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Abstract. Description Logics (DLs) are appropriate, widely used, log-
ics for managing structured knowledge. They allow reasoning about in-
dividuals and concepts, i.e. set of individuals with common properties.
Typically, DLs are limited to dealing with crisp, well defined concepts.
That is, concepts for which the problem whether an individual is an
instance of it is a yes/no question. More often than not, the concepts
encountered in the real world do not have a precisely defined criteria of
membership: we may say that an individual is an instance of a concept
only to a certain degree, depending on the individual’s properties. The
DLs that deal with such fuzzy concepts are called fuzzy DLs. In order
to deal with fuzzy, incomplete, indeterminate and inconsistent concepts,
we need to extend the capabilities of fuzzy DLs further.
In this paper we will present an extension of fuzzy ALC, combining
Smarandache’s neutrosophic logic with a classical DL. In particular, con-
cepts become neutrosophic (here neutrosophic means fuzzy, incomplete,
indeterminate and inconsistent), thus, reasoning about such neutrosophic
concepts is supported. We will define its syntax, its semantics, describe
its properties and present a constraint propagation calculus for reasoning
in it.

Keywords: Description logic, fuzzy description logic, fuzzy ALC, neutro-
sophic description logic.

1 Introduction

The modelling and reasoning with uncertainty and imprecision is an important
research topic in the Artificial Intelligence community. Almost all the real world



knowledge is imperfect. A lot of works have been carried out to extend existing
knowledge-based systems to deal with such imperfect information, resulting in
a number of concepts being investigated, a number of problems being identified
and a number of solutions being developed [2, 6, 8, 9].

Description Logics (DLs) have been utilized in building a large amount of
knowledge-based systems. DLs are a logical reconstruction of the so-called frame-
based knowledge representation languages, with the aim of providing a simple
well-established Tarski-style declarative semantics to capture the meaning of the
most popular features of structured representation of knowledge. A main point is
that DLs are considered as to be attractive logics in knowledge based applications
as they are a good compromise between expressive power and computational
complexity.

Nowadays, a whole family of knowledge representation systems has been build
using DLs, which differ with respect to their expressiveness, their complexity
and the completeness of their algorithms, and they have been used for building
a variety of applications [10, 3, 1, 7].

The classical DLs can only deal with crisp, well defined concepts. That is,
concepts for which the problem whether an individual is an instance of it is
a yes/no question. More often than not, the concepts encountered in the real
world do not have a precisely defined criteria of membership. There are many
works attempted to extend the DLs using fuzzy set theory [12–14,5, 15, 17].
These fuzzy DLs can only deal with fuzzy concepts but not incomplete, indeter-
minate, and inconsistent concepts (neutrosophic concepts). For example, ”Good
Person” is a neutrosophic concepts, in the sense that by different subjective
opinions, the truth-membership degree of tom is good person is 0.6, and the
falsity-membership degree of tom is good person is 0.6, which is inconsistent,
or the truth- membership degree of tom is good person is 0.6, and the falsity-
membership degree of tom is good person is 0.3, which is incomplete.

The set and logic that can model and reason with fuzzy, incomplete, inde-
terminate, and inconsistent information are called neutrosophic set and neu-
trosophic logic, respectively [11, 16]. In Smarandache’s neutrosophic set the-
ory,a neutrosophic set A defined on universe of discourse X , associates each
element x in X with three membership functions: truth-membership function
TA(x), indeterminacy-membership function IA(x), and falsity-membership func-
tion FA(x), where TA(x), IA(x), FA(x) are real standard or non-standard subsets
of ]−0, 1+[, and TA(x), IA(x), FA(x) are independent. For simplicity, in this pa-
per, we will extend Straccia’s fuzzy DLs [12, 14] with neutrosophic logic, called
neutrosophic DLs, where we only use two components TA(x) and FA(x), with
TA(x) ∈ [0, 1], FA(x) ∈ [0, 1], 0 ≤ TA(x) + FA(x) ≤ 2. The neutrosophic DLs
is based on the DL ALC, a significant and expressive representative of the var-
ious DLs. This allows us to adapt it easily to the different DLs presented in
the literature. Another important point is that we will show that the additional
expressive power has no impact from a computational complexity point of view.
The neutrosophic ALC is a strict generalization of fuzzy ALC, in the sense that
every fuzzy concept and fuzzy terminological axiom can be represented by a



corresponding neutrosophic concept and neutrosophic terminological axiom, but
not vice versa.

The rest of paper is organized as follows. In the following section we first
introduce Straccia’s ALC. In section 3 we extend ALC to the neutrosophic case
and discuss some properties in Section 4, while in Section 5 we will present
a constraint propagation calculus for reasoning in it. Section 6 concludes and
proposes future work.

2 A Quick Look to Fuzzy ALC

We assume three alphabets of symbols, called atomic concepts (denoted by A),
atomic roles (denoted by R) and individuals (denoted by a and b). 1

A concept (denoted by C or D) of the language ALC is built out of atomic
concepts according to the following syntax rules:

C, D −→ >| (top concept)
⊥| (bottom concept)
A| (atomic concept)

C u D| (concept conjunction)
C t D| (concept disjunction)

¬C| (concept negation)
∀R.C| (universal quantification)
∃R.C (existential quantification)

Fuzzy DL extends classical DL under the framework of Zadeh’s fuzzy sets
[18].A fuzzy set S with respect to an universe U is characterized by a membership
function µS : U → [0, 1], assigning an S-membership degree, µS(u), to each
element u in U . In fuzzy DL, (i) a concept C, rather than being interpreted as a
classical set, will be interpreted as a fuzzy set and, thus, concepts become fuzzy;
and, consequently, (ii) the statement “a is C”, i.e. C(a), will have a truth-value
in [0, 1] given by the degree of membership of being the individual a a member
of the fuzzy set C.

2.1 Fuzzy Interpretation

A fuzzy interpretation is now a pair I = (∆I , .I), where ∆I is, as for the crisp
case, the domain, whereas .I is an interpretation function mapping

1. individual as for the crisp case, i.e. aI 6= bI , if a 6= b;
2. a concept C into a membership function CI : ∆I → [0, 1];
3. a role R into a membership function RI : ∆I ×∆I → [0, 1].

