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New proof that the sum of natural numbers is -1/12 of the zeta function 

 

Home  >  Quantum mechanics  >  Zeta function and Bernoulli numbers 
 

2016/07/09 

Published 2014/3/30 

K. Sugiyama1 

 

We prove that the sum of natural numbers is -1/12 of the value of the zeta function by the new 

method.  

 

 
 

Figure 5.1: Damped oscillation of natural number 

 

Abel calculated the sum of the divergent series by the Abel summation method. However, we 

cannot calculate the sum of natural numbers by the method. In this paper, we calculate the sum of 

the natural numbers by the extended Abel summation method. 
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1 Introduction 

1.1 Issue 

The integral representation of the zeta function converges by the analytic continuation. On the other 

hand, the zeta function also has a series representation. One of the representation is the sum of all 

natural numbers. The sum does not converge. It diverges. This paper converges the sum by the 

extended Abel summation method. 

 "1 + 2 + 3 +⋯" = −
1

12
 (1.1) 

 

1.2 Importance of the issue 

It is desirable that both the integral representation and the series representation have a same value 

for mathematical consistency. One method to converge the divergent series is the Abel summation 

method. The method converges the divergent series by multiplying convergence factor. However, 

the sum of all natural numbers does not converge by the method. Therefore, it is an important issue 

to find a new summation method. 

 

1.3 Research trends so far 

Leonhard Euler2 suggested that the sum of all natural numbers is -1/12 in 1749. Bernhard Riemann3 

showed that the integral representation of the zeta function is -1/12 in 1859. Srinivasa Ramanujan4 

proposed that the sum of all natural numbers is -1/12 by Ramanujan summation method in 1913.  

 

Niels Abel5 introduced the Abel summation method in order to converge the divergent series in 

about 1829. J. Satoh6 constructed q-analogue of zeta-function in 1989. M. Kaneko, N. Kurokawa, 

and M. Wakayama7 derived the sum of the double quoted natural numbers by the q-analogue of 

zeta-function in 2002. 



 

3 / 36 

 

1.4 New derivation method of this paper 

We define a new sum of all natural numbers by a new summation method, oscillating Abel 

summation method (damped oscillation summation method). The method converges the divergent 

series by multiplying convergence factor, which is damped and oscillating very slowly. The 

traditional sum diverges for the infinite terms. On the other hand, the new sum is equal to the 

traditional sum for the finite term. In addition, the sum converges on -1/12 for the infinite term. 

 

(Summation formula of natural numbers) 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

= −
1

12
 (1.2) 

 

 

1.5 Old method by the Abel summation method 

Niels Abel introduced the Abel summation method in about 1829. 

 

We consider the following sum of the series. 

 𝑆 = ∑𝑎𝑘

∞

𝑘=1

 (1.3) 

 

Then we define the following function. 

(The Abel summation method) 

 𝐹(𝑥) = ∑𝑎𝑘 exp(−𝑘𝑥)

∞

𝑘=1

 (1.4) 

 0 < 𝑥 (1.5) 

We define Abel sum as follows. 

 𝑆𝐴 = lim
𝑥→0+

𝐹(𝑥) (1.6) 

 

We consider the following divergent series. 

 𝑆 = ∑(−1)𝑘−1𝑘

∞

𝑘=1

 (1.7) 

 

Then we define the following function. 
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 𝐺(𝑥) = ∑(−1)𝑘−1𝑘 exp(−𝑘𝑥)

∞

𝑘=1

 (1.8) 

 0 < 𝑥 (1.9) 

 

Here, we will use the following formula. 

(Formula of the geometric series that has coefficients of natural numbers) 

 ∑𝑘𝑟𝑘
∞

𝑘=1

=
𝑟

(1 − 𝑟)2
 (1.10) 

 

We obtain the following equation by the above formula. 

 𝐹(𝑥) =
−𝑒−𝑥

(1 + 𝑒−𝑥)2
 (1.11) 

We calculate the Abel sum as follows. 

 𝑆𝐴 = lim
𝑥→0+

𝐹(𝑥) =
−𝑒−0

(1 + 𝑒−0)2
= −

1

4
 (1.12) 

 

Abel calculated the sum of the divergent series by the Abel summation method as above stated. 

However, we cannot calculate the sum of natural numbers by the method. We explain the reason as 

follows. 

 

 

We consider the following sum of all natural numbers. 

 𝑆 = ∑𝑘

∞

𝑘=1

 (1.13) 

Then we define the following function. 

 𝐺(𝑥) = ∑𝑘 exp(−𝑘𝑥)

∞

𝑘=1

 (1.14) 

 0 < 𝑥 (1.15) 

 

Here, we will use the following formula. 

(Formula of the geometric series that has coefficients of natural numbers) 

 ∑𝑘𝑟𝑘
∞

𝑘=1

=
𝑟

(1 − 𝑟)2
 (1.16) 

 

We obtain the following equation by the above formula. 
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 𝐺(𝑥) =
𝑒−𝑥

(1 − 𝑒−𝑥)2
 (1.17) 

We calculate the Abel sum as follows. 

 𝑆𝐴 = lim
𝑥→0+

𝐺(𝑥) =
−𝑒−0

(1 − 𝑒−0)2
= ∞ (1.18) 

 

The Abel sum diverges as above stated. Therefore, we cannot calculate the sum of the natural 

numbers by the method. 

 

In order to examine the mechanism of the divergence, we use the following definitional formula of 

Bernoulli numbers. 

  

(Definitional formula of Bernoulli numbers) 

 
𝑧𝑒𝑧

𝑒𝑧 − 1
= ∑

𝐵𝑛
𝑛!

𝑧𝑛
∞

𝑛=0

 (1.19) 

In this paper, Bernoulli numbers Bn is Bernoulli polynomial Bn (1). 

 

We will square the both sides of the above formula. In addition, we will divide the both sides by z2. 

Then we obtain the following equation. 

 
𝑒2𝑧

(1 − 𝑒𝑧)2
=

1

𝑧2
(∑

𝐵𝑛
𝑛!

𝑧𝑛
∞

𝑛=0

)

2

 (1.20) 

 

We will multiply the left side of the above formula by e-z. In addition, we will multiply the right 

side by Maclaurin series of e-z. Then we obtain the following equation. 

 
𝑒𝑧

(1 − 𝑒𝑧)2
=

1

𝑧2
(∑

𝐵𝑛
𝑛!

𝑧𝑛
∞

𝑛=0

)

2

∑
1

𝑛!
(−𝑧)𝑛

∞

𝑛=0

 (1.21) 

 

Therefore, we express the function G (x) as follows. 

 𝐺(𝑥) =
1

𝑥2
(∑

𝐵𝑛
𝑛!

(−𝑥)𝑛
∞

𝑛=0

)

2

∑
1

𝑛!
𝑥𝑛

∞

𝑛=0

 (1.22) 

We obtain the following equation by calculating the above formula. 

