ON DIOPHANTINE EQUATION $X^2 = 2Y^4 - 1$

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Abstract: In this note we present a method of solving this Diophantine equation, method which is different from Ljunggren's, Mordell's, and R.K.Guy's.

In his book of unsolved problems Guy shows that the equation $x^2 = 2y^4 - 1$ has, in the set of positive integers, the only solutions (1,1) and (239,13); (Ljunggren has proved it in a complicated way). But Mordell gave an easier proof.

We'll note $t = y^2$. The general integer solution for $x^2 - 2t^2 + 1 = 0$ is

$$\begin{cases} x_{n+1} = 3x_n + 4t_n \\ t_{n+1} = 2x_n + 3t_n \end{cases}$$

for all $n \in \mathbb{N}$, where $(x_0, y_0) = (1, \varepsilon)$, with $\varepsilon = \pm 1$ (see [6]) or

$$\begin{pmatrix} x_n \\ t_n \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}^n \cdot \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix}, \text{ for all } n \in \mathbb{N} \text{ , where a matrix to the power zero is}$$

equal to the unit matrix I.

Let's consider $A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$, and $\lambda \in \mathbb{R}$. Then $\det(A - \lambda \cdot I) = 0$ implies

 $\lambda_{1,2} = 3 \pm \sqrt{2}$, whence if v is a vector of dimension two, then: $Av = \lambda_{1,2} \cdot v$.

Let's consider
$$P = \begin{pmatrix} 2 & 2 \\ \sqrt{2} & -\sqrt{2} \end{pmatrix}$$
 and $D = \begin{pmatrix} 3 + 2\sqrt{2} & 0 \\ 0 & 3 - 2\sqrt{2} \end{pmatrix}$. We have

 $P^{-1} \cdot A \cdot P = D$, or

$$A^{n} = P \cdot D^{n} \cdot P^{-1} = \begin{pmatrix} \frac{1}{2}(a+b) & \frac{\sqrt{2}}{2}(a-b) \\ \frac{\sqrt{2}}{4}(a-b) & \frac{1}{2}(a+b) \end{pmatrix},$$

where $a = (3 + 2\sqrt{2})^n$ and $b = (3 - 2\sqrt{2})^n$.

Hence, we find:

$$\begin{pmatrix} x_n \\ t_n \end{pmatrix} = \begin{pmatrix} \frac{1+\varepsilon\sqrt{2}}{2} \left(3+2\sqrt{2}\right)^n + \frac{1-\varepsilon\sqrt{2}}{2} \left(3-2\sqrt{2}\right)^n \\ \frac{2\varepsilon+\sqrt{2}}{4} \left(3+2\sqrt{2}\right)^n + \frac{2\varepsilon-\sqrt{2}}{4} \left(3-2\sqrt{2}\right)^n \end{pmatrix}, \quad n \in \mathbb{N} .$$
 Or $y_n^2 = \frac{2\varepsilon+\sqrt{2}}{4} \left(3+2\sqrt{2}\right)^n + \frac{2\varepsilon-\sqrt{2}}{4} \left(3-2\sqrt{2}\right)^n, \quad n \in \mathbb{N} .$

For n = 0, $\varepsilon = 1$ we obtain $y_0^2 = 1$ (whence $x_0^2 = 1$), and for n = 3, $\varepsilon = 1$ we obtain $y_3^2 = 169$ (whence $x_3 = 239$).

(1)
$$y_n^2 = \varepsilon \sum_{k=0}^{\left[\frac{n}{2}\right]} {n \choose 2k} \cdot 3^{n-2k} 2^{3k} + \sum_{k=0}^{\left[\frac{n-1}{2}\right]} {n \choose 2k+1} \cdot 3^{n-2k-1} 2^{3k+1}$$

We still must prove that y_n^2 is a perfect square if and only if n = 0, 3.

We can use a similar method for the Diophantine equation $x^2 = Dy^4 \pm 1$, or more generally: $C \cdot X^{2a} = DY^{2b} + E$, with $a,b \in \mathbb{N}^*$ and $C,D,E \in \mathbb{Z}^*$; denoting $X^a = U$, $Y^b = V$, and applying the results from F.S. [6], the relation (1) becomes very complicated.

REFERENCES

- [1] J. H. E. Cohn, The Diophantine equation $y^2 = Dx^4 + 1$, Math. Scand. 42 (1978), pp. 180-188, MR 80a: 10031.
- [2] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981, Problem D6, 84-85.
- [3] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad., Oslo, I, 5(1942), #pp. 5-27; MR 8, 6.
- [4] W. Ljunggren, Some remarks on the Diophantine equation $x^2 Dy^4 = 1$ and $x^4 Dy^2 = 1$, J. London Math. Soc. 41(1966), 542-544, MR 33 #5555.
- [5] L. J. Mordell, The Diophantine equation $y^2 = Dx^4 + 1$, J. London Math. Soc. 39(1964, 161-164, MR 29#65.
- [6] F. Smarandache, A Method to solve Diophantine Equations of two unknowns and second degree, "Gazeta Matematicã", 2nd Series, Volume 1, No. 2, 1988, pp. 151-7; translated into Spanish by Francisco Bellot Rosado.

http://xxx.lanl.gov/pdf/math.GM/0609671.

[Published in "Gamma, Anul IX, November 1986, No.1, p. 12]