INEQUALITIES FOR THE INTEGER PART FUNCTION

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math & Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article we will prove some inequalities for the integer part function, and we’ll give some applications in the number theory.

Theorem 1. For any \(x, y > 0 \) we have the following inequality:
\[
[5x] + [5y] \geq [3x + y] + [3y + x],
\]
where \([\]\) means the integer part function.

Proof: We will use the notations: \(x_i = [x], y_i = [y], u = \{x\}, v = \{y\}, x_i, y_i \in \mathbb{N} \) and \(u, v \in (0,1) \). We can write the inequality (1) as:
\[
x_i + y_i + [5u] + [5v] \geq [3u + v] + [3v + u].
\]
We distinguish the following cases:

a) Let \(u \geq v \). If \(u \leq 2v \), then \(5v \geq 3v + u \) and \([5v] \geq [3v + u] \), analogously \(5u \geq 3u + v \) and \([5u] \geq [3u + v] \), from where by addition we obtain (1).

b) If \(u > 2v \) and \(5u = a + b \), \(5v = c + d \), \(a, c \in \mathbb{N} \), \(0 \leq b < 1 \), \(0 \leq d < 1 \), then we have to prove the following inequality:
\[
a + c + x_i + y_i \geq \left[\frac{3a + c + 3b + d}{5} \right] + \left[\frac{3c + a + 3d + b}{5} \right].
\]
But, considering that \(1 > u > 2v \), we obtain \(5 > 5u > 10v \), from where, \(5 > a + b > 2c + 2d \), thus \(a + b < 5 \) and \(a \leq 4 \).

If \(a < 2c \), then \(a \leq 2c - 1 \) and \(a + 1 - 2c \leq 0 \) thus \(a + b - 2c < 0 \); contradiction with \(a + b - 2c > 2d \), thus \(4 \geq a, a \geq 2c \), and \(3b + d < 4, 3d + b < 4 \).

From \(4 \geq a \geq 2c \) we have the cases from the following table, and in each of the nine cases is verified the inequality (2).

<table>
<thead>
<tr>
<th>a</th>
<th>4 4 4 3 3 2 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>2 1 0 0 1 1 0 0 0</td>
</tr>
</tbody>
</table>

Application 1. For any \(m, n \in \mathbb{N} \), \((5m)!(5n)! \) is divisible by \(m!n!(3m+n)!(3a+m)! \).

Proof: If \(p \) is a prime number, the power exponent of \(p \) in decomposition of \(m! \)

Together with Mihály Bencze and Florin Popovici
is
\[\left[\frac{m}{p} \right] + \left[\frac{m}{p^2} \right] + \ldots \]

It is sufficient to prove that
\[\left[\frac{5m}{r} \right] + \left[\frac{5n}{r} \right] \geq \left[\frac{m}{r} \right] + \left[\frac{n}{r} \right] + \left[\frac{3m+n}{r} \right] + \left[\frac{3n+m}{r} \right] \]
for any \(r \in \mathbb{N}, r \geq 2 \).

If \(m = rm_1 + x, n = m_1 + y, \) where \(0 \leq x < r, 0 \leq y < r, m, n \in \mathbb{Z}, \) it is sufficient to prove that
\[\left[\frac{5x}{r} \right] + \left[\frac{5y}{r} \right] \geq \left[\frac{3x+y}{r} \right] + \left[\frac{3y+x}{r} \right], \]
but this inequality verifies the theorem 1.

Remark. If \(x,y > 0, \) then we have the inequality:
\[5x + 5y \geq x + y + 3x+y + 3y+x. \]

Theorem 2. (Szilárd András). If \(x, y, z \geq 0, \) then we have the inequality:
\[3x + 3y + 3z \geq x + y + z + x+y + y+z + z+x. \]

Application 2. For any \(a, b, c \in \mathbb{N}, \) \((3a)! \cdot (3b)! \cdot (3c)!\) is divisible by
\(a! \cdot b! \cdot (a+b)! \cdot (b+c)! \cdot (c+a)!\).

Proof: Let \(k_1, k_2, k_3 \) be the biggest power for which
\(p^{k_1} \mid 3a! \), \(p^{k_2} \mid 3b! \), \(p^{k_3} \mid 3c! \)
respectively, and \(r_i, i \in 1,2,3,4,5,6 \) the biggest power for which
\(p^{r_i} \mid a!, p^{r_i} \mid b!, p^{r_i} \mid c!, p^{r_i} \mid a+b \), \(p^{r_i} \mid b+c \), \(p^{r_i} \mid c+a \)
respectively, then
\[k_1 + k_2 + k_3 = \left(\left[\frac{3a}{p} \right] + \left[\frac{3a}{p^2} \right] + \ldots \right) + \left(\left[\frac{3b}{p} \right] + \left[\frac{3b}{p^2} \right] + \ldots \right) + \left(\left[\frac{3c}{p} \right] + \left[\frac{3c}{p^2} \right] + \ldots \right) \]
and
\[\sum_{i=1}^{6} r_i \left(\left[\frac{a}{p} \right] + \left[\frac{a}{p^2} \right] + \ldots \right) + \left(\left[\frac{b}{p} \right] + \left[\frac{b}{p^2} \right] + \ldots \right) + \left(\left[\frac{c}{p} \right] + \left[\frac{c}{p^2} \right] + \ldots \right) + \left(\left[\frac{a+b}{p} \right] + \left[\frac{a+b}{p^2} \right] + \ldots \right) + \left(\left[\frac{b+c}{p} \right] + \left[\frac{b+c}{p^2} \right] + \ldots \right) + \left(\left[\frac{c+a}{p} \right] + \left[\frac{c+a}{p^2} \right] + \ldots \right). \]

We have to prove that \(k_1 + k_2 + k_3 \geq \sum_{i=1}^{6} r_i \), but this inequality reduces to theorem 2.

