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Dr. Cai Wen defined in his 1983 paper: — the distance formula between a pointx0 and
a one-dimensional (1D) interval<a,b>; — and the dependence function which gives
the degree of dependence of a point with respect to a pair of included 1D-intervals.
His paper inspired us to generalize the Extension Set to two-dimensions, i.e. in plane
of real numbersR2 where one has a rectangle (instead of a segment of line), deter-
mined by two arbitrary pointsA(a1, a2) andB(b1,b2). And similarly in R3, where one
has a prism determined by two arbitrary pointsA(a1,a2, a3) and B(b1,b2,b3). We ge-
ometrically define the linear and non-linear distance between a point and the 2D and
3D-extension set and the dependent function for a nest of two included 2D and 3D-
extension sets. Linearly and non-linearly attraction point principles towards the optimal
point are presented as well. The same procedure can be then used considering, instead
of a rectangle, any bounded 2D-surface and similarly any bounded 3D-solid, and any
bounded (n − D)-body in Rn. These generalizations are very important since the Ex-
tension Set is generalized from one-dimension to 2, 3 and even n-dimensions, therefore
more classes of applications will result in consequence.

1 Introduction

Extension Theory (or Extenics) was developed by Professor
Cai Wen in 1983 by publishing a paper called Extension Set
and Non-Compatible Problems. Its goal is to solve contradic-
tory problems and also nonconventional, nontraditional ideas
in many fields. Extenics is at the confluence of three disci-
plines: philosophy, mathematics, and engineering. A con-
tradictory problem is converted by a transformation function
into a non-contradictory one. The functions of transformation
are: extension, decomposition, combination, etc. Extenics
has many practical applications in Management, Decision-
Making, Strategic Planning, Methodology, Data Mining, Ar-
tificial Intelligence, Information Systems, Control Theory,
etc. Extenics is based on matter-element, affair-element, and
relation-element.

2 Extension Distance in 1D-space

Let’s use the notation<a, b> for any kind of closed, open, or
half-closed interval [a, b], (a, b), (a, b], [a, b). Prof. Cai Wen
has defined the extension distance between a pointx0 and a
real intervalX = <a, b>, by
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where in general:

ρ : (R,R2)→ (−∞,+∞) . (2)

Algebraically studying this extension distance, we find
that actually the range of it is:

ρ (x0,X) ∈
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]
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Fig. 1:

Fig. 2:

or its minimum range value−
(

b−a
2

)

depends on the intervalX
extremitiesa andb, and it occurs when the pointx0 coincides
with the midpoint of the intervalX, i.e. x0 =

a+b
2 . The closer

is theinterior point x0 to the midpoint of the interval<a, b>,
the negatively larger isρ (x0,X).

In Fig. 1, for interior pointx0 betweena and a+b
2 , the ex-

tension distanceρ (x0,X) = a−x0 is thenegative length of the
brown line segment[left side]. Whereas for interior pointx0

betweena+b
2 andb, the extension distanceρ (x0,X) = x0 − b

is the negative length of the blue line segment[right side].
Similarly, the further isexterior point x0 with respect to the
closest extremity of the interval<a, b> to it (i.e. to eithera or
b), the positively larger isρ (x0,X).

In Fig. 2, for exterior pointx0<a, the extension distance
ρ (x0,X) = a − x0 is the positive length of the brown line
segment [left side]. Whereas for exterior pointx0>b, the ex-
tension distanceρ (x0,X) = x0−b is thepositive length of the
blue line segment[right side].

3 Principle of the Extension 1D-Distance

Geometrically studying this extension distance, we find the
following principle that Prof. Cai Wen has used in 1983
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defining it:

ρ (x0,X) is the geometric distance between the point x0

and the closest extremity point of the interval<a, b > to
it (going in the direction that connects x0 with the op-
timal point), distance taken as negative if x0 ∈ <a, b>,
and as positive if x0 ⊂ <a, b >.

This principle is very important in order to generalize the
extension distance from 1D to 2D (two-dimensional
real space), 3D (three-dimensional real space), andn−D
(n-dimensional real space).

The extremity points of interval< a, b> are the pointa
andb, which are also the boundary (frontier) of the interval
< a, b>.