 

 𝐺(𝑥) =
1

𝑥2
(1 −

𝑥

2
+
𝑥2

12
+ 𝑂(𝑥3))

2

(1 + 𝑥 +
𝑥2

2
+ 𝑂(𝑥3)) (1.23) 

 𝐺(𝑥) =
1

𝑥2
(1 − 𝑥 +

5

12
𝑥2 + 𝑂(𝑥3))(1 + 𝑥 +

𝑥2

2
+ 𝑂(𝑥3)) (1.24) 
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 𝐺(𝑥) =
1

𝑥2
(1 + (1 − 1)𝑥 + (

1

2
− 1 +

5

12
) 𝑥2 + 𝑂(𝑥3)) (1.25) 

 𝐺(𝑥) =
1

𝑥2
(1 −

1

12
𝑥2 + 𝑂(𝑥3)) (1.26) 

 𝐺(𝑥) =
1

𝑥2
−

1

12
+ 𝑂(𝑥) (1.27) 

Here the symbol O (x) is Landau symbols. The symbol means that the error has the order of the 

variable x. 

The first term diverges. The first term is called singular term. 

 

Therefore, the following the Abel sum diverges. 

 𝑆𝐴 = lim
𝑥→0+

𝐺(𝑥) = ∞ (1.28) 

It is the purpose of this paper to remove this divergence. 

 

2 New method 

2.1 New proof for the summation formula of natural numbers 

We explain the new proof for the summation formula of natural numbers. 

 

 

We have the following proposition. We will prove the proposition in the next sections. 

Proposition 1. 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

= ∑𝑘

𝑛

𝑘=1

 (2.1) 

 

We have the following proposition. We will prove the proposition in the next sections, too. 

Proposition 2. 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

= −
1

12
 (2.2) 

 

We define the function Sn and Hn (x) as follows. 

 



 

7 / 36 

 𝑆𝑛 = ∑𝑘

𝑛

𝑘=1

 (2.3) 

 𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

 (2.4) 

 

Then we define the following symbols.  

 1 + 2 + 3 +⋯+ 𝑛 ∶= 𝑆𝑛 (2.5) 

 1 + 2 + 3 +⋯ ∶= lim
𝑛→∞

𝑆𝑛 (2.6) 

 "1 + 2 + 3 +⋯+ 𝑛" ∶= lim
𝑥→0+

𝐻𝑛(𝑥) (2.7) 

 "1 + 2 + 3 +⋯" ∶= lim
𝑥→0+

( lim
𝑛→∞

𝐻𝑛(𝑥)) (2.8) 

 

Then we have the following propositions. 

 1 + 2 + 3 +⋯ = ∞ (2.9) 

 "1 + 2 + 3 +⋯+ 𝑛" = 1 + 2 + 3 +⋯+ 𝑛 (2.10) 

 "1 + 2 + 3 +⋯" = −
1

12
 (2.11) 

 

The double quotes mean the analytic continuation of the sum of natural numbers. 

 

The traditional sum diverges for the infinite terms. On the other hand, the new “sum” is equal to the 

traditional sum for the finite term. In addition, the “sum” converges on -1/12 for the infinite term. 

 

2.2 Proof of the proposition 1 

Proposition 1. 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

= ∑𝑘

𝑛

𝑘=1

 (2.12) 

 

Proof. We define the function Hn (x) as follows. 

 𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

 (2.13) 

On the other hand, we have the following equation. 
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 lim
𝑥→0+

𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘0) cos(𝑘0)

𝑛

𝑘=1

= ∑𝑘

𝑛

𝑘=1

 (2.14) 

Therefore, we have the following equation. 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

= ∑𝑘

𝑛

𝑘=1

 (2.15) 

This completes the proof. 

 

2.3 Proof of the proposition 2 

Proposition 2. 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

= −
1

12
 (2.16) 

 

Proof. We consider the following sum of all natural numbers.  

 𝑆 = ∑𝑘

∞

𝑘=1

 (2.17) 

 

Then we define the following function. 

 

 𝐻(𝑥) ∶= ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

 (2.18) 

 0 < 𝑥 (2.19) 

Here, we use the following formula. 

(Euler's formula) 

 exp(𝑖𝜃) = cos(𝜃) + 𝑖 sin(𝜃) (2.20) 

We obtain the following formula from the above formula. 

 cos(𝜃) =
1

2
(exp(𝑖𝜃) + exp(−𝑖𝜃)) (2.21) 

We obtain the following formula from the above formula by putting θ = k x.  

 cos(𝑘𝑥) =
1

2
(exp(𝑖𝑘𝑥) + exp(−𝑖𝑘𝑥)) (2.22) 

 

 

Hence, we express the function H (x) as follows. 
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 𝐻(𝑥) = ∑𝑘 exp(−𝑘𝑥)
1

2
(exp(𝑖𝑘𝑥) + exp(−𝑖𝑘𝑥))

∞

𝑘=1

 (2.23) 

 𝐻(𝑥) =
1

2
∑𝑘 exp(−𝑘𝑥) exp(𝑖𝑘𝑥)

∞

𝑘=1

+
1

2
∑𝑘 exp(−𝑘𝑥) exp(−𝑖𝑘𝑥)

∞

𝑘=1

 (2.24) 

 𝐻(𝑥) =
1

2
∑𝑘 exp(−𝑘𝑥 + 𝑖𝑘𝑥)

∞

𝑘=1

+
1

2
∑𝑘 exp(−𝑘𝑥 − 𝑖𝑘𝑥)

∞

𝑘=1

 (2.25) 

 𝐻(𝑥) =
1

2
∑𝑘 exp(−𝑘(𝑥 − 𝑖𝑥))

∞

𝑘=1

+
1

2
∑𝑘 exp(−𝑘(𝑥 + 𝑖𝑥))

∞

𝑘=1

 (2.26) 

 

In addition, we define the following function. 

 𝐺(z) = ∑𝑘 exp(−𝑘𝑧)

∞

𝑘=1

 (2.27) 

 𝑧 ∈ ℂ (2.28) 

 

We express the function G (z) from the formula (1.27). 

 𝐺(𝑧) =
1

𝑧2
−

1

12
+ 𝑂(𝑧) (2.29) 

 

Hence, we express the function G (x - ix) as follows. 

 𝐺(𝑥 − 𝑖𝑥) = ∑𝑘 exp(−𝑘(𝑥 − 𝑖𝑥))

∞

𝑘=1

 (2.30) 

 𝐺(𝑥 − 𝑖𝑥) =
1

(𝑥 − 𝑖𝑥)2
−

1

12
+ 𝑂(𝑥) (2.31) 

Then, we express the function H (x). 

 𝐻(𝑥) =
1

2
𝐺(𝑥 − 𝑖𝑥) +

1

2
𝐺(𝑥 + 𝑖𝑥) (2.32) 

 𝐻(𝑥) =
1

2
(

1

(𝑥 − 𝑖𝑥)2
−

1

12
+ 𝑂(𝑥)) +

1

2
(

1

(𝑥 + 𝑖𝑥)2
−

1

12
+ 𝑂(𝑥)) (2.33) 

 𝐻(𝑥) =
1

2(𝑥 − 𝑖𝑥)2
+

1

2(𝑥 + 𝑖𝑥)2
−

1

12
+ 𝑂(𝑥) (2.34) 
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The first term is shown below. 