1 Through this work we assume that every metavariable has an optional subscript or
superscript.



If C is a concept then CI will naturally be interpreted as the membership degree
function of the fuzzy concept (set) C w.r.t. I, i.e. if d ∈ ∆I is an object of the
domain∆I then CI(d) gives us the degree of being the object d an element of the
fuzzy concept C under the interpretation I. Similarly for roles. Additionally, the
interpretation function .I has to satisfy the following equations: for all d ∈ ∆I ,

>I(d) = 1

⊥I(d) = 0
(C u D)I(d) = min{CI(d),DI(d)}
(C t D)I(d) = max{CI(d),DI(d)}
(¬C)I(d) = 1 − CI(d)
(∀R.C)I(d) = infd′∈∆I{max{1 − RI(d, d′), CI(d′)}}

(∃R.C)I(d) = supd′∈∆I{min{RI(d, d′), CI(d′)}}.

We will say that two concepts C and D are said to be equivalent (denoted by
C ∼= D) when CI = DI for all interpretation I. As for the crisp non fuzzy case,
dual relationships between concepts hold: e.g. > ∼= ¬⊥, (C uD) ∼= ¬(¬C t¬D)
and (∀R.C) ∼= ¬(∃R.¬C).

2.2 Fuzzy Assertion

A fuzzy assertion (denoted by ψ) is an expression having one of the following
forms 〈α ≥ n〉 or 〈α ≤ m〉, where α is an ALC assertion, n ∈ (0, 1] and m ∈
[0, 1). From a semantics point of view, a fuzzy assertion 〈α ≤ n〉 constrains the
truth-value of α to be less or equal to n (similarly for ≥). Consequently, e.g.
〈 (Video u ∃About.Basket)(v1) ≥ 0.8〉 states that video v1 is likely about
basket. Formally, an interpretation I satisfies a fuzzy assertion 〈C(a) ≥ n〉 (resp.
〈R(a, b) ≥ n〉) iff CI(aI) ≥ n (resp. RI(aI , bI) ≥ n). Similarly, an interpretation
I satisfies a fuzzy assertion 〈C(a) ≤ n〉 (resp. 〈R(a, b) ≤ n〉) iff CI(aI) ≤ n

(resp. RI(aI , bI) ≤ n). Two fuzzy assertion ψ1 and ψ2 are said to be equivalent
(denoted by ψ1

∼= ψ2) iff they are satisfied by the same set of interpretations.
An atomic fuzzy assertion is a fuzzy assertion involving an atomic assertion
(assertion of the form A(a) or R(a, b)).

2.3 Fuzzy Terminological Axiom

From a syntax point of view, a fuzzy terminological axiom (denoted by τ̃ is either
a fuzzy concept specialization or a fuzzy concept definition. A fuzzy concept
specialization is an expression of the form A ≺ C, where A is an atomic concept
and C is a concept. On the other hand, a fuzzy concept definition is an expression
of the form A :≈ C, where A is an atomic concept and C is a concept. From
a semantics point of view, a fuzzy interpretation I satisfies a fuzzy concept
specialization A ≺ C iff

∀d ∈ ∆I , AI(d) ≤ CI(d), (1)



whereas I satisfies a fuzzy concept definition A :≈ C iff

∀d ∈ ∆I , AI(d) = CI(d). (2)

2.4 Fuzzy Knowlege Base, Fuzzy Entailment and Fuzzy

Subsumption

A fuzzy knowledge base is a finite set of fuzzy assertions and fuzzy terminological
axioms. ΣA denotes the set of fuzzy assertions in Σ, ΣT denotes the set of
fuzzy terminological axioms in Σ (the terminology), if ΣT = ∅ then Σ is purely
assertional, and we will assume that a terminology ΣT is such that no concept
A appears more than once on the left hand side of a fuzzy terminological axiom
τ̃ ∈ ΣT and that no cyclic definitions are present in ΣT .

An interpretation I satisfies (is a model of) a set of fuzzy Σ iff I satisfies
each element of Σ. A fuzzy KB Σ fuzzy entails a fuzzy assertion ψ (denoted by
Σ |=f ψ) iff every model of Σ also satisfies ψ.

Furthermore, let ΣT be a terminology and let C,D be two concepts. We will
say that D fuzzy subsumes C w.r.t. ΣT (denoted by C �ΣT

D) iff for every
model I of ΣT , ∀d ∈ ∆I , CI(d) ≤ DI(d) holds.

3 A Neutrosophic DL

Our neutrosophic extension directly relates to Smarandache’s work on neutro-
sophic sets [11, 16]. A neutrosophic set S defined on universe of discourse U , as-
sociates each element u in U with three membership functions: truth-membership
function TS(u), indeterminacy-membership function IS(u), and falsity-membership
function FS(u), where TS(u), IS(u), FS(u) are real standard or non-standard sub-
sets of ]−0, 1+[, and TS(u), IS(u), FS(u) are independent. For simplicity, here we
only use two components TS(u) and FS(u), with TS(u) ∈ [0, 1], FS(u) ∈ [0, 1], 0 ≤
TS(u) + FS(u) ≤ 2. It is easy to extend our method to include indeterminacy-
membership function. TS(u) gives us an estimation of degree of u belonging
to U and FS(u) gives us an estimation of degree of u not belonging to U .
TS(u) + FS(u) can be 1 (just as in classical fuzzy sets theory). But it is not
necessary. If TS(u) + FS(u) < 1, for all u in U , we say the set S is incomplete,
if TS(u) + FS(u) > 1, for all u in U , we say the set S is inconsistent. According
to Wang [16], the truth-membership function and falsity-membership function
has to satisfy three restrictions: for all u ∈ U and for all neutrosophic sets S1, S2

with respect to U

TS1∩S2
(u) = min{TS1

(u), TS2
(u)}, FS1∩S2

(u) = max{FS1
(u), FS2

(u)}

TS1∪S2
(u) = max{TS1

(u), TS2
(u)}, FS1∪S2

(u) = min{FS1
(u), FS2

(u)}

T
S1

(u) = FS1
(u), F

S1
(u) = TS1

(u),

where S1 is the complement of S1 in U . Wang [16] gives the definition of N -norm
and N -conorm of neutrosophic sets, min and max is only one of the choices. In
general case, they may be the simplest and the best.