4 Dependent Function in 1D-Space

Prof. Cai Wen defined in 1983 in 1D the Dependent Function
K(y). If one considers two intervalsX0 andX, that have no
common end point, andX0 ⊂ X, then:

K(y) =
ρ (y,X)

ρ (y,X) − ρ (y,X0)
. (4)

SinceK(y) was constructed in 1D in terms of the exten-
sion distanceρ (., .), we simply generalize it to higher dimen-
sions by replacingρ (., .) with the generalized in a higher di-
mension.

5 Extension Distance in 2D-Space

Instead of considering a segment of lineAB representing the
interval<a, b> in 1R, we consider a rectangleAMBN rep-
resenting all points of its surface in 2D. Similarly as for 1D-
space, the rectangle in 2D-space may be closed (i.e. all points
lying on its frontier belong to it), open (i.e. no point lyingon
its frontier belong to it), or partially closed (i.e. some points
lying on its frontier belong to it, while other points lying on
its frontier do not belong to it).

Let’s consider two arbitrary pointsA(a1, a2) andB(b1, b2).
Through the pointsA andB one draws parallels to the axes of
the Cartesian systemXY and one thus one forms a rectangle
AMBNwhose one of the diagonals is justAB.

Let’s note byO the midpoint of the diagonalAB, but O
is also the center of symmetry (intersection of the diagonals)
of the rectangleAMBN. Then one computes the distance be-
tween a pointP (x0, y0) and the rectangleAMBN. One can do
that following the same principle as Dr. Cai Wen did:

— compute the distance in 2D (two dimensions) between
the pointP and the centerO of the rectangle (intersec-
tion of rectangle’s diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN.

Fig. 3: P is an interior point to the rectangleAMBNand the optimal
point O is in the center of symmetry of the rectangle.

Fig. 4: P is an exterior point to the rectangleAMBNand the optimal
point O is in the center of symmetry of the rectangle.

This step can be done in the following way: considering
P′ as the intersection point between the linePOand the fron-
tier of the rectangle, and taken among the intersection points
that pointP′ which is the closest toP; this case is entirely
consistent with Dr. Cai’s approach in the sense that when re-
ducing from a 2D-space problem to two 1D-space problems,
one exactly gets his result.

The Extension 2D-Distance, forP , O, will be:

ρ
(

(x0, y0),AMBN
)

= d
(

point P, rectangleAMBN
)

=

= |PO| − |P′O| = ±|PP′|, (5)

i) which is equal to the negative length of the red seg-
ment|PP′| in Fig. 3, whenP is interior to the rectangle
AMBN;

ii) or equal to zero, whenP lies on the frontier of the rect-
angleAMBN(i.e. on edgesAM, MB, BN, orNA) since
P coincides withP′;

iii) or equal to the positive length of the blue segment|PP′|
in Fig. 4, whenP is exterior to the rectangleAMBN,
where |PO| means the classical 2D-distance between
the pointP andO, and similarly for|P′O| and|PP′|.

The Extension 2D-Distance, for the optimal point, i.e.
P = O, will be

ρ (O,AMBN) = d(pointO, rectangleAMBN) =

= −maxd
(

pointO, point M on the frontier ofAMBN
)

. (6)
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The last step is to devise the Dependent Function in 2D-
space similarly as Dr. Cai’s defined the dependent function in
1D. The midpoint (or center of symmetry)O has the coordi-
nates

O

(

a1 + b1

2
,
a2 + b2

2

)

. (7)

Let’s compute the

|PO| − |P′O| . (8)

In this case, we extend the lineOP to intersect the frontier
of the rectangleAMBN. P′ is closer toP thanP′′, therefore
we considerP′. The equation of the linePO, that of course
passes through the pointsP (x0, y0) andO

(

a1+b1
2 ,

a2+b2
2

)

, is:

y − y0 =

a2+b2
2 − y0

a1+b1
2 − x0

(x− x0) . (9)

Since thex-coordinate of pointP′ is a1 becauseP′ lies on
the rectangle’s edgeAM, one gets they-coordinate of pointP′

by a simple substitution ofxP′ = a1 into the above equality:

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (10)

ThereforeP′ has the coordinates

P′
[

xP′ = a1, yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0)

