://www.math.dartmouth.edu/~euler/pages/E342.html

13 Bernhard Riemann, “Uber die Anzahl der Primzahlen unter einer gegebenen Grosse (On the
Number of Primes Less Than a Given Magnitude)”, Monatsberichte der Berliner Akademie, 671-
680 (1859).

14 Jakob Bernoulli, “Ars Conjectandi (The Art of Conjecturing)” (1713).

15 Seki Takakazu, “Katsuyo Sampo (Essentials of Mathematics)” (1712).

16 R. Vich, “Z-transform Theory and Applications”, D. Reidel Publishing Company, (1987).

17 Adolf Hurwitz, Zeitschrift fur Mathematik und Physik vol. 27 (1882) p. 95.

18 |_eonhard Euler, Comment. Acad. Sci. Imp. Petrop. , 6 (1738) pp. 68-97.

19 Colin Maclaurin, "A treatise of fluxions", 1-2, Edinburgh (1742).

20 |_eonhard Euler, E212 — “Institutiones calculi differentialis cum eius usu in analysi finitorum ac
doctrina serierum” (Foundations of Differential Calculus, with Applications to Finite Analysis and
Series), Part 11, Chapter 6: De summatione progressionum per series infinitas. (1755),
http://www.math.dartmouth.edu/~euler/pages/E212.html

2L H. M. Edwards, “Riemann’s Zeta Function”, Academic Press, (1974).

22 Johann Faulhaber, “Academia Algebrae - Darinnen die miraculosische Inventiones zu den
hochsten Cossen waiters continuity und profiteer warden” (1631).

23 B. C. Berndt, “Ramanujan's Notebooks: Part I”, New York: Springer-Verilog, p. 298, (1985).

245, C. Woon, “Analytic Continuation of Bernoulli Numbers, a New Formula for the Riemann
Zeta Function, and the Phenomenon of Scattering of Zeros” (1997),
http://arxiv.org/abs/physics/9705021

25 Niels Erik Norlund, “Vorlesungen uber Differenzenrechnung”, Teubner, Leipzig and Berlin,
(1924).

26 philippe Flajolet, Mireille Regnier, and Robert Sedgewick, “Some uses of the Mellin integral
transform in the analysis of algorithms”, Combinatorics on Words, NATO AS1 Series F, Vol. 12
(Springer, Berlin, 1985).

2" Dirichlet, P. G. L., “Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren
erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele
Primzahlen enthalt”, Abhand. Ak. Wiss. Berlin 48 (1837).

28 | erch, Mathias, “Note sur la fonction K (w ,x ,8) = Y k=0 2" (w + k), Acta Mathematica (in
French) 11 (1887) (1-4): 19-24.

29 Tom M. Apostol, “On the Lerch zeta function”, Pacific J. Math., 1, 161-167 (1951).

30 (Blank space) 39/ 40



http://eulerarchive.maa.org/correspondence/correspondents/Goldbach.html
http://www.math.dartmouth.edu/~euler/pages/E342.html
http://www.math.dartmouth.edu/~euler/pages/E212.html
http://arxiv.org/abs/physics/9705021

(Blank space)

40/40



	Derivation of the reflection integral equation of the zeta function by the complex analysis
	Abstract

	1 Introduction
	1.1 Issue
	1.2 Importance of the issue
	1.3 Research trends so far
	1.4 New derivation method of this paper

	2 Confirmations of known results
	2.1 Mellin transform
	2.2 Hurewicz’s Z-transform
	2.3 Cauchy’s residue theorem
	2.4 Euler's gamma function
	2.5 Euler's beta function
	2.6 Riemann zeta function
	2.7 Bernoulli polynomials
	2.8 Bernoulli numbers

	3 Derivation of the reflection integral equation
	3.1 The framework of the method to derivation
	3.2 Derivation of the reflection integral equation from the inverse Mellin transform

	4 Derivation of summation equation
	5 Confirmations of known results (Part 2)
	5.1 Hurwitz zeta function
	5.2 Euler–Maclaurin formula
	5.3 Asymptotic expansion
	5.4 Faulhaber's formula
	5.5 Ramanujan master theorem
	5.6 Woon's introduction of continuous Bernoulli numbers
	5.7 Nörlund–Rice integral

	6 Derivation of asymptotic expansion
	6.1 Relation between Riemann and Hurwitz zeta function
	6.2 Derivation of summation equation of Hurwitz zeta function
	6.3 Derivation of asymptotic expansion

	7 Derivation of Faulhaber's formula
	8 Derivation of Nörlund–Rice integral
	8.1 Derivation of the reflection integral formula
	8.2 Derivation of the summation formula
	8.3 Derivation of Nörlund–Rice integral

	9 Conclusion
	10 Future issues
	11 Appendix
	11.1 Table of Z-transform
	11.2 Derivation of the reflection integral equation from the reflection integral formula

	12 Bibliography