When we switch to neutrosophic logic, the notion of degree of truth-membership
TS(u) of an element u ∈ U w.r.t. the neutrosophic set S over U is regarded as
the truth-value of the statement “u is S”, and the notion of degree of falsity-
membership FS(u) of an element u ∈ U w.r.t. the neutrosophic set S over U
is regarded as the falsity-value of the statement “u is S”. Accordingly, in our
neutrosophic DL, (i) a concept C, rather than being interpreted as a fuzzy set,
will be interpreted as a neutrosophic set and, thus, concepts become imprecise
(fuzzy, incomplete, and inconsistent); and, consequently, (ii) the statement “a
is C”, i.e. C(a) will have a truth-value in [0, 1] given by the degree of truth-
membership of being the individual a a member of the neutrosophic set C and
a falsity-value in [0, 1] given by the degree of falsity-membership of being the
individual a not a member of the neutrosophic set C.

3.1 Neutrosophic Interpretation

A em neutrosophic interpretation is now a tuple I = (∆I , (·)I , | · |t, | · |f ), where
∆I is, as for the fuzzy case, the domain, and

1. (·)I is an interpretation function mapping
(a) individuals as for the fuzzy case, i.e. aI 6= bI , if a 6= b;
(b) a concept C into a membership function CI : ∆I → [0, 1]× [0, 1];
(c) a role R into a membership function RI : ∆I ×∆I → [0, 1] × [0, 1].

2. | · |t and | · |f are neutrosophic valuation, i.e. | · |t and | · |f map
(a) every atomic concept into a function from ∆I to [0, 1];
(b) every atomic role into a function from ∆I ×∆I to [0, 1].

If C is a concept then CI will naturally be interpreted as a pair of membership
functions 〈|C|t, |C|f 〉 of the neutrosophic concept (set) C w.r.t. I, i.e. if d ∈ ∆I

is an object of the domain ∆I then CI(d) gives us the degree of being the object
d an element of the neutrosophic concept C and the degree of being the object
d not an element of the neutrosophic concept C under the interpretation I.
Similarly for roles. Additionally, the interpretation function (·)I has to satisfy
the following equations: for all d ∈ ∆I ,

>I(d) = 〈1, 0〉
⊥I(d) = 〈0, 1〉

(C u D)I(d) = 〈min{|C|t(d), |D|t(d)}, max{|C|f (d), |D|f (d)}〉

(C t D)I(d) = 〈max{|C|t(d), |D|t(d)}, min{|C|f (d), |D|f (d)}〉
(¬C)I(d) = 〈|C|f (d), |C|t〉

(∀R.C)I(d) = 〈infd′∈∆I{max{|R|f (d, d′), |C|t(d′)}}, supd′∈∆I{min{|R|t(d, d′), |C|f (d′)}}〉

(∃R.C)I(d) = 〈supd′∈∆I{min{|R|t(d, d′), |C|t(d′)}}, infd′∈∆I{max{|R|f (d, d′), |C|f (d′)}}〉

Note that the semantics of ∀R.C

(∀R.C)I(d) = 〈 inf
d′∈∆I

{max{|R|f (d, d′), |C|t(d′)}}, sup
d′∈∆I

{min{|R|t(d, d′), |C|f (d′)}}〉

(3)



is the result of viewing ∀R.C as the open first order formula ∀y.¬FR(x, y)∨FC (y),
where the universal quantifier ∀ is viewed as a conjunction over the elements of
the domain. Similarly, the semantics of ∃R.C

(∃R.C)I(d) = 〈 sup
d′∈∆I

{min{|R|t(d, d′), |C|t(d′)}}, inf
d′∈∆I

{max{|R|f (d, d′), |C|f (d′)}}〉

(4)
is the result of viewing ∃R.C as the open first order formula ∃y.FR(x, y)∧FC(y)
and the existential quantifier ∃ is viewed as a disjunction over the elements of
the domain. Moreover, | · |t and | · |f are extended to complex concepts as follows:
for all d ∈ ∆I

|C u D|t(d) = min{|C|t(d), |D|t(d)}

|C u D|f (d) = max{|C|f (d), |D|f (d)}

|C t D|t(d) = max{|C|t(d), |D|t(d)}
|C t D|f (d) = min{|C|f (d), |D|f (d)}

|¬C|t(d) = |C|f (d)

|¬C|f (d) = |C|t(d)

|∀R.C|t(d) = infd′∈∆I{max{|R(d, d′)|f , |C|t(d)}}

|∀R.C|f (d) = supd′∈∆I{min{|R(d, d′)|t, |C|f (d)}}

|∃R.C|t(d) = supd′∈∆I{min{|R(d, d′)|t, |C|t(d)}}
|∃R.C|f (d) = infd′∈∆I{max{|R(d, d′)|f , |C|f (d)}}

We will say that two concepts C and D are said to be equivalent (denoted
by C ∼=n D) when CI = DI for all interpretation I. As for the fuzzy case, dual
relationships between concepts hold: e.g. > ∼=n ¬⊥, (C u D) ∼=n ¬(¬C t ¬D)
and (∀R.C) ∼=n ¬(∃R.¬C).

3.2 Neutrosophic Assertion

A neutrosophic assertion (denoted by ϕ) is an expression having one of the fol-
lowing form 〈α :≥ n,≤ m〉 or 〈α :≤ n,≥ m〉, where α is an ALC assertion,
n ∈ [0, 1] and m ∈ [0, 1]. From a semantics point of view, a neutrosophic as-
sertion 〈α :≥ n,≤ m〉 constrains the truth-value of α to be greater or equal to
n and falsity-value of α to be less or equal to m (similarly for 〈α :≤ n,≥ m〉).
Consequently, e.g. 〈(Poll u ∃Support.War x)(p1) :≥ 0.8,≤ 0.1〉 states that
poll p1 is close to support War x. Formally, an interpretation I satisfies a neu-
trosophic assertion 〈α :≥ n,≤ m〉 (resp. 〈R(a, b) :≥ n,≤ m〉) iff |C|t(aI) ≥ n

and |C|f (aI) ≤ m (resp. |R|t(aI , bI) ≥ n and |R|f (aI , bI) ≤ m). Similarly,
an interpretation I satisfies a neutrosophic assertion 〈α :≤ n,≥ m〉 (resp.
〈R(a, b) :≤ n,≥ m〉) iff |C|t(aI) ≤ n and |C|f (aI) ≥ m (resp. |R|t(aI , bI) ≤ n



and |R|f (aI , bI) ≥ m). Two fuzzy assertion ϕ1 and ϕ2 are said to be equivalent
(denoted by ϕ1

∼=n ϕ2) iff they are satisfied by the same set of interpretations.
Notice that 〈¬C(a) :≥ n,≤ m〉 ∼=n 〈C(a) :≤ m,≥ n〉 and 〈¬C(a) :≤ n,≥ m〉 ∼=n

〈C(a) :≥ m,≤ n〉. An atomic neutrosophic assertion is a neutrosophic assertion
involving an atomic assertion.