]

. (11)

The distance

d(PQ) = |PQ| =

√

(

x0 −
a1 + b1

2

)2

+

(

y0 −
a2 + b2

2

)2

, (12)

while the distance
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Also, the distance

d(PP′) = |PP′| =
√

(a1 − x0)2 + (yP′ − y0)2 . (14)

Whence the Extension 2D-distance formula

ρ
[

(x0, y0), AMBN
]
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= d
[
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]
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= ±|PP′| (17)

= ±

√

(a1 − x0)2 + (yP′ − y0)2 , (18)

where

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (19)

6 Properties

As for 1D-distance, the following properties hold in 2D:

6.1 Property 1

a) (x, y) ∈ Int (AMBN) if ρ [(x, y),AMBN] < 0, where
Int (AMBN) means interior ofAMBN;

b) (x, y) ∈ Fr (AMBN) if ρ [(x, y),AMBN] = 0, where
Fr (AMBN) means frontier ofAMBN;

c) (x, y) < AMBN if ρ [(x, y),AMBN] > 0.

6.2 Property 2

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN. We assume they have the same optimal points
O1 ≡ O2 ≡ O located in the center of symmetry of the two
rectangles. Then for any point (x, y) ⊂ R2 one has
ρ [(x, y),A0M0B0N0] > ρ [(x, y),AMBN]. See Fig. 5.

Fig. 5: Two included rectangles with the same optimal pointsO1 ≡

O2 ≡ O located in their common center of symmetry.

7 Dependent 2D-Function

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN.
The Dependent 2D-Function formula is:

K2D(x,y) =
ρ [(x, y),AMBN]

ρ [(x, y),AMBN, ] − ρ [(x, y),A0M0B0N0]
. (20)

7.1 Property 3

Again, similarly to the Dependent Function in 1D-space,
one has:

a) If (x, y) ∈ Int (A0M0B0N0), thenK2D(x,y) > 1;

b) If (x, y) ∈ Fr (A0M0B0N0), thenK2D(x,y) = 1;
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c) If (x, y) ∈ Int (AMBN− A0M0B0N0),
then 0< K2D(x,y) < 1;

d) If (x, y) ∈ Fr (AMBN), thenK2D(x,y) = 0;

e) If (x, y) < AMBN, thenK2D(x, y) < 0.

8 General Case in 2D-Space

One can replace the rectangles by any finite surfaces, bounded
by closed curves in 2D-space, and one can consider any op-
timal pointO (not necessarily the symmetry center). Again,
we assume the optimal points are the same for this nest of two
surfaces. See Fig. 6.

Fig. 6: Two included arbitrary bounded surfaces with the same opti-
mal points situated in their common center of symmetry.

9 Linear Attraction Point Principle

We introduce the Attraction Point Principle, which is the fol-
lowing:

Let S be a given set in the universe of discourseU, and
the optimal pointO ⊂ S. Then each pointP (x1, x2, . . . , xn)
from the universe of discourse tends towards, or is attracted
by, the optimal pointO, because the optimal pointO is an
ideal of each point. That’s why one computes the exten-
sion (n−D)-distance between the pointP and the setS as
ρ [(x1, x2, . . . , xn),S] on the direction determined by the point
P and the optimal pointO, or on the linePO, i.e.:

a) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

b) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

c) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples where
such attraction point principle works. If this principle isgood
in all cases, then there is no need to take into considerationthe
center of symmetry of the setS, since for example if we have
a 2D piece which has heterogeneous material density, then
its center of weight (barycenter) is different from the center
of symmetry. Let’s see below such example in the 2D-space:
Fig. 7.

Fig. 7: The optimal point O as an attraction point for all other points
P1,P2, . . . ,P8 in the universe of discourseR2.

10 Remark 1

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN, would be by
drawing a perpendicular (or a geodesic) fromP onto the clos-
est rectangle’s edge, and denoting byP′ the intersection be-
tween the perpendicular (geodesic) and the rectangle’s edge.
And similarly if one has an arbitrary setS in the 2Dspace,
bounded by a closed urve. One computes

d(P,S) =Inf
Q∈S
|PQ| (21)

as in the classical mathematics.

