ON CARMICHAËL’S CONJECTURE

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Carmichaël’s conjecture is the following: “the equation \(\varphi(x) = n \) cannot have a unique solution, \((\forall)n \in \mathbb{N}\), where \(\varphi \) is the Euler’s function”. R. K. Guy presented in [1] some results on this conjecture; Carmichaël himself proved that, if \(n_0 \) does not verify his conjecture, then \(n_0 > 10^{37} \); V. L. Klee [2] improved to \(n_0 > 10^{400} \), and P. Masai & A. Valette increased to \(n_0 > 10^{1000} \). C. Pomerance [4] wrote on this subject too.

In this article we prove that the equation \(\varphi(x) = n \) admits a finite number of solutions, we find the general form of these solutions, also we prove that, if \(x_0 \) is the unique solution of this equation (for a \(n \in \mathbb{N} \)), then \(x_0 \) is a multiple of \(2^2 \cdot 3^2 \cdot 7^2 \cdot 43^2 \) (and \(x_0 > 10^{10000} \) from [3]).

§1. Let \(x_0 \) be a solution of the equation \(\varphi(x) = n \). We consider \(n \) fixed. We’ll try to construct another solution \(y_0 \neq x_0 \).

The first method:
We decompose \(x_0 = a \cdot b \) with \(a, b \) integers such that \((a, b) = 1\).
we look for an \(a' \neq a \) such that \(\varphi(a') = \varphi(a) \) and \((a', b) = 1\); it results that \(y_0 = a' \cdot b \).

The second method:
Let’s consider \(x_0 = q_1^{\alpha_1} \cdots q_s^{\alpha_s} \), where all \(q_i \in \mathbb{N}^* \), and \(q_1, \ldots, q_s \) are distinct primes two by two; we look for an integer \(q \) such that \((q, x_0) = 1 \) and \(\varphi(q) \) divides \(x_0 / (q_1, \ldots, q_s) \); then \(y_0 = x_0 q / \varphi(q) \).

We immediately see that we can consider \(q \) as prime.

The author conjectures that for any integer \(x_0 \geq 2 \) it is possible to find, by means of one of these methods, a \(y_0 \neq x_0 \) such that \(\varphi(y_0) = \varphi(x_0) \).

Lemma 1. The equation \(\varphi(x) = n \) admits a finite number of solutions, \((\forall)n \in \mathbb{N}\).

Proof. The cases \(n = 0, 1 \) are trivial.
Let’s consider \(n \) to be fixed, \(n \geq 2 \). Let \(p_1 < p_2 < \ldots < p_s \leq n + 1 \) be the sequence of prime numbers. If \(x_0 \) is a solution of our equation (1) then \(x_0 \) has the form
\(x_0 = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), with all \(\alpha_i \in \mathbb{N} \). Each \(\alpha_i \) is limited, because:
\((\forall)i \in \{1, 2, \ldots, s\}, (\exists) a_i \in \mathbb{N}: p_i^{\alpha_i} \geq n\).
Whence \(0 \leq \alpha_i \leq a_i + 1 \), for all \(i \). Thus, we find a wide limitation for the number of solutions:
\[
\prod_{i=1}^{s} (a_i + 2)
\]

Lemma 2. Any solution of this equation has the form (1) and (2):
\[
x_0 = n \cdot \left(\frac{p_1}{p_1 - 1} \right)^{e_1} \cdots \left(\frac{p_s}{p_s - 1} \right)^{e_s} \in \mathbb{Z},
\]
where, for \(1 \leq i \leq s \), we have \(e_i = 0 \) if \(\alpha_i = 0 \), or \(e_i = 1 \) if \(\alpha_i \neq 0 \).

Of course, \(n = \varphi(x_0) = x_0 \left(\frac{p_1}{p_1 - 1} \right)^{e_1} \cdots \left(\frac{p_s}{p_s - 1} \right)^{e_s} \),
whence it results the second form of \(x_0 \).

From (2) we find another limitation for the number of the solutions: \(2^s - 1 \) because each \(e_i \) has only two values, and at least one is not equal to zero.

§2. We suppose that \(x_0 \) is the unique solution of this equation.

Lemma 3. \(x_0 \) is a multiple of \(2^2 \cdot 3^2 \cdot 7^2 \cdot 43^2 \).

Proof. We apply our second method.
Because \(\varphi(0) = \varphi(3) \) and \(\varphi(1) = \varphi(2) \) we take \(x_0 \geq 4 \).
If \(2 \mid x_0 \) then there is \(y_0 = 2x_0 \neq x_0 \) such that \(\varphi(y_0) = \varphi(x_0) \), hence \(2 \mid x_0 \); if \(4 \mid x_0 \), then we can take \(y_0 = x_0 / 2 \).
If \(3 \mid x_0 \) then \(y_0 = 3x_0 / 2 \), hence \(3 \mid x_0 \); if \(9 \mid x_0 \) then \(y_0 = 2x_0 / 3 \), hence \(9 \mid x_0 \); whence \(4 \cdot 9 \mid x_0 \).
If \(7 \mid x_0 \) then \(y_0 = 7x_0 / 6 \), hence \(7 \mid x_0 \); if \(49 \mid x_0 \) then \(y_0 = 6x_0 / 7 \) hence \(49 \mid x_0 \); whence \(4 \cdot 9 \cdot 49 \mid x_0 \).
If \(43 \mid x_0 \) then \(y_0 = 43x_0 / 42 \), hence \(43 \mid x_0 \); if \(43^2 \mid x_0 \) then \(y_0 = 42x_0 / 43 \), hence \(43^2 \mid x_0 \); whence \(2^2 \cdot 3^2 \cdot 7^2 \cdot 43^2 \mid x_0 \).
Thus \(x_0 = 2^{\gamma_1} \cdot 3^{\gamma_2} \cdot 7^{\gamma_3} \cdot 43^{\gamma_4} \cdot t \), with all \(\gamma_i \geq 2 \) and \((t, 2^3 \cdot 7 \cdot 43) = 1 \) and \(x_0 > 10^{10000} \) because \(n_0 > 10^{10000} \).

§3. Let’s consider \(y_i \geq 3 \). If \(5 \mid x_0 \) then \(5x_0 / 4 = y_0 \), hence \(5 \mid x_0 \); if \(25 \mid x_0 \) then \(y_0 = 4x_0 / 5 \), whence \(25 \mid x_0 \).
We construct the recurrent set \(M \) of prime numbers:
a) the elements \(2, 3, 5 \in M \);
b) if the distinct odd elements \(e_1, \ldots, e_n \in M \) and \(b_m = 1 + 2^m \cdot e_1, \ldots, e_n \) is prime, with \(m = 1 \) or \(m = 2 \), then \(b_m \in M \);
c) any element belonging to \(M \) is obtained by the utilization (a finite number of times) of the rules a) or b) only.

The author conjectures that \(M \) is infinite, which solves this case, because it results that there is an infinite number of primes which divide \(x_0 \). This is absurd.

For example 2, 3, 5, 7, 11, 13, 23, 29, 31, 43, 47, 53, 61, … belong to \(M \).
The method from §3 could be continued as a tree (for \(\gamma_2 \geq 3 \) afterwards \(\gamma_3 \geq 3 \), etc.) but its ramifications are very complicated…

REFERENCES

[Published in “Gamma”, XXIV, Year VIII, No. 2, February 1986, pp. 13-14.]