3.3 Neutrosophic Terminological Axiom

Neutrosophic terminological axioms we will consider are a natural extension of
fuzzy terminological axioms to the neutrosophic case. From a syntax point of
view, a neutrosophic terminological axiom (denoted by τ̂ ) is either a neutrosophic
concept specialization or a neutrosophic concept definition. A neutrosophic con-
cept specialization is an expression of the form A ≺n C, where A is an atomic
concept and C is a concept. On the other hand, a neutrosophic concept definition
is an expression of the form A :≈n C, where A is an atomic concept and C is
a concept. From a semantics point of view, we consider the natural extension
of fuzzy set to the neutrosophic case [11, 16]. A neutrosophic interpretation I
satisfies a neutrosophic concept specialization A ≺n C iff

∀d ∈ ∆I , |A|t(d) ≤ |C|t(d), |A|f (d) ≥ |C|f (d), (5)

whereas I satisfies a neutrosophic concept definition A :≈n C iff

∀d ∈ ∆I , |A|t(d) = |C|t(d), |A|f (d) = |C|f (d). (6)

3.4 Neutrosophic Knowledge Base, Neutrosophic Entailment and

Neutrosophic Subsumption

A neutrosophic knowledge base is a finite set of neutrosophic assertions and neu-
trosophic terminological axioms. As for the fuzzy case, with ΣA we will denote
the set of neutrosophic assertions in Σ, with ΣT we will denote the set of neutro-
sophic terminological axioms in Σ (the terminology), if ΣT = ∅ then Σ is purely
assertional, and we will assume that a terminology ΣT is such that no concept
A appears more than once on the left hand side of a neutrosophic terminological
axiom τ̂ ∈ ΣT and that no cyclic definitions are present in ΣT .

An interpretation I satisfies (is a model of) a neutrosophic Σ iff I satisfies
each element of Σ. A neutrosophic KB Σ neutrosophically entails a neutrosophic
assertion ϕ (denoted by Σ |=n ϕ) iff every model of Σ also satisfies ϕ.

Furthermore, let ΣT be a terminology and let C,D be two concepts. We will
say that D neutrosophically subsumes C w.r.t. ΣT (denoted by C �n

ΣT
D) iff for

every model I of ΣT , ∀d ∈ ∆I , |C|t(d) ≤ |D|t(d) and |C|f (d) ≥ |D|f (d) holds.
Finally, given a neutrosophic KB Σ and an assertion α, we define the greatest

lower bound of α w.r.t. Σ (denoted by glb(Σ,α)) to be 〈sup{n : Σ |=n 〈α :≥
n,≤ m〉}, inf{m : Σ |=n 〈α :≥ n,≤ m〉}〉. Similarly, we define the least upper
bound of α with respect to Σ (denoted by lub(Σ,α)) to be 〈inf{n : Σ |=n 〈α :≤
n,≥ m〉}, sup{m : Σ |=n 〈α :≤ n,≥ m〉}〉 (sup ∅ = 0, inf ∅ = 1). Determing the
lub and the glb is called the Best Truth-Value Bound (BTVB) problem.



4 Some Properties

In this section, we discuss some properties of our neutrosophic ALC.

4.1 Concept Equivalence

The first ones are straightforward: ¬> ≈n ⊥, Cu> ≈n C,Ct> ≈n >, Cu⊥ ≈n

⊥, C t⊥ ≈n C,¬¬C ≈n C,¬(C uD) ≈n ¬C t¬D,¬(C tD) ≈n ¬C u¬D,C1 u
(C2tC3) ≈

n (C1uC2)t(C1uC3) and C1t(C2uC3) ≈
n (C1tC2)u(C1tC3). For

concepts involving roles, we have ∀R.C ≈n ¬∃R.¬C, ∀R.> ≈n >, ∃R.⊥ ≈n ⊥
and (∀R.C) u (∀R.D) ≈n ∀R.(C u D). Please note that we do not have Cu 6=
C ≈n ⊥, nor we have C t ¬C ≈n > and, thus, (∃R.C) u (∀R.¬C) ≈n ⊥ and
(∃R.C) t (∀R.¬C) ≈n > do not hold.

4.2 Entailment Relation

Of course, Σ |=n 〈α :≥ n,≤ m〉 iff glb(Σ,α) = 〈f, g〉 with f ≥ n and g ≤ m,
and similarly Σ |=n 〈α :≤ n,≥ m〉 iff lub(Σ,α) = 〈f, g〉 with f ≤ n and g ≥ m.
Concerning roles, note that Σ |=n 〈R(a, b) :≥ n,≤ m〉 iff 〈R(a, b) :≥ f,≤ g〉 ∈ Σ

with f ≥ n and g ≤ m. Therefore,

glb(Σ,R(a, b)) = 〈max{n : 〈R(a, b) :≥ n,≤ m〉 ∈ Σ},

min{m : 〈R(a, b) :≥ n,≤ m〉 ∈ Σ}〉 (7)

while the same is not true for the 〈R(a, b) :≤ n,≥ m case. While 〈R(a, b) :≤ f,≥
g〉 ∈ Σ and f ≤ n, g ≥ m imply Σ |=n 〈R(a, b) :≤ n,≥ m〉, the converse is false
(e.g. {〈∀R.A(a) :≥ 1,≤ 0〉, 〈A(b) :≤ 0,≥ 1〉} |=n 〈R(a, b) :≤ 0,≥ 1〉).

Furthermore, from Σ |=n 〈C(a) :≤ n,≥ m〉 iff Σ |=n 〈¬C(a) :≥ m,≤ n〉,
it follows lub(Σ,C(a)) = 〈f, g〉 iff glb(Σ,¬C(a)) = 〈g, f〉. Therefore, lub can be
determined through glb (and vice versa). The same reduction to glb does not
hold for lub(Σ,R(a, b)) as ¬R(a, b) is not an expression of our language.

Modus ponens on concepts is supported: if n > g and m < f then {〈C(a) :≥
n,≤ m〉, 〈(¬C tD)(a) :≥ f,≤ g〉} |=n〉D(a) :≥ f,≤ g〉 holds.