11 Extension Distance in 3D-Space

We further generalize to 3D-space the Extension Set and the
Dependent Function. Assume we have two points (a1, a2, a3)
and (b1, b2, b3) in D. Drawing throughA endB parallel planes
to the planes’ axes (XY,XZ,YZ) in the Cartesian systemXYZ
we get a prismAM1M2M3BN1N2N3 (with eight vertices)
whose one of the transversal diagonals is just the line segment
AB. Let’s note byO the midpoint of the transverse diagonal
AB, butO is also the center of symmetry of the prism.

Therefore, from the line segmentAB in 1D-space, to
a rectangleAMBN in 2D-space, and now to a prism
AM1M2M3BN1N2N3 in 3D-space. Similarly to 1D- and 2D-
space, the prism may be closed (i.e. all points lying on its
frontier belong to it), open (i.e. no point lying on its frontier
belong to it), or partially closed (i.e. some points lying onits
frontier belong to it, while other points lying on its frontier
do not belong to it).

Then one computes the distance between a point
P (x0, y0, z0) and the prismAM1M2M3BN1N2N3. One can do
that following the same principle as Dr. Cai’s:

— compute the distance in 3D (two dimensions) between
the pointP and the centerO of the prism (intersection
of prism’s transverse diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier of
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the prismAM1M2M3BN1N2N3 (the prism’s lateral sur-
face); consideringP′ as the intersection point between
the line OP and the frontier of the prism, and taken
among the intersection points that pointP′ which is the
closest toP; this case is entirely consistent with Dr.
Cai’s approach in the sense that when reducing from
3D-space to 1D-space one gets exactly Dr. Cai’s result;

— the Extension 3D-Distanced(P,AM1M2M3BN1N2N3)
is d(P,AM1M2M3BN1N2N3) = |PO| − |P′O| = ±|PP′|,
where |PO| means the classical distance in 3D-space
between the pointP andO, and similarly for|P′O| and
|PP′|. See Fig. 8.

Fig. 8: Extension 3D-Distance between a point and a prism, where
O is the optimal point coinciding with the center of symmetry.

12 Property 4

a) (x, y, z) ∈ Int (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] < 0,
where Int (AM1M2M3BN1N2N3) means interior
of AM1M2M3BN1N2N3;

b) (x, y, z) ∈ Fr (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] = 0
means frontier ofAM1M2M3BN1N2N3;

c) (x, y, z) < AM1M2M3BN1N2N3

if ρ [(x, y, z),AM1M2M3BN1N2N3] > 0.

13 Property 5

Let A0M01M02M03B0N01N02N03 and AM1M2M3BN1N2N3

be two prisms whose sides are parallel to the axes of the
Cartesian system of coordinates, such that they have no
common end points, andA0M01M02M03B0N01N02N03 ⊂

AM1M2M3BN1N2N3. We assume they have the same opti-
mal pointsO1 ≡ O2 ≡ O located in the center of symmetry of
the two prisms.

Then for any point (x, y, z) ∈ R3 one has

ρ [(x, y, z),A0M01M02M03B0N01N02N]03 >

ρ [(x, y, z)AM1M2M3BN1N2N3] .

14 The Dependent 3D-Function

The last step is to devise the Dependent Function in 3D-space
similarly to Dr. Cai’s definition of the dependent function
in 1D-space. Let the prismsA0M01M02M03B0N01N02N03 and
AM1M2M3BN1N2N3 be two prisms whose faces are paral-
lel to the axes of the Cartesian system of coordinatesXYZ,
such that they have no common end points in such a way that
A0M01M02M03B0N01N02N03 ⊂ AM1M2M3BN1N2N3. We as-
sume they have the same optimal pointsO1 ≡ O2 ≡ O located
in the center of symmetry of these two prisms.

