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Abstract Schiller has shown not only that a maximum force follows from
General Relativity, he has also argued that General Relativity can be derived
from the principle of maximum force. In the present paper an alternative
derivation of maximum force is given. Inspired by the equivalence principle,
the approach is based on a modification of the well known special relativity
equation for the velocity acquired from uniform proper acceleration. Though
in Schiller’s derivation the existence of gravitational horizons plays a key role,
in the present derivation this is not the case. In fact, though the kinematic
equation that we start with does exhibit a horizon, it is not carried over to its
gravitational counterpart. A few of the geometrical consequences and physical
implications of this result are discussed.
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1 Introduction

Motivated by Gibbons’ work on the “Maximum Tension Principle in General
Relativity,” [1] Schiller has shown how the maximum force in nature, c4/4G,
“plays the same role for general relativity as the maximum speed plays for
special relativity.” [2