Modus ponens on roles is supported: if n > g and m < f then {〈R(a, b) :≥
n,≤ m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈D(b) :≥ f,≤ g〉 and {〈∃R.C(a) :≥ n,≤
m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈∃R.(C uD)(a) :≥ min{n, f},≤ max{m, g}〉 hold.
Moreover, {〈∀R.C(a) :≥ n,≤ m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈∀(R.(C uD))(a) :≥
min{n, f},≤ max{m, g}〉 holds.

Modus ponens on specialization is supported. The following degree bounds
propagation through a taxonomy is supported. If C �n

Σ D then (i) Σ∪{〈C(a) :≥
n,≤ m〉} |=n 〈D(a) :≥ n,≤ m〉}; and (ii) Σ ∪ {〈D(a) :≤ n,≥ m〉} |=n 〈C(a) :≤
n,≥ m〉 hold.



4.3 Soundness and Completeness of the Semantics

Our neutrosophic semantics is sound and complete w.r.t. fuzzy semantics. First
we must note that the neutrosophic ALC is a strict generalization of fuzzy ALC,
in the sense that every fuzzy concept and fuzzy terminological axiom can be
represented by a corresponding neutrosophic concept and neutrosophic termino-
logical axiom, but not vice versa. It is easy to verify that,

Proposition 1. A classical fuzzy ALC can be simulated by a neutrosophic ALC,
in the way that a fuzzy assertion 〈α ≥ n〉 represented by a neutrosophic asser-
tion 〈α :≥ n,≤ 1 − n〉, a fuzzy assertion 〈α ≤ n〉 represented by a neutrosophic
assertion 〈α :≤ n,≥ 1 − n〉 and a fuzzy terminological axiom τ̃ represented by a
neutrosophic terminological axiom τ̂ in the sense that if I is a fuzzy interpreta-
tion then |C|t(a) = CI(a) and |C|f (a) = 1 − CI(a). a

Let us consider the following transformations ](·) and ?(·) of neutrosophic
assertions into fuzzy assertions,

]〈α :≥ n,≤ m〉 7→ 〈α ≥ n〉,

?〈α :≥ n,≤ m〉 7→ 〈α ≤ m〉,

]〈α :≤ n,≥ m〉 7→ 〈α ≤ n〉,

?〈α :≤ n,≥ m〉 7→ 〈α ≥ m〉,

We extend ](·) and ?(·) to neutrosophic terminological axioms as follows: ]τ̂ = τ̃

and ?τ̂ = τ̃ . Finally, ]Σ = {]ϕ : ϕ ∈ ΣA} ∪ {]τ̂ : τ̂ ∈ ΣT } and ?Σ = {?ϕ : ϕ ∈
ΣA} ∪ {?τ̂ : τ̂ ∈ ΣT }.

Proposition 2. Let Σ be a neutrosophic KB and let ϕ be a neutrosophic asser-
tion (〈α :≥ n,≤ m〉 or 〈α :≤ n,≥ m〉). Then Σ |=n ϕ iff ]Σ |= ]ϕ and ?Σ |= ?ϕ.

a

Proof. (⇒): Let ϕ be 〈α :≥ n,≤ m〉. Consider a fuzzy interpretation I satisfying
]Σ and I

′

satisfying ?Σ. 〈I, I
′

〉 is also a neutrosophic interpretation such that

aI = aI
′

, CI(a) = |C|t(a) and CI
′

(a) = |C|f (a), RI(d, d′) = |R|t(d, d′) and

RI
′

(d, d′) = |R|f (d, d′) hold. By induction on the structure of a concept C it

can be shown that I (I
′

) satisfies C(a) iff CI(aI) ≥ n (CI′

(aI
′

≥ n) for fuzzy

assertion 〈C(a) ≥ n〉 and CI(aI) ≤ n (CI
′

(aI
′

) for fuzzy assertion 〈C(a) ≤
n〉. Similarly for roles. By the definition of ](·) and ?(·), therefore 〈I, I

′

〉 is a
neutrosophic interpretation satisfying Σ. By hypothesis, 〈I, I

′

〉 satisfies 〈α :≥
n,≤ m〉. Therefore, I satisfies ]ϕ and I

′

satisfies ]ϕ. The proof is similar for
ϕ = 〈α :≤ n,≥ m〉.

(⇐): Let ϕ be 〈α :≥ n,≤ m〉. Consider a neutrosophic I satisfying Σ. I can

be regarded as two fuzzy interpretations I
′

and I” such that aI = aI
′

= aI
”

,

CI
′

(d) = |C|t(d) and CI”

(d) = |C|f (d), RI
′

(d, d′) = |R|t(d, d′) and RI”

(d, d′) =
|R|f (d, d′)hold. By induction on the structure of a concept C it can be shown
that I satisfies C(a) iff |C|t(aI) ≥ n, |C|f (aI) ≤ m for neutrosophic assertion



〈C(a) :≥ n,≤ m〉 and |C|t(aI) ≤ n, |C|f (aI) ≥ m for neutrosophic assertion
〈C(a) :≤ n,≥ m〉. Similarly for roles. By the definition of ](·) and ?(·), therefore,
I

′

is a fuzzy interpretation satisfying ]Σ and I” satisfying ?Σ. By hypothesis,
I

′

satisfies ]ϕ and I” satisfies ?ϕ. And according to the definition of ](·) and
?(·), I satisfies 〈α :≥ n,≤ m〉. The proof is similar for ϕ = 〈α :≤ n,≥ m〉. 2

4.4 Subsumption

As for the fuzzy case, subsumption between two concepts C andD w.r.t. a termi-
nology ΣT , i.e. C �n

ΣT
D, can be reduced to the case of an empty terminology,

i.e. C ′ �n
∅ D

′.