 
1

2(𝑥 − 𝑖𝑥)2
=

1

2(𝑥2 − 2𝑖𝑥2 − 𝑥2)
=

1

−4𝑖𝑥2
 (2.35) 

 

On the other hand, the second term is shown below. 

 
1

2(𝑥 + 𝑖𝑥)2
=

1

2(𝑥2 + 2𝑖𝑥2 − 𝑥2)
=

1

4𝑖𝑥2
 (2.36) 

Therefore, the sum of the first term and the second term vanishes. 

 
1

2(𝑥 − 𝑖𝑥)2
+

1

2(𝑥 + 𝑖𝑥)2
= 0 (2.37) 

Since the singular term vanished, we have the following equation. 

 𝐻(𝑥) = −
1

12
+ 𝑂(𝑥) (2.38) 

 

 

We express the function Hn (x) as follows. 

 𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

 (2.39) 

On the other hand, from the formula (2.38) we have the following equation. 

 lim
𝑛→∞

𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

= 𝐻(𝑥) = −
1

12
+ 𝑂(𝑥) (2.40) 

Therefore, we have the following equation. 

 lim
𝑥→0+

( lim
𝑛→∞

𝐻𝑛(𝑥)) = lim
𝑥→0+

(−
1

12
+ 𝑂(𝑥)) = −

1

12
 (2.41) 

This completes the proof. 

 

3 Conclusion 

We obtained the following results in this paper. 

- We proved that the sum of natural numbers is -1/12 of the value of the zeta function by the new 

method. 

 

4 Future issues 

The future issues are shown below. 

- To study the relation between the oscillating Abel summation method and the q-analog. 
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5 Supplement 

5.1 Numerical calculation of the oscillating Abel summation method 

We will calculate the following value numerically. 

 𝐻 = ∑ 𝑘 exp(−𝑘0.01) cos(𝑘0.01)

3000

𝑘=1

 (5.1) 

 

The result is shown below. 

 𝐻 = −0.0833333498⋯ (5.2) 

 

This value is very close to the following -1/12. 

 −
1

12
= −0.0833333333⋯ (5.3) 

 

The graph is shown in the Figure 5.1. 

 
 

Figure 5.1: Damped oscillation of natural number 

 

Here, we will double the attenuation factor as follows. We do not change the vibration period. 

 𝐻 = ∑ 𝑘 exp(−𝑘0.02) cos(𝑘0.01)

3000

𝑘=1

 (5.4) 

 

The result is shown below. 

 𝐻 = 1199.9166679⋯ (5.5) 
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Therefore, the series does not converge if the attenuation factor and the vibration period do not have 

a special relationship. We will consider the relation in the next section.  

 

5.2 General formula of the oscillating Abel summation method 

We consider the following series. 

 𝑆 = ∑𝑎𝑘

∞

𝑘=1

 (5.6) 

 

Then we define the following function. 

 𝐻(𝑥) = ∑𝑎𝑘 exp(−𝑘𝜙(𝑥)) cos(𝑘𝑥)

∞

𝑘=1

 (5.7) 

 0 < 𝑥 (5.8) 

 0 < 𝜙(𝑥) (5.9) 

In addition, we define the following function. 

 𝐺(z) = ∑𝑎𝑘 exp(−𝑘𝑧)

∞

𝑘=1

 (5.10) 

 𝑧 ∈ ℂ (5.11) 

 

We express the function G (z) by using the singular term A (z), and the constant C.  

 𝐺(𝑧) = 𝐴(𝑧) + 𝐶 + 𝑂(𝑧) (5.12) 

 

Here, we use the following formula. 

(Euler's formula)  

 exp(𝑖𝜃) = cos(𝜃) + 𝑖 sin(𝜃) (5.13) 

We express the function H (x) as follows by using the above formula. 

 𝐻(𝑥) =
1

2
(𝐺(𝑧) + 𝐺(𝑧̅)) (5.14) 

 𝑧 = 𝜙(𝑥) + 𝑖𝑥 (5.15) 

 𝑧̅ = 𝜙(𝑥) − 𝑖𝑥 (5.16) 

We obtain the following equation by using the formula (5.12) of the function G (z). 
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 𝐻(𝑥) =
1

2
(𝐴(𝑧) + 𝐴(z̅)) + 𝐶 + 𝑂(𝑧) (5.17) 

We determine the function 𝜙(𝑥) by the following singular equation in order to remove the singular 

term of the above equation. 

 (Singular equation) 

 
1

2
(𝐴(𝑧) + 𝐴(𝑧̅)) = 𝑂(𝑧) (5.18) 

 

 

The series a k and the function G (z) and 𝜙(𝑥) are shown below.  

Series  Function  Function  

1 𝐺(𝑧) = −
1

𝑧
−
1

2
+ 𝑂(𝑧) 𝜙(𝑥) = cot (

𝜋

2
) 𝑥 + 𝑂(𝑥3) 

𝑘 𝐺(𝑧) =
1

𝑧2
−

1

12
+ 𝑂(𝑧) 𝜙(𝑥) = cot (

𝜋

4
) 𝑥 + 𝑂(𝑥4) 

𝑘2 𝐺(𝑧) = −
2

𝑧3
+ 𝑂(𝑧) 𝜙(𝑥) = cot (

𝜋

6
) 𝑥 + 𝑂(𝑥5) 

𝑘3 𝐺(𝑧) =
6

𝑧4
+

1

120
+ 𝑂(𝑧) 𝜙(𝑥) = cot (

𝜋

8
) 𝑥 + 𝑂(𝑥6) 

𝑘𝑛 𝐺(𝑧) =
𝐴

𝑧𝑛+1
+ 𝜁(−𝑛) + 𝑂(𝑧) 𝜙(𝑥) = cot (

𝜋

2𝑛 + 2
) 𝑥 + 𝑂(𝑥𝑛+3) 

 

 

The series and the example of the damped oscillation summation method are shown below. 
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Series  Example of the damped oscillation summation method 

1 𝐻(𝑥) = ∑1exp(−𝑘𝑥3) cos(𝑘𝑥)

∞

𝑘=1

 

𝑘 𝐻(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

 

𝑘2 𝐻(𝑥) = ∑𝑘2 exp(−𝑘𝑥√3) cos(𝑘𝑥)

∞

𝑘=1

 

𝑘3 𝐻(𝑥) = ∑𝑘3 exp (−𝑘𝑥(1 + √2)) cos(𝑘𝑥)

∞

𝑘=1

 

𝑘𝑛 𝐻(𝑥) = ∑𝑘𝑛 exp (−𝑘𝑥 cot (
𝜋

2𝑛 + 2
)) cos(𝑘𝑥)

∞

𝑘=1

 

 

Therefore, we have the following equations. 