Theorem 3. If \(x, y, z \geq 0, \) then we have the inequality:
Application 3. If \(a, b, c \in \mathbb{N} \), then \(a!b!c!(a+b+c)! \) is divisible by \((2a)! (2b)! (2c)!\).

Theorem 4. If \(x,y \geq 0 \) and \(n,k \in \mathbb{N} \) such that \(n \geq k \geq 0 \), then we have the inequality:
\[
x + ny \geq k \quad x + n - k \quad x + y.
\]

Application 4. If \(a, b, c \in \mathbb{N} \) and \(n \geq k \), then \((na)! (nb)! \) is divisible by \(a^k b^k a + b + n - k \).

Theorem 5. If \(x_k \geq 0, \quad (k = 1,2,...,n) \), then we have the inequality:
\[
2 \sum_{k=1}^{n} x_k \geq 2 \sum_{k=1}^{n} x_k + x_1 + x_2 + x_2 + x_3 + ... + x_n + x_1.
\]

Application 5. If \(a_k \in \mathbb{N}, \quad (k = 1,2,...,n) \), then \(\prod_{k=1}^{n} 2a_k! \) is divisible by \(\prod_{k=1}^{n} (a_k!)^2 (a_1 + a_2) (a_2 + a_3)...(a_n + a_1) \).

Theorem 6. If \(x_k \geq 0, \quad (k = 1,2,...,n) \), then we have the inequality:
\[
m \sum_{k=1}^{n} 2x_k + n \sum_{p=1}^{m} 2x_p \geq m \sum_{k=1}^{n} x_k + n \sum_{p=1}^{m} x_p + \sum_{k=1}^{n} \sum_{p=1}^{m} x_k + x_p.
\]

Application 6. If \(a_k \in \mathbb{N}, \quad (k = 1,2,...,n) \), then \(\prod_{k=1}^{n} (2a_k)! \prod_{p=1}^{m} (2a_p)! \) is divisible by \(\prod_{k=1}^{n} a_k! \prod_{p=1}^{m} a_p! \prod_{k=1}^{n} \prod_{p=1}^{m} a_k + a_p! \).

Theorem 7. If \(x,y \geq 1 \), then we have the inequality:
\[
\left\lfloor \sqrt{x} \right\rfloor + \left\lfloor \sqrt{y} \right\rfloor + \left\lfloor \sqrt{x+y} \right\rfloor \geq \left\lfloor \sqrt{2x} \right\rfloor + \left\lfloor \sqrt{2y} \right\rfloor
\]

Proof: By the concavity of the square root function:
\[
\sqrt{x+y} = \sqrt{\frac{2x + 2y}{2}} \geq \frac{1}{2} \sqrt{2x} + \frac{1}{2} \sqrt{2y} \geq \left\lfloor \frac{1}{2} \sqrt{2x} \right\rfloor + \left\lfloor \frac{1}{2} \sqrt{2y} \right\rfloor,
\]
it follows that:
\[
\left\lfloor \sqrt{x+y} \right\rfloor \geq \left\lfloor \frac{1}{2} \sqrt{2x} \right\rfloor + \left\lfloor \frac{1}{2} \sqrt{2y} \right\rfloor.
\]
Therefore, it is sufficient to show that

\[
2x + 2y + 2z \leq x + y + z + x+y+z.
\]
\[
\left[\sqrt{x}\right] + \left[\frac{1}{2}\sqrt{2x}\right] \geq \left[\sqrt{2x}\right] \text{ for } x \geq 1.
\]

The identity \(\left[x\right] + \left[x + \frac{1}{2}\right] \) has a straightforward proof. We’ll use it to replace \(\left[\frac{1}{2}\sqrt{2x}\right] \) with
\[
\left[\sqrt{2x}\right] - \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right].
\]

This yields \(\left[\sqrt{x}\right] \geq \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right] \), for \(x \geq 1 \).

This last inequality followed by the fact that \(x \geq 4 \) implies
\[
2 - \sqrt{2} \cdot \sqrt{x} > 1 \text{ or } \left[\sqrt{x}\right] > \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right]
\]
and \(1 \leq x < 4 \) implies
\[
\frac{1}{2}\sqrt{2x} + \frac{1}{2} < 2.
\]

Application 7. If \(a, b \in \mathbb{N} \), then \(a!b!\left[\sqrt{a^2 + b^2}\right] \) is divisible by \(\left[\frac{a}{2}\right]!\left[\frac{b}{2}\right]! \).

[“Octogon”, Brașov, Vol. 5, No. 2, 60-2, October 1997.]