Example 1. Suppose we have two polls p1 and p2 about two wars war x and
war y, separately. By the result of p1, it establishes that, to some degree n people
in the country support the war x and to some degree m people in the country
do not support the war x, whereas by the result of p2, it establishes that, to
some degree f people in the country support the war y and to some degree g
people in the country do not support the war y. Please note that, truth-degree
and falsity-degree give a quantitative description of the supportness of a poll
w.r.t. a war, i.e. the supportness is handled as a neutrosophic concept. So, let
us consider

Σ = {〈p1 : ∃Support.war x :≥ 0.6,≤ 0.5〉, 〈p2 : ∃Support.war y :≥ 0.8,≤ 0.1〉,

war x ≺n War,war y ≺n War}

where the axioms specify that both war x and war y are a War. According to
the expansion process, Σ will be replaced by

Σ
′

= {〈p1 : ∃Support.war x :≥ 0.6,≤ 0.5〉, 〈p2 : ∃Support.war y :≥ 0.8,≤ 0.1〉,

war x :≈n War u war x∗, war y :≈n War u war y∗},

which will be simplified to

Σ” = {〈p1 : ∃Support.(War u war x∗) :≥ 0.6,≤ 0.5〉,

〈p2 : ∃Support.(War u war y∗) :≥ 0.8,≤ 0.1〉}.

Now, if we are looking for supportness of polls of War, then from Σ we may infer
that Σ |=n 〈p1 : ∃Support.War :≥ 0.6,≤ 0.5〉 and Σ |=n 〈p2 : ∃Support.War :≥
0.8,≤ 0.1〉. Furthermore, it is easily verified that Σ” |=n 〈p1 : ∃Support.War :≥
0.6,≤ 0.5〉 and Σ” |=n 〈p2 : ∃Support.War :≥ 0.8,≤ 0.1〉 hold as well. Indeed,
for any neutrosophic assertion ϕ, Σ |=n ϕ iff Σ” |=n ϕ holds. 2

5 Decision Algorithms in Neutrosophic ALC

Deciding whether Σ |=n 〈α :≥ n,≤ m〉 or Σ |=n 〈α :≤ n,≥ m〉 requires a calcu-
lus. Without loss of generality we will consider purely assertional neutrosophic
KBs only.



We will develop a calculus in the style of the constraint propagation method,
as this method is usually proposed in the context of DLs[4] and fuzzy DLs[12,
14]. We first address the entailment problem, then the subsumption problem
and finally the BTVB problem. Both the subsumption problem and the BTVB
problem will be reduced to the entailment problem.

5.1 A Decision Procedure for the Entailment Problem

Consider a new alphabet of ALC variables. An interpretation is extended to
variables by mapping these into elements of the interpretation domain. An ALC
object (denoted by ω) is either an individual or a variable.2

A constraint (denoted by α is an expression of the form C(ω) or R(ω, ω
′

),
where ω, ω

′

are objects, C is an ALC concept and R is a role. A neutrosophic
constraint (denoted by ϕ) is an expression having one of the following four forms:
〈α :≥ n,≤ m〉, 〈α :≤ n,≥ m〉, 〈α :> n,< m〉, 〈α :< n,> m〉. Note that neutro-
sophic assertions are neutrosophic constraints.

The definitions of satisfiability of a constraint, a neutrosophic constraint, a
set of constraints, a set of neutrosophic constraints, atomic constraint and atomic
neutrosophic constraint are obvious.

It is quite easily verified that the neutrosophic entailment problem can be
reduced to the unsatisfiability problem of a set of neutrosophic constraints:

Σ |=n 〈α :≥ n,≤ m〉 iff Σ ∪ {〈α :< n,> m〉} not satisfiable (8)

Σ |=n 〈α :≤ n,≥ m〉 iff Σ ∪ {〈α :> n,< m〉} not satisfiable (9)

Our calculus, determining whether a finite set S of neutrosophic constraints is
satisfiable or not, is based on a set of constraint propagation rules transforming
a set S of neutrosophic constraints into “simpler” satisfiability preserving sets
Si until either all Si contain a clash (indicating that from all the Si no model of
S can be build) or some Si is completed and clash-free, that is, no rule can be
further applied to Si and Si contains no clash (indicating that from Si a model
of S can be build).

A set of neutrosophic constraints S contains a clash iff it contains either one
of the constraints in Table 1 or S contains a conjugated pair of neutrosophic con-
straints. Each entry in Table 2 says us under which condition the row-column
pair of neutrosophic constraints is a conjugated pair. Given a neutrosophic con-
straint ϕ, with ϕc we indicate a conjugate of ϕ (if there exists one). Notice that
a conjugate of a neutrosophic constraint may be not unique, as there could be
infinitely many. For instance, both 〈C(a) :< 0.6, > 0.3〉 and 〈C(a) :≤ 0.7,≥ 0.4〉
are conjugates of 〈C(a) :≥ 0.8,≤ 0.1〉.

Concerning the rules, for each connective u,t,¬, ∀, ∃ there is a rule for each
relation 〈≥,≤〉, 〈>,<〉, 〈≤,≥〉, 〈<,>〉, i.e. there are 20 rules. The rules have the
form:

Φ→ Ψ if Γ (10)

2 In the following, if there is no ambiguity, ALC variables and ALC objects are called
variables and objects, respectively.



〈⊥(ω) :≥ n,≤ m〉, where n > 0 or m < 1
〈>(ω) :≤ n,≥ m〉, where n < 1 or m > 0
〈⊥(ω) :> n, < m〉, 〈>(ω) :< n, > m〉
〈C(ω) :< 0, > m〉, 〈C(ω) :> 1, < m〉, 〈C(ω) :< n, > 1〉, 〈C(ω) :> n, < 0〉

Table 1. Clashes

〈α :< f, > g〉 〈α :≤ f,≥ g

〈α :≥ n,≤ m n ≥ f or m ≤ g n > f or m < g

〈α :> n, < m n ≥ f or m ≤ g n ≥ f or m ≤ g

Table 2. Conjugated Pairs

where Φ and Ψ are sequences of neutrosophic constraints and Γ is a condition.
A rule fires only if the condition Γ holds, if the current set S of neutrosophic
constraints contains neutrosophic constraints matching the precondition Φ and
the consequence Ψ is not already in S. After firing, the constraints from Ψ are
added to S. The rules are the following:

(¬〈≥,≤〉) 〈¬C(ω) :≥ n,≤ m〉 → 〈C(ω) :≤ m,≥ n〉

(¬〈>,<〉) 〈¬C(ω) :> n,< m〉 → 〈C(ω) :< m,> n〉 (11)

(¬〈≤,≥〉) 〈¬C(ω) :≤ n,≥ m〉 → 〈C(ω) :≥ m,≤ n〉

(¬〈<,>〉) 〈¬C(ω) :< n,> m〉 → 〈C(ω) :> m,< n〉

(u〈≥,≤〉) 〈(C uD)(ω) :≥ n,≤ m〉 → 〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≥ n,≤ m〉