 "1 + 1 + 1 +⋯" = −
1

2
 (5.19) 

 "1 + 2 + 3 +⋯" = −
1

12
 (5.20) 

 "12 + 22 + 32 +⋯" = 0 (5.21) 

 "13 + 23 + 33 +⋯" =
1

120
 (5.22) 

 

We calculate the above equations as follows. 
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 lim
𝑥→0+

∑1exp(−𝑘𝑥3) cos(𝑘𝑥)

∞

𝑘=1

= −
1

2
 (5.23) 

 lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

= −
1

12
 (5.24) 

 lim
𝑥→0+

∑𝑘2 exp(−𝑘𝑥√3) cos(𝑘𝑥)

∞

𝑘=1

= 0 (5.25) 

 lim
𝑥→0+

∑𝑘3 exp (−𝑘𝑥(1 + √2)) cos(𝑘𝑥)

∞

𝑘=1

=
1

120
 (5.26) 

 

General formula of the oscillating Abel summation method is shown below. 

 "1𝑛 + 2𝑛 + 3𝑛 +⋯" = 𝜁(−𝑛) (5.27) 

 lim
𝑥→0+

∑𝑘𝑛 exp (−𝑘𝑥 cot (
𝜋

2𝑛 + 2
)) cos(𝑘𝑥)

∞

𝑘=1

= 𝜁(−𝑛) (5.28) 

 

 

5.3 The mean Abel summation method by residue theorem 

We consider the following sum of all natural numbers.  

 𝑆 ∶= ∑𝑘

∞

𝑘=1

 (5.29) 

Then we define the following function. 

 𝐻(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

 (5.30) 

 𝐺(𝑧) = ∑𝑘 exp(−𝑘𝑧)

∞

𝑘=1

 (5.31) 

We express the function H (x) as follows. 

 𝐻(𝑥) =
1

2
(𝐺(𝑥 − 𝑖𝑥) + 𝐺(𝑥 + 𝑖𝑥)) (5.32) 

We interpret the above function as a sum of the function G (z1) and G (z2) like the following Figure 

5.2. 
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Re(z) 

Im(z) 

O 

G(z1) 

G(z2) 

 

 

Figure 5.2: The oscillating Abel summation method 

 

In the above Figure 5.2, the two functions G (z1) and G (z2) approach to the origin O at the two 

angles. This is a special condition. Is it possible to make the condition more general? 

 

Then we consider the case that the many functions G (z) approach to the origin from the all points 

on the circle of the radius x like the following Figure 5.3 
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Re(z) 

Im(z) 

O 

G(z) 

G(z) 

 

G(z) 

 

G(z) 

 

x 

G(z) 

G(z) 

G(z) 

G(z) 

G(z) 

 

G(z) 

 

G(z) 

 

G(z) 

 

 

Figure 5.3: The mean Abel summation method 

 

We express the above consideration in the following equations. 

 𝐻(𝑥) =
1

2
(𝐺(𝑧1) + 𝐺(𝑧2)) (5.33) 

 𝐻(𝑥) =
1

3
(𝐺(𝑧1) + 𝐺(𝑧2) + 𝐺(𝑧3)) (5.34) 

 𝐻(𝑥) =
1

4
(𝐺(𝑧1) + 𝐺(𝑧2) + 𝐺(𝑧3) + 𝐺(𝑧4)) (5.35) 

 𝐻(𝑥) =
1

𝑛
(𝐺(𝑧1) + 𝐺(𝑧2) + 𝐺(𝑧3) + ⋯+ 𝐺(𝑧𝑛)) (5.36) 

 𝐻(𝑥) = ∑
1

𝑛
𝐺(𝑧𝑘)

𝑛

𝑘=1

 (5.37) 

The function H (x) is the mean value of the function G (z). 

 

We suppose that the circumference of the circle of the radius x is L. We express the circumference L 

of the circle as follows. 
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 𝐿 = 2𝜋𝑥 (5.38) 

On the other hand, we approximately express the circumference L as follows for sufficiently large 

n. 

 𝐿 = 𝑛|𝑧𝑘+1 − 𝑧𝑘| (5.39) 

Therefore, we have the following equation. 

 2𝜋𝑥 = 𝑛|𝑧𝑘+1 − 𝑧𝑘| (5.40) 

 

Then, we express the normalized constant 1/n as follows. 

 
1

𝑛
=
|𝑧𝑘+1 − 𝑧𝑘|

2𝜋|𝑧𝑘|
 (5.41) 

 |𝑧𝑘| = 𝑥 (5.42) 

On the other hand, the direction of -i (zk+1 - zk) is same as the direction of zk as shown in the Figure 

5.4 

 
 

Re(z) 

Im(z) 

O x 

zk 

zk +1 

zk +1 - zk 

-i (zk +1 - zk) 
-i 

 

Figure 5.4: General damped oscillation summation method 

 

Therefore, we express 1/n as follows. 
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1

𝑛
=
|𝑧𝑘+1 − 𝑧𝑘|

2𝜋|𝑧𝑘|
=
−𝑖(𝑧𝑘+1 − 𝑧𝑘)

2𝜋𝑧𝑘
=
−𝑖𝛿𝑧𝑘
2𝜋𝑧𝑘

 (5.43) 

 𝛿𝑧𝑘 ∶= 𝑧𝑘+1 − 𝑧𝑘 (5.44) 

 

Therefore, we express the function H (x) as follows. 

 𝐻(𝑥) = ∑
−𝑖𝛿𝑧𝑘

2𝜋𝑧𝑘
𝐺(𝑧𝑘)

𝑛

𝑘=1

 (5.45) 

 

We express the above sum as the following integration.  

 𝐻(𝑥) = ∮
−𝑖𝑑𝑧

2𝜋𝑧
𝐺(𝑧)

|𝑧|=𝑥

 (5.46) 

 𝐻(𝑥) = ∮
𝑑𝑧

2𝜋𝑖𝑧
𝐺(𝑧)

|𝑧|=𝑥

 (5.47) 

The above result is equal to the residue theorem. We can interpret the residue theorem the mean 

value theorem of contour integration. 

 

We obtain the following result by the residue theorem. 

 𝐻(𝑥) = ∮
𝑑𝑧

2𝜋𝑖𝑧|𝑧|=𝑥

(
1

𝑧2
−

1

12
+ 𝑂(𝑧)) = −

1

12
 (5.48) 

 

Therefore, we obtain the following new general summation method. 

(The mean Abel summation method) 

 𝑆 = ∑𝑎𝑘

∞

𝑘=1

 (5.49) 

 𝐺(𝑧) = ∑𝑎𝑘 exp(−𝑘𝑧)

∞

𝑘=1

 (5.50) 

 𝐻(𝑥) = ∮
𝑑𝑧

2𝜋𝑖𝑧
𝐺(𝑧)

|𝑧|=𝑥

 (5.51) 

 𝑆𝐻 = lim
𝑥→0+

𝐻(𝑥) (5.52) 

This summation method can sum any series by the residue theorem. 