The Dependent 3D-Function formula is:

K3D(x,y,z) =
(

ρ [(x, y, z),AM1M2M3BN1N2N3]
)

×

×
(

ρ [(x, y, z),AM1M2M3BN1N2N3, ] −

− ρ [(x, y, z),A0M01M02M03BN01N02N03]
)−1
. (22)

15 Property 6

Again, similarly to the Dependent Function in 1D- and 2D-
spaces, one has:

a) If (x, y, z) ∈ Int (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) > 1;

b) If (x, y, z) ∈ Fr (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) = 1;

c) If (x, y, z) ∈ Int (AM1M2M3BN1N2N3−

−A0M01M02M03B0N01N02N03),
then 0< K3D(x, y, z) < 1;

d) If (x, y, z) ∈ Fr (AM1M2M3BN1N2N3),
thenK3D(x, y, z) = 0;

e) If (x, y, z) < AM1M2M3BN1N2N3,
thenK3D(x, y, z) < 0.

16 General Case in 3D-Space

One can replace the prisms by any finite 3D-bodies, bounded
by closed surfaces, and one considers any optimal pointO
(not necessarily the centers of surfaces’ symmetry). Again,
we assume the optimal points are the same for this nest of
two 3D-bodies.

17 Remark 2

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (lateral
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surface) of the prismAM1M2M3BN1N2N3 is by drawing a
perpendicular (or a geodesic) fromP onto the closest prism’s
face, and denoting byP′ the intersection between the perpen-
dicular (geodesic) and the prism’s face.

And similarly if one has an arbitrary finite bodyB in the
3D-space, bounded by surfaces. One computes as in classical
mathematics:

d(P, B) =Inf
Q∈B
|PB|. (23)

18 Linear Attraction Point Principle in 3D-Space

Fig. 9: Linear Attraction Point Principle for any bounded 3D-body.

19 Non-Linear Attraction Point Principle in 3D-Space,
and in (n−D)-Space

There might be spaces where the attraction phenomena un-
dergo not linearly by upon some specific non-linear curves.
Let’s see below such example for pointsPi whose trajecto-
ries of attraction towards the optimal point follow some non-
linear 3D-curves.

20 (n−D)-Space

In general, in a universe of discourseU, let’s have an (n−D)-
set S and a pointP. Then the Extension Linear (n−D)-
Distance between pointP and setS, is:

ρ (P,S) =







































−d(P,P′)
P′∈Fr (S)

, P , 0, P ∈ |OP′|

d(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ |OP|

−maxd(P,M)
P′∈Fr (S)

, P = 0

(24)

whereO is the optimal point (or linearly attraction point);
d(P,P′) means the classical linearly (n−D)-distance between

Fig. 10: Non-Linear Attraction Point Principle for any bounded 3D-
body.

two pointsP andP′; Fr (S) means the frontier of setS; and
|OP′| means the line segment between the pointsO and P′

(the extremity pointsO andP′ included), thereforeP ∈ |OP′|
means thatP lies on the lineOP′, in between the pointsO
andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointOand the setS as the negatively max-
imum distance (to be in concordance with the 1D-definition).

And the Extension Non-Linear (n−D)-Distance between
point P and setS, is:

ρc(P,S) =







































−dc(P,P′)
P′∈Fr (S)

, P , 0, P ∈ c (OP′)

dc(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ c (OP)

−maxdc(P,M)
P′∈Fr (S), M∈c (O)

, P = 0

(25)

where means the extension distance as measured along the
curve c; O is the optimal point (or non-linearly attraction
point); the points are attracting by the optimal point on tra-
jectories described by an injective curvec; dc(P,P′) means
the non-linearly (n−D)-distance between two pointsP and
P′, or the arc length of the curve c between the pointsP and
P′; Fr (S) means the frontier of setS; andc (OP′) means the
curve segment between the pointsO and P′ (the extremity
pointsO andP′ included), thereforeP ∈ (OP′) means thatP
lies on the curvec in between the pointsO andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointO and the setS as the negatively
maximum curvilinear distance (to be in concordance with the
1D-definition).
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In general, in a universe of discourseU, let’s have a nest
of two (n−D)-sets,S1 ⊂ S2, with no common end points,
and a pointP. Then the Extension Linear Dependent (n−D)-
Function referring to the pointP (x1, x2, . . . , xn) is:

KnD(P) =
ρ (P,S2)

ρ (P,S2) − ρ (P,S1)
, (26)

where is the previous extension linear (n−D)-distance be-
tween the pointP and the (n−D)-setS2.