(u〈>,<〉) 〈(C uD)(ω) :> n,< m〉 → 〈C(ω) :> n,< m〉, 〈D(ω) :> n,< m〉

(u〈≤,≥〉) 〈(C uD)(ω) :≤ n,≥ m〉 → 〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≤ n,≥ m〉|

〈C(ω) :≤ n,≥ 0〉, 〈C(ω) :≥ 0,≤ m〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :≤ 1,≥ m〉|

〈C(ω) :≥ n,≤ 1〉, 〈C(ω) :≤ 1,≥ m〉, 〈D(ω) :≥ 0,≤ m〉, 〈D(ω) :≤ n,≥ 0〉

(u〈<,>〉) 〈(C uD)(ω) :< n,> m〉 → 〈C(ω) :< n,> m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ m〉, 〈D(ω) :< n,> m〉|

〈C(ω) :< n,> 0〉, 〈C(ω) ≥ 0,≤ m〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :< 1, > m〉|

〈C(ω) :≥ n,≤ 1〉, 〈C(ω) :< 1, > m〉, 〈D(ω) :< n,> 0〉, 〈D(ω) :≥ 0,≤ m〉

(t〈≥,≤〉) 〈(C tD)(ω) :≥ n,≤ m〉 → 〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≤ n,≥ m〉|

〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ 1〉, 〉C(ω) :≤ 1,≥ m〉, 〈D(ω) :≤ n,≥ 0〉, 〈D(ω) :≥ 0,≤ m〉|

〈C(ω) :≥ 0,≤ m〉, 〈C(ω) :≤ n,≥ 0〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :≤ 1,≥ m〉

(t〈>,<〉) 〈(C tD)(ω) :> n,< m〉 → 〈C(ω) :> n,< m〉, 〈D(ω) :≤ n,≥ m〉|



〈C(ω) :≤ n,≥ m〉, 〈D(ω) :> n,< m〉|

〈C(ω) :> n,< 1〉, 〈C(ω) :≤ 1,≥ m〉, 〈D(ω) :≤ n,≥ 0〉, 〈D(ω) :> 0, < m〉|

〈C(ω) :≤ n,≥ 0〉, 〈C(ω) :> 0, < m〉, 〈D(ω) :> n,< 1〉, 〈D(ω) :≤ 1,≥ m〉

(t〈≤,≥) 〈(C tD)(ω) :≤ n,≥ m〉 → 〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≤ n,≥ m〉

(t〈<,>) 〈(C tD)(ω) :< n,> m〉 → 〈C(ω) :< n,> m〉, 〈D(ω) :< n,> m〉

(∀〈≥,≤) 〈(∀R.C)(ω1) :≥ n,≤ m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :≥ n,≤ m〉

if f > m and g < n

(∀〈>,<) 〈(∀R.C)(ω1) :> n,< m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :> n,< m〉

if f ≥ m and g ≤ n

(∃〈≤,≥) 〈(∃R.C)(ω1) :≤ n,≥ m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :≤ n,≥ m〉

if f > n and g < m

(∃〈<,>) 〈(∃R.C)(ω1) :< n,> m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :< n,> m〉

if f ≥ n and g ≤ m

(∃≥,≤) 〈(∃R.C)(ω) :≥ n,≤ m〉 → 〈R(ω, x) :≥ n,≤ m〉, 〈C(x) :≥ n,≤ m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :≥ n,≤ m〉 and 〈C(ω
′

) :≥ n,≤ m〉 are already in the constraint set

(∃>,<) 〈(∃R.C)(ω) :> n,< m〉 → 〈R(ω, x) :> n,< m〉, 〈C(x) :> n,< m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :> n,< m〉 and 〈C(ω
′

) :> n,< m〉 are already in the constraint set

(∀≤,≥) 〈(∀R.C)(ω) :≤ n,≥ m〉 → 〈R(ω, x) :≥ m,≤ n〉, 〈C(x) :≤ n,≥ m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :≥ m,≤ n〉 and 〈C(ω
′

) :≤ n,≥ m〉 are already in the constraint set

(∀<,>) 〈(∀R.C)(ω) :< n,> m〉 → 〈R(ω, x) :> m,< n〉, 〈C(x) :< n,> m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :> m,< n〉 and 〈C(ω
′

) :< n,> m〉 are already in the constraint set

A set of neutrosophic constraints S is said to be complete if no rule is ap-
plicable to it. Any complete set of neutrosophic constraints S2 obtained from
a set of neutrosophic constraints S1 by applying the above rules (11) is called
a completion of S1. Due to the rules (t≥,≤), (t>,<), (u≤,≥) and (u<,>), more
than one completion can be obtained. These rules are called nondeterministic
rules. All other rules are called deterministic rules.

It is easily verified that the above calculus has the termination property, i.e.
any completion of a finite set of neutrosophic constraints S can be obtained after
a finite number of rule applications.

Example 2. Consider Example 1 and let us prove thatΣ” |=n 〈(∃Support.War)(p1)
≥ 0.6,≤ 0.5〉. We prove the above relation by verifying that all completions of



S = Σ”∪{〈(∃Support.War)(p1) :< 0.6, > 0.5〉} contain a clash. In fact, we have
the following sequence.

(1) 〈(∃Support.(War u war x∗))(p1) :≥ 0.6,≤ 0.5〉 Hypothesis:S
(2) 〈(∃Support.(War u war y∗))(p2) :≥ 0.8,≤ 0.1〉
(3) 〈(∃Support.War)(p1) :< 0.6, > 0.5〉

(4) 〈Support(p1, x) :≥ 0.6,≤ 0.5〉, 〈(War u war x∗)(x) :≥ 0.6,≤ 0.5〉 (∃≥,≤) : (1)
(5) 〈War(x) :< 0.6, > 0.5〉 (∃<,>) : (3), (4)
(6) 〈War(x) :≥ 0.6,≤ 0.5〉, 〈war x∗(x) :≥ 0.6,≤ 0.5〉 (u≥,≤) : (4)
(7) clash (5), (6)

2

Proposition 3. A finite set of neutrosophic constraints S is satisfiable iff there
exists a clash free completion of S. a

From a computational complexity point of view, the neutrosophic entailment
problem can be proven to be a PSPACE-complete problem, as is the classical
entailment problem and fuzzy entailment problem.