 

5.4 Definitions of the propositions by the (ε, δ)-definition of limit 

The value of the limit depends on the order of the limit as follows. 
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 lim
𝑥→0

( lim
𝑛→∞

∑𝑘exp(−kx) cos(𝑘𝑥)

𝑛

𝑘=1

) = −
1

12
 (5.53) 

 lim
𝑛→∞

(lim
𝑥→0

∑𝑘exp(−kx) cos(𝑘𝑥)

𝑛

𝑘=1

) = ∞ (5.54) 

 

In this paper, we define the order of the limit as follows. 

 lim
𝑥→0

∑𝑓𝑘(𝑥)

∞

𝑘=1

: = lim
𝑥→0

( lim
𝑛→∞

∑𝑓𝑘(𝑥)

𝑛

𝑘=1

) (5.55) 

 𝑓𝑘(𝑥) = 𝑘 exp(−kx) cos(𝑘𝑥) (5.56) 

 

This order of the limit means the following relation. 

 0 ≪
1

𝑥
≪ 𝑛 (5.57) 

We confirm the above relation by the (ε, δ)-definition of limit. 

 

In this section, we define the following proposition by the (ε, δ)-definition of limit. 

We define the function Sn and Hn (x), and the constant α as follows. 

 𝑆𝑛 = ∑𝑘

𝑛

𝑘=1

 (5.58) 

 𝐻𝑛(𝑥) = ∑𝑘 exp(−𝑘𝑥) cos(𝑘𝑥)

𝑛

𝑘=1

 (5.59) 

 𝛼 = −
1

12
 (5.60) 

 

We have the following proposition. 

 lim
𝑛→∞

𝑆𝑛 = ∞ (5.61) 

We can express the above proposition by (R, N)-definition of the limit as follows. 

 

Given any number R > 0, there exists a natural number N such that for all n satisfying  

 𝑁 < 𝑛, (5.62) 

we have the following inequation. 

 𝑅 < 𝑆𝑛 (5.63) 
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We have the following proposition. 

Proposition 1. 

 lim
𝑥→0+

𝐻𝑛(𝑥) = 𝑆𝑛 (5.64) 

We can express the above proposition by (ε, δ)-definition of the limit as follows. 

 

Given any number x > 0 and any natural number n, there exists a number δ > 0 such that for all x > 

0 satisfying  

 𝑥 < 𝛿, (5.65) 

we have the following inequation. 

 |𝐻𝑛(𝑥) − 𝑆𝑛| < 𝜀 (5.66) 

 

We can summarize the above definition as follows. 

 
∀𝜀 > 0, ∀𝑛 ∈ ℕ, ∃𝛿 > 0s. t. 
∀𝑥 > 0, 𝑥 < 𝛿 ⇒ |𝐻𝑛(𝑥) − 𝑆𝑛| < 𝜀 

(5.67) 

 

 

We have the following proposition. 

Proposition 2. 

 lim
𝑥→0+

( lim
𝑛→∞

𝐻𝑛(𝑥)) = 𝛼 (5.68) 

 0 ≪
1

𝑥
≪ 𝑛 (5.69) 

We can express the above proposition by (ε, δ)-definition of the limit as follows. 

 

Given any number ε > 0, there exist a natural number N and a number δ > 0 such that for all n 

satisfying  

 𝑁 < 𝑛, (5.70) 

we have the following inequation. 

 |𝐻𝑛(𝛿) − 𝛼| < 𝜀 (5.71) 

 

We can summarize the above definition as follows. 

 
∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∃𝛿 > 0s. t. 
∀𝑛 ∈ ℕ,𝑁 < 𝑛 ⇒ |𝐻𝑛(𝛿) − 𝛼| < 𝜀 

(5.72) 

 

The proposition 1 is the region of 1+2+3+…+n and the proposition 2 is the region -1/12 in the 

following figure. 
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1/x 

O n N 

1/δ 

−1/12 

1+2+3+…+n 
ε=0.01 

 

Figure 5.5: (ε, δ)-definition of limit 

 

 

6 Appendix 

6.1 Proof of the summation formula of the powers of the natural numbers 

The author found the following formula and proved it in March 2014. 

(Summation formula of the natural numbers) 

 𝜁(−1) = lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

 (6.1) 

N.S found the following formula by generalizing the above formula and published in March 2015. 

(Summation formula of the powers of the natural numbers) 

 𝜁(1 − 2𝑡) = lim
𝑥→0+

∑𝑘2𝑡−1 exp(−𝑘𝑡𝑥) cos(𝑘𝑡𝑥)

∞

𝑘=1

 (6.2) 

In this section, we prove the above formula in the following condition. 

 1 ≤ 𝑡 (6.3) 

 

6.1.1 Cauchy’s integral formula and mean formula 

We express the function F(z) which is differentiated s-times as follows. 
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 𝐹(𝑠)(𝑧) =
𝑑𝑠

𝑑𝑧𝑠
𝐹(𝑧) (6.4) 

We call the differentiated function F (s)(z) the derivative. We call the function we differentiate the 

generating function. On the other hand, Cauchy’s integral formula is shown below. 

(Cauchy’s integral formula) 

 𝐹(𝑎) = ∮
𝑑𝑧

2𝜋𝑖(𝑧 − 𝑎)
𝐹(𝑧)

𝐶

 (6.5) 

The function F(z) is holomorphic in the Cauchy’s integral formula. If the function F(z) is not 

holomorphic, the integrated function is different from the original function by residue theorem. In 

this paper, we call the formula with the non-holomorphic function F(z) Cauchy’s mean formula in 

order to distinguish the Cauchy’s integral formula. 

(Cauchy’s mean formula) 

 𝑓(𝑎) = ∮
𝑑𝑧

2𝜋𝑖(𝑧 − 𝑎)
𝐹(𝑧)

𝐶

 (6.6) 

We interpret the function f(a) as the mean value of the values on the contour path C of the function 

F(z). Therefore, we interpret the Cauchy’s mean formula as the mean value theorem. We interpret 

the function f (a) is the analytic continuation of the function f (z). We call the analytic continuation 

of the function the mean function. We use different function name for the function f(a) since the 

mean function is different from the original function generally. 

 

Cauchy’s mean differentiation formula is shown below. 

(Cauchy’s mean differentiation formula) 

 𝑓(𝑠)(𝑎) = Γ(𝑠 + 1)∮
𝑑𝑧

2𝜋𝑖(𝑧 − 𝑎)

1

(𝑧 − 𝑎)𝑠
𝐹(𝑧)

𝐶

 (6.7) 

We call the differentiated function f (s)(z) the mean derivative. We interpret that the Cauchy’s mean 

differentiation formula is the formula that averages and differentiates the function. We interpret that 

the mean derivative f (s)(z) is the function we average and differentiate s-times. We express the 

mean derivative by from derivative by Cauchy’s mean formula. 

(Cauchy’s mean formula) 

 𝑓(𝑠)(𝑎) = ∮
𝑑𝑧

2𝜋𝑖(𝑧 − 𝑎)
𝐹(𝑠)(𝑧)

𝐶

 (6.8) 

We express the generating function by from mean derivative by Laurent series. 

(Laurent series) 

 𝐹(𝑧) = ∑
𝑓(𝑠)(𝑎)

Γ(𝑠 + 1)
(𝑧 − 𝑎)𝑠

∞

𝑠=−∞

 (6.9) 

The relation of the functions in this section is shown below. 
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Figure 6.1: Mean generating function and mean derivative 

 

 

6.1.2 Laurent series and the pole of the order zero 

Generally, the order of the pole is a positive integer n. 

