A conjecture about an infinity of sets of integers, each one having an infinite number of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper, inspired by one of my previous papers posted on Vixra, I make, considering the sum of the digits of an odd integer, a conjecture about an infinity of sets of integers, each one having an infinite number of primes and I also make, considering the sum of the digits of a prime number, two other conjectures.

Conjecture 1:
For an infinity of odd positive integers m there is an infinite set of primes with the property that the sum of their digits is equal to m + 1.

Conjecture 2:
For an infinity of primes p there is an infinite set of primes with the property that the sum of their digits is equal to p + 1.

Comment: such a prime p I conjectured to be, in a previous paper posted on Vixra, the number 13.

Conjecture 3:
There is an infinite number of values the sum of the digits of the numbers p + 1, where p is odd prime, may have.

Note:
For a list with prime numbers with the property that the sum of their digits is equal to an even number see the sequence A119449 in OEIS.

Note:
We will refer hereinafter with D(m) to the set of primes with the property that the sum of their digits is equal to m + 1, where m is an odd integer.

The sequence D(1):
: 101 (...).

The sequence D(3):
: 13, 31, 103, 211, 1021, 1201 (...).
The sequence $D(5)$:
: $(...)$.

The sequence $D(7)$:

The sequence $D(9)$:

The sequence $D(11)$:
: $(...)$.

The sequence $D(13)$:

The sequence $D(15)$:

The sequence $D(17)$:
: $(...)$.

The sequence $D(19)$:

The sequence $D(21)$:
: 499, 769, 787, 859, 877, 967 $(...)$.

Note:
It can easily be seen that for some values of odd integers m were obtained much more primes with the sum of the digits equal to $m + 1$ than for other values of m; for instance were obtained, from the first hundred of primes having the sum of digits equal to an even number, 20 such primes for which $m = 9$, 21 such primes for which $m = 13$, 19 such primes for which $m = 15$, but no such primes at all for which $m = 5$, $m = 11$ or $m = 17$.