Proposition 4. Let Σ be a neutrosophic KB and let ϕ be a neutrosophic asser-
tion. Determining whether Σ |=n ϕ is a PSPACE-complete problem. a

Proof. By the Proposition 1, Σ |=n ϕ iff ]Σ |= ]ϕ and ?Σ |= ?ϕ. From the
PSPACE-completeness of the entailment problem in fuzzy ALC[14], PSPACE-
completeness of the neutrosophic entailment problems follows. 2

This result establishes an important property about our neutrosophic DLs. In
effect, it says that no additional computational cost has to be paid for the major
expressive power.

5.2 A Decision Procedure for the Subsumption Problem

In this section we address the subsumption problem, i.e. deciding whether C �n
ΣT

D, where C and D are two concepts and ΣT is a neutrosophic terminology. As
we have seen (see Example 1), C �n

ΣT
D can be reduced to the case of an

empty terminology by applying the KB expansion process. So, without loss of
generality, we can limit our attention to the case C �n

∅ D.

It can easily be shown that

Proposition 5. Let C and D be two concepts. It follows that C �n
∅ D iff for

all n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉, where a is a new individual. a



Proof. (⇒) Assume that C �n
∅ D holds. Suppose to the contrary that ∃n,m such

that 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉 does not hold. Therefore, there is
an interpretation I and an n,m such that |C|t(aI) ≥ n and |D|t(aI) < n or
|C|f (aI) ≤ m and |D|f (aI) > m. But, from the hypothesis n ≤ |C|t(aI) ≤
|D|t(aI) < n or m ≥ |C|f (aI) ≥ |D|f (aI) > m follow. Absurd.
(⇐) Assume that for all n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉 holds.
Suppose to the contrary that C �n

∅ D does not hold. Therefore, there is an

interpretation I and d ∈ ∆I such that |C|t(d) > |D|t(d) ≥ 0 or |C|f (d) <
|D|f (d) ≤ 1. Let us extent I to a such that aI = d and consider n = |C|t(d)
and m = |C|f (d). Of course, I satisfies 〈C(a) :≥ n,≤ m〉. Therefore, from
the hypothesis it follows that I satisfies 〈D(a) :≥ n,≤ m〉, i.e. |D|t(d) ≥ n =
|C|t(d) > |D|t(d) or |D|f (d) ≤ m = |C|f (d) < |D|f (d). Absurd. 2

How can we check whether for all n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉
holds? The following proposition shows that

Proposition 6. Let C and D be two concepts, n1,m1 ∈ {0, 0.25, 0.5, 0.75, 1}
and let a be an individual. It follows that for all n,m〈C(a) :≥ n,≤ m〉 |=n

〈D(a) :≥ n,≤ m〉 iff 〈C(a) :≥ n1,≤ m1〉 |=n 〈D(a) :≥ n1,≤ m1〉 holds. a

As a consequence, the subsumption problem can be reduced to the entailment
problem for which we have a decision algorithm.

5.3 A Decision Procedure for the BTVB Problem

We address now the problem of determining glb(Σ,α) and lub(Σ,α). This is
important, as computing , e.g. glb(Σ,α), is in fact the way to answer a query
of type “to which degree is α (at least) true and (at most) false, given the
(imprecise) facts in Σ?”.

Without loss of generality, we will assume that all concepts are in NNF
(Negation Normal Form).

Proposition 7. Let Σ be a set of neutrosophic assertions in NNF and let α be
an assertion. Then glb(Σ,α) ∈ NΣ and lub(Σ,α) ∈ MΣ, where

NΣ = {〈n,m〉 : 〈α :≥ n,≤ m′〉 ∈ Σ, 〈α :≥ n′,≤ m〉 ∈ Σ}

MΣ = {〈n,m〉 : 〈α :≤ n,≥ m′〉 ∈ Σ, 〈α :≤ n′,≥ m〉 ∈ Σ}

a

The algorithm computing glb(Σ,α) and lub(Σ,α) are described in Table 3.

6 Conclusions and Future Work

In this paper, we have presented a quite general neutrosophic extension of the
fuzzy DL ALC, a significant and expressive representative of the various DLs.



Algorithm glb(Σ, α)
Set Min := 〈0, 1〉 and Max := 〈1, 0〉.
1. Pick 〈n, m〉 ∈ MΣ such that first element of Min < n < first element of Max and
second element of Max < m < second element of Min. If there is no such 〈n, m〉,
then set glb(Σ,α) := Min and exit.
2. If Σ |=n 〈α :≥ n,≤ m〉 then set Min = 〈n, m〉, else set Max = 〈n, m〉. Go to Step 1.

Algorithm lub(Σ, α)
Set Min := 〈1, 0〉 and Max := 〈0, 1〉.
1. Pick 〈n, m〉 ∈ NΣ such that first element of Max < n < first element of Min and
second element of Min < m < second element of Max. If there is no such 〈n, m〉,
then set lub(Σ, α) := Min and exit.
2. If Σ |=n 〈α :≤ n,≥ m〉 then set Min = 〈n, m〉, else set Max = 〈n, m〉. Go to Step 1.

Table 3. Algorithms glb(Σ,α) and lub(Σ, α)

Our neutrosophic DL enables us to reason in presence of imprecise (fuzzy, incom-
plete, and inconsistent) ALC concepts, i.e. neutrosophic ALC concepts. From a
semantics point of view, neutrosophic concepts are interpreted as neutrosophic
sets, i.e. given a concept C and an individual a, C(a) is interpreted as the truth-
value and falsity-value of the sentence “a is C”. From a syntax point of view,
we allow to specify lower and upper bounds of the truth-value and falsity-value
of C(a). Complete algorithms for reasoning in it have been presented, that is,
we have devised algorithms for solving the entailment problem, the subsumption
problem as well as the best truth-value bound problem.

An important point concerns computational complexity. The complexity re-
sult shows that the additional expressive power has no impact from a computa-
tional complexity point of view.

This work can be used as a basis both for extending existing DL and fuzzy DL
based systems and for further research. In this latter case, there are several open
points. For instance, it is not clear yet how to reason both in case of neutrosophic
specialization of the general form C ≺n D and in the case cycles are allowed in
a neutrosophic KB. Another interesting topic for further research concerns the
semantics of neutrosophic connectives. Of course several other choices for the
semantics of the connectives u,t,¬, ∃, ∀ can be considered.
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