(The pole of the order n) 

 
1

𝑧𝑛
 (6.10) 

 1 ≤ 𝑛 ∈ ℤ (6.11) 

Though the order of the pole is greater or equal to one generally, we introduce the following the 

pole of the order zero by using finite positive real number h in this paper. 

(The pole of the order zero) 

 
1

ℎ𝑧ℎ
 (6.12) 

 0 < ℎ ≪ 1 (6.13) 

The pole of the order zero is divergent at z=0. The differentiation of the above pole is shown below. 

 
𝑑

𝑑𝑧
(
1

ℎ𝑧ℎ
) = −

1

𝑧
 (6.14) 

On the other hand, the differentiation of the natural logarithm is shown below. 
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𝑑

𝑑𝑧
(log (

1

𝑧
)) = −

1

z
 (6.15) 

Therefore, we interpret the natural logarithm as the pole of the order zero. 

We derive the constant term from the coefficient of the argument of the natural logarithm. 

 log (
𝐶

𝑧
) = log (

1

𝑧
) + log(𝐶) = log (

1

𝑧
) + 𝛾 (6.16) 

Therefore, the new interpretation that we regard the term of the order zero as the pole of the order 

zero is consistent with the old interpretation that we regard the term of the order zero as the constant 

term. 

 

We express any function by the new Laurent series with natural logarithm.  

(Laurent series with natural logarithm) 

 𝐹(𝑧) = ∑
𝑓(𝑘)(0)

Γ(𝑘 + 1)
𝑧𝑘−ℎ

∞

𝑘=−∞

 (6.17) 

 𝑓(𝑘)(0) = Γ(𝑘 + 1)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑘
𝐹(𝑧) (6.18) 

We express the function F(z) as follows if the function has the pole of the order zero at most by 

using the constant A and γ. 

 𝐹(𝑧) = 𝐴 log (
1

𝑧
) + 𝛾 +∑

𝑓(𝑘)(0)

Γ(𝑘 + 1)
𝑧𝑘

∞

𝑘=1

 (6.19) 

 

 

6.1.3 The proof of the summation formula of the natural numbers by harmonic 
derivative 

Harmonic number is shown below. 

(Harmonic number) 

 𝐻𝑛 = ∑
1

𝑘

𝑛

𝑘=1

 (6.20) 

We define the harmonic generating function as follows. 

 (Harmonic generating function) 

 𝐻𝑛(𝑧):= ∑
1

𝑘

𝑛

𝑘=1

exp(𝑘𝑧)  (6.21) 

 

We obtain the harmonic derivative by differentiating the harmonic generating function s-times. 

(Harmonic derivative) 
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 𝐻𝑛
(𝑠)(𝑧) = ∑

𝑘𝑠

𝑘

𝑛

𝑘=1

exp(𝑘𝑧)  (6.22) 

 

We introduce the following symbol. 

 𝐻(𝑧) = lim
𝑛→∞

𝐻𝑛
(0)(𝑧) = Li1(𝑒

𝑧) (6.23) 

Then, we introduce the following symbol. 

 𝐻(𝑠)(𝑧) = lim
𝑛→∞

𝐻𝑛
(𝑠)(𝑧) = Li(1−𝑠)(𝑒

𝑧) (6.24) 

We define the mean harmonic derivative by Cauchy’s mean formula. 

(Mean harmonic derivative) 

 𝜈𝑛
(𝑠)(0):= ∮

𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝐻𝑛
(𝑠)(𝑧) (6.25) 

We call the above function the natural derivative. We call the natural derivative the natural 

function shortly. 

 

We introduce the following symbol. 

 𝜈(s)(0) = lim
𝑛→∞

𝜈𝑛
(𝑠)(0) = 𝜁(1 − 𝑠) (6.26) 

Then, we introduce the following symbol. 

 𝜈𝑛
(𝑠)

= 𝜈𝑛
(𝑠)
(0) (6.27) 

We obtain the natural function by Cauchy’s mean differentiation formula. 

(The natural function) 

 𝜈(𝑠)(0) = Γ(𝑠 + 1)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑠
𝐻(𝑧) (6.28) 

We choose the following condition.  

 Re(𝑧) < 0 (6.29) 

On the other hand, the harmonic generating function is shown below. 

 𝐻(𝑧) = − log(1 − 𝑒𝑧) (6.30) 

We calculate the order of the pole of the harmonic generating function at z=0 by using Landau’s 

symbol as follows. 

 𝐻(𝑧) = − log(1 − 𝑒𝑧) = − log(1 − (1 + 𝑂(𝑧))) = 𝑂 (log (
1

𝑧
) ) (6.31) 

Since the harmonic generating function has the pole of the order zero at z=0, we express the 

function as the Laurent series by using the constant A and γ. 

(Laurent series of the harmonic generating function) 



 

27 / 36 

 𝐻(𝑧) = 𝐴 log (
1

𝑧
) + 𝛾 +∑

𝜈(𝑘)(0)

Γ(𝑘 + 1)
𝑧𝑘

∞

𝑘=1

 (6.32) 

We differentiate the above function two-times. 

 𝐻(2)(𝑧) =
𝐴

𝑧2
+ 𝜈(2)(0) + 𝑂(𝑧) (6.33) 

 

We prove the summation formula of the natural numbers as follows.  

 𝑆 = lim
𝑥→0+

∑𝑘exp(−𝑘𝑥) cos(𝑘𝑥)

∞

𝑘=1

 (6.34) 

 𝑆 = lim
𝑥→0+

1

2
(𝐻(2)(−𝑥 + 𝑖𝑥) + 𝐻(2)(−𝑥 − 𝑖𝑥)) (6.35) 

 𝑆 = lim
𝑥→0+

1

2
(

𝐴

(−𝑥 + 𝑖𝑥)2
+

𝐴

(−𝑥 − 𝑖𝑥)2
) + 𝜈(2)(0) + 𝑂(𝑥) (6.36) 

 𝑆 = 𝜈(2)(0) = 𝜁(−1) = −
1

12
 (6.37) 

(Q.E.D.) 

 

6.1.4 The proof of the summation formula of the powers of the natural numbers by 
harmonic overtone derivative 

We define the harmonic overtone generating function as follows. 

(Harmonic overtone generating function) 

 𝐻𝑛
𝑡(𝑧):= ∑

1

𝑘

𝑛

𝑘=1

exp(𝑘𝑡𝑧) (6.38) 

We obtain the harmonic overtone derivative by differentiating the harmonic overtone generating 

function s-times. 

(Harmonic overtone derivative) 

 𝐻𝑛
𝑡(𝑠)(𝑧) = ∑

𝑘𝑠𝑡

𝑘

𝑛

𝑘=1

exp(𝑘𝑡𝑧) (6.39) 

 

We introduce the following symbol. 

 𝐻𝑡(𝑧) = lim
𝑛→∞

𝐻𝑛
𝑡(0)(𝑧) (6.40) 

Then, we introduce the following symbol. 