And the Extension Non-Linear Dependent (n−D)-Func-
tion referring to pointP (x1, x2, . . . , xn) along the curvec is:

KnD(P) =
ρc(P,S2)

ρc(P,S2) − ρc(P,S1)
, (27)

where is the previous extension non-linear (n−D)-distance
between the pointP and the (n−D)-setS2 along the curvec.

21 Remark 3

Particular cases of curvesc could be interesting to studying,
for example if c are parabolas, or have elliptic forms, or arcs
of circle, etc. Especially considering the geodesics wouldbe
for many practical applications. Tremendous number of ap-
plications of Extenics could follow in all domains where at-
traction points would exist; these attraction points couldbe in
physics (for example, the earth center is an attraction point),
economics (attraction towards a specific product), sociology
(for example attraction towards a specific life style), etc.

22 Conclusion

In this paper we introduced theLinear and Non-Linear At-
traction Point Principle, which is the following:

Let S be an arbitrary set in the universe of discourseU
of any dimension, and the optimal pointO ∈ S. Then each
point P (x1, x2, . . . , xn), n > 1, from the universe of discourse
(linearly or non-linearly) tends towards, or is attracted by, the
optimal pointO, because the optimal pointO is an ideal of
each point.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples and
applications where such attraction point principle may apply.

If this principle is good in all cases, then there is no need
to take into consideration the center of symmetry of the set
S, since for example if we have a 2D factory piece which
has heterogeneous material density, then its center of weight
(barycenter) is different from the center of symmetry.

Then we generalized in the track of Cai Wen’s idea
to extend 1D-set to an extension (n−D)-set, and thus de-
fined theLinear (or Non-Linear) Extension(n−D)-Distance
between a pointP (x1, x2, . . . , xn) and the (n−D)-set S as
ρ [(x1, x2, . . . , xn),S] on the linear (or non-linear) direction
determined by the pointP and the optimal pointO (the line
PO, or respectively the curvilinearPO) in the following way:

1) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

2) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

3) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

We got the following properties:

4) It is obvious from the above definition of the extension
(n−D)-distance between a pointP in the universe of
discourse and the extension (n−D)-setS that:

i) Point P (x1, x2, . . . , xn) ∈ Int (S)
if ρ [(x1, x2, . . . xn),S] < 0;

ii) Point P (x1, x2, . . . , xn) ∈ Fr (S)
if ρ [(x1, x2, . . . xn),S] = 0;

iii) Point P (x1, x2, . . . , xn) < S
if ρ [(x1, x2, . . . xn),S] > 0.

5) Let S1 andS2 be two extension sets, in the universe
of discourseU, such that they have no common end
points, andS1 ⊂ S2. We assume they have the same
optimal pointsO1 ≡ O2 ≡ O located in their center
of symmetry. Then for any pointP (x1, x2, . . . , xn) ∈ U
one has:

ρ [(x1, x2, . . . xn),S2] > ρ [(x1, x2, . . . xn),S1] . (28)

Then we proceed to the generalization of the dependent
function from 1D-space to Linear (or Non-Linear) (n−D)-
space Dependent Function, using the previous notations.

TheLinear (or Non-Linear) Dependent(n−D)-Function
of pointP (x1, x2, . . . , xn) along the curvec, is:

KnD(x1, x2, . . . , xn) =
(

ρc[(x1, x2, . . . xn),S2]
)

×

×
(

ρc[(x1, x2, . . . xn),S2] − ρc[(x1, x2, . . . xn),S1]
)−1

(29)

(wherec may be a curve or even a line) which has the follow-
ing property:

6) If point P (x1, x2, . . . , xn) ∈ Int (S1),
thenKnD(x1, x2, . . . , xn) > 1;

7) If point P (x1, x2, . . . , xn) ∈ Fr (S1),
thenKnD(x1, x2, . . . , xn) = 1;

8) If point P (x1, x2, . . . , xn) ∈ Int (S2− S1),
thenKnD(x1, x2, . . . , xn) ∈ (0, 1);

9) If point P (x1, x2, . . . , xn) ∈ Int (S2),
thenKnD(x1, x2, . . . , xn) = 0;

10) If point P (x1, x2, . . . , xn) < Int (S2),
thenKnD(x1, x2, . . . , xn) < 0.
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