 𝐻𝑡(𝑠)(𝑧) = lim
𝑛→∞

𝐻𝑛
𝑡(𝑠)(𝑧) (6.41) 
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We define the mean harmonic overtone derivative by Cauchy’s mean formula. 

(Mean harmonic overtone derivative) 

 𝜈𝑡(𝑠)(0):= ∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝐻𝑡(𝑠)(𝑧) (6.42) 

We call the above function the natural overtone derivative. We call the natural overtone derivative 

the natural overtone function shortly. 

 

We introduce the following symbol. 

 𝜈𝑡(𝑠)(0) = lim
𝑛→∞

𝜈𝑛
𝑡(𝑠)(0) = 𝜁(1 − 𝑠𝑡) (6.43) 

Then, we introduce the following symbol. 

 𝜈𝑛
𝑡(𝑠) = 𝜈𝑛

𝑡(𝑠)(0) (6.44) 

 

We obtain the natural overtone function by Cauchy’s mean differentiation formula. 

(The natural overtone function) 

 𝜈𝑡(𝑠)(0) = Γ(𝑠 + 1)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑠
𝐻𝑡(𝑧) (6.45) 

We choose the following condition.  

 1 ≤ 𝑡 (6.46) 

Then, we have the following equation for the positive k. 

 𝑘 ≤ 𝑘𝑡 (6.47) 

In addition, we choose the following condition. 

 Re(𝑧) < 0 (6.48) 

Then, we have the following equation for the positive k.  

 | exp(𝑘𝑡𝑧) | ≤ | exp(𝑘𝑧) | (6.49) 

Therefore, we have the following equation by choosing the absolute value of the z is very small. 

 |𝐻𝑡(𝑧)| = |∑
exp(𝑘𝑡𝑧)

𝑘

∞

𝑘=1

| ≤ |∑
exp(𝑘𝑧)

𝑘

∞

𝑘=1

| = |𝐻(𝑧)| (6.50) 

From the above result, we found that the harmonic overtone generating function does not have the 

pole of higher order than the pole of the harmonic generating function. 

 

We calculate the order of the pole of the harmonic generating function at z=0 by using Landau’s 

symbol as follows. 

 𝐻(𝑧) = − log(1 − 𝑒𝑧) = − log(1 − (1 + 𝑂(𝑧))) = 𝑂 (log (
1

𝑧
)) (6.51) 

Since the harmonic overtone generating function has the pole of the order zero at z=0, we express 

the function as the Laurent series by using the function A(t) and γ(t). 

(Laurent series of the harmonic overtone generating function) 
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 𝐻𝑡(𝑧) = 𝐴(𝑡) log (
1

𝑧
) + 𝛾(𝑡) +∑

𝜈𝑡(𝑘)(0)

Γ(𝑘 + 1)
𝑧𝑘

∞

𝑘=1

 (6.52) 

We differentiate the above function two-times. 

 𝐻𝑡(2)(𝑧) =
𝐴(𝑡)

𝑧2
+ 𝜈𝑡(2)(0) + 𝑂(𝑧) (6.53) 

 

We prove the summation formula of the powers of the natural numbers as follows. 

 𝑆 = lim
𝑥→0+

∑𝑘2𝑡−1 exp(−𝑘𝑡𝑥) cos(𝑘𝑡𝑥)

∞

𝑘=1

 (6.54) 

 𝑆 = lim
𝑥→0+

1

2
(𝐻𝑡(2)(−𝑥 + 𝑖𝑥) + 𝐻𝑡(2)(−𝑥 − 𝑖𝑥)) (6.55) 

 𝑆 = lim
𝑥→0+

1

2
(

𝐴(𝑡)

(−𝑥 + 𝑖𝑥)2
+

𝐴(𝑡)

(−𝑥 − 𝑖𝑥)2
) + 𝜈𝑡(2)(0) + 𝑂(𝑥) (6.56) 

 𝑆 = 𝜈𝑡(2)(0) = 𝜁(1 − 2𝑡) (6.57) 

(Q.E.D.) 

 

 

6.1.5 The second proof 

In the previous section, we prove the summation formula of the powers of the natural numbers on 

the following condition. 

 1 ≤ 𝑡 (6.58) 

In this section, we prove the formula on the following condition. 

 0 < 𝑡 (6.59) 

On the above condition, we have the following formula for the natural number k. 

 𝑘𝑡 < (𝑘 + 1)𝑡 (6.60) 

Therefore, we have the following formula. 

 exp(𝑘𝑡) < exp((𝑘 + 1)𝑡) (6.61) 

In addition, we choose the following condition. 

 Re(𝑧) < 0 (6.62) 

Then, we have the following formula for the natural number k and very small z. 

 |exp(𝑘𝑡𝑧)| > |exp((𝑘 + 1)𝑡𝑧)| (6.63) 

In the same way, we have the following formula for the natural number k and very small z. 
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 |
exp(𝑘𝑡𝑧)

𝑘
| > |

exp((𝑘 + 1)𝑡𝑧)

k + 1
| (6.64) 

Therefore, the absolute value of the following function monotonically decreases. 

 𝑓(𝑥) =
exp(𝑥𝑡𝑧)

𝑥
 (6.65) 

As shown in the following figure, the first term and the integration of the function f(x) from one to 

infinity is greater than the harmonic overtone generating function. 

 

 
 

Figure 6.2: Harmonic overtone generating function 

 

Therefore, we have the following formula for very small z. 

 |𝐻𝑡(𝑧)| = |∑
exp(𝑘𝑡𝑧)

𝑘

∞

𝑘=1

| < |𝑒𝑧 +∫
exp(𝑥𝑡𝑧)

𝑥

∞

1

𝑑𝑥| (6.66) 

Here, we transform the variable as follows. 

 𝑦 = 𝑥𝑡  (6.67) 

We differentiate the both sides. 

 𝑑𝑦 = 𝑡𝑥𝑡−1𝑑𝑥 (6.68) 

 𝑑𝑦 = 𝑡𝑥𝑡
𝑑𝑥

𝑥
 (6.69) 

 𝑑𝑦 = 𝑡𝑦
𝑑𝑥

𝑥
 (6.70) 

 
1

𝑡

𝑑𝑦

𝑦
=
𝑑𝑥

𝑥
 (6.71) 

Therefore, we transform the variable of the integration as follows. 

0
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0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
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|𝑒𝑧 +∫
exp(𝑥𝑡𝑧)

𝑥

∞

1

𝑑𝑥|

= |𝑒𝑧

+
1

𝑡
∫

exp(𝑦𝑧)

𝑦

∞

1

𝑑𝑦| 

(6.72) 

Here, we consider the following function. 

 𝑔(𝑦) =
exp(𝑦𝑧)

𝑦
 (6.73) 

As shown in the following figure, the harmonic generating function is greater than the first term and 

the integration of the function g(y) from one to infinity. 

 

 
Figure 6.3: Harmonic generating function 

 

Therefore, we have the following formula for very small z. 

 |𝑒𝑧 +
1

𝑡
∫

exp(𝑦𝑧)

𝑦

∞

1

𝑑𝑦| < |𝑒𝑧 +
1

𝑡
∑

exp(𝑘𝑧)

𝑘

∞

𝑘=1

| (6.74) 

As shown in the previous section, the right side of the following formula has the pole of zero-th at 

z=0. 

 |𝐻𝑡(𝑧)| = |∑
exp(𝑘𝑡𝑧)

𝑘

∞

𝑘=1

| < |𝑒𝑧 +
1

𝑡
∑

exp(𝑘𝑧)

𝑘

∞

𝑘=1

| (6.75) 

Therefore, as shown in the previous section, we have the following formula. 

 𝜁(1 − 2𝑡) = lim
𝑥→0+

∑𝑘2𝑡−1 exp(−𝑘𝑡𝑥) cos(𝑘𝑡𝑥)

∞

𝑘=1

 (6.76) 
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6.2 Riemann zeta function 

Harmonic derivative is shown below. 

(Harmonic derivative) 

 𝐻𝑛
(𝑠)(𝑧) = ∑

𝑘𝑠

𝑘

𝑛

𝑘=1

exp(𝑘𝑧) (6.77) 

We express the harmonic number by the limit of the harmonic derivative. 

 𝐻𝑛 = lim
𝑧→0

(lim
𝑠→0

𝐻𝑛
(𝑠)(𝑧)) (6.78) 

We define the partition function as follows. 

(Partition function) 

 𝑍(𝑧) = ∑exp(𝑘𝑧)

∞

𝑘=1

 (6.79) 

We express the partition function by the limit of the harmonic derivative. 

 𝑍(𝑧) = lim
𝑠→1

( lim
𝑛→∞

𝐻𝑛
(𝑠)(𝑧)) (6.80) 

Riemann defined the zeta function. 

(Zeta function) 

 𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

 (6.81) 

 1 < Re(𝑠) (6.82) 

We express the zeta function by the limit of the harmonic derivative. 

 𝜁(𝑠) = lim
𝑧→0

( lim
𝑛→∞

𝐻𝑛
(1−𝑠)(𝑧)) (6.83) 

We summarize the above results as follows. 

- The harmonic number is the limit of the harmonic derivative. 

- The partition function is the limit of the harmonic derivative. 

- The zeta function is the limit of the harmonic derivative. 

 

We express these relations in the following figure. 
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Figure 6.4: Zeta function 

 

The natural function is shown below. 

(The natural function) 

 𝜈𝑛
(𝑠)(0) = ∮

𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝐻𝑛
(𝑠)(𝑧) (6.84) 

We obtain the following formula by integrating the above formula by parts (s-1)-times. 

 𝜈𝑛
(𝑠)(0) = Γ(𝑠)∮

𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑠−1
𝐻𝑛

(1)(𝑧) (6.85) 

We replace the variable s by 1-s. 

 𝜈𝑛
(1−𝑠)(0) = Γ(1 − 𝑠)∮

𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝑧𝑠𝐻𝑛
(1)(𝑧) (6.86) 

On the other hand, Riemann defined the analytic zeta function. 

(The analytic zeta function) 

 𝜁(𝑠) = Γ(1 − 𝑠)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝑧𝑠
𝑒𝑧

1 − 𝑒𝑧
 (6.87) 

We express the analytic zeta function by the limit of the natural function. 

 𝜁(𝑠) = lim
𝑛→∞

𝜈𝑛
(1−𝑠)(0) (6.88) 

We express these relations in the following figure. 
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Figure 6.5: Analytic zeta function 

 

6.3 Jacobi’s theta function 

Riemann expressed the zeta function by the Jacobi’s theta function. 

(The express of the zeta function by the Jacobi’s theta function) 

 𝜁(−2𝑠) =
1

Γ(−s)
∫

𝑑𝑥

𝑥

1

𝑥𝑠

∞

0

1

𝜋𝑠
𝜓(𝑥) (6.89) 

 𝜓(𝑥) = ∑exp(−𝑘2𝜋𝑥)

∞

𝑘=1

 (6.90) 

(Jacobi’s theta function) 

 𝜃(𝑧, 𝜏) = ∑ exp(𝜋𝑖𝑘2𝜏 + 2𝜋𝑖𝑘𝑧)

∞

𝑘=−∞

 (6.91) 

 𝜃(0, 𝑖𝑥) = 1 + 2𝜓(𝑥) (6.92) 

 

On the other hand, we have the mean harmonic overtone derivative as follows. 

(Mean harmonic overtone derivative) 

 𝜈𝑡(𝑠)(0) = ∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

𝐻𝑡(𝑠)(𝑧) (6.93) 

We obtain the following formula by integrating the above formula by parts s-times. 
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 𝜈𝑡(𝑠)(0) = Γ(𝑠 + 1)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑠
𝐻𝑡(0)(𝑧) (6.94) 

We express the zeta function by the harmonic overtone generating function. 

(The express of the zeta function by the harmonic overtone generating function) 

 𝜁(1 − 𝑠𝑡) = Γ(𝑠 + 1)∮
𝑑𝑧

2𝜋𝑖𝑧


𝐶

1

𝑧𝑠
𝐻𝑡(0)(𝑧) (6.95) 

(Harmonic overtone generating function) 

 𝐻𝑡(0)(𝑧) = ∑
1

𝑘

∞

𝑘=1

exp(𝑘𝑡𝑧) (6.96) 

 

6.4 Relation with the q-analog 

6.4.1 The q-analog 

F. H. Jackson8 defined the following quantized new natural number, the q-number in 1904. 

(The q-number) 

 [𝑛]𝑞 ∶= 1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑛−1 (6.97) 

 [𝑛]𝑞 = ∑𝑞𝑘−1
𝑛

𝑘=1

 (6.98) 

 [𝑛]𝑞 =
1 − 𝑞𝑛

1 − 𝑞
 (6.99) 

We call the quantized mathematical object the q-analog generally. The q-analog of the natural 

number n is the q-number [n]q. We express the natural number by the classical limit of the q-

number. 

 𝑛 = lim
𝑞→1−

[𝑛]𝑞  (6.100) 

The zeta function is shown below. 

(Zeta function) 

 𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

 (6.101) 

The q-analog of the zeta function is the q-zeta function. The function is shown below.7 

(The q-zeta function) 

 𝜁𝑞(𝑠) ∶= ∑
1

[𝑛]𝑞
𝑠 𝑞

𝑛(𝑠−1)

∞

𝑛=1

 (6.102) 

We express the zeta function by the classical limit of the q-zeta function. 
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 𝜁(𝑠) = lim
𝑞→1−

𝜁𝑞(𝑠) (6.103) 

 𝜁(𝑠) = ∑
1

[𝑛]1
𝑠 1

𝑛(𝑠−1)

∞

𝑛=1

 (6.104) 

 𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

 (6.105) 

 1 < Re(𝑠) (6.106) 

 

The relation with the harmonic derivative is shown below. 

 [𝑛]𝑞 =
1

exp(𝑧)
𝐻𝑛
(1)(𝑧) (6.107) 

 𝑞 = exp(𝑧)  (6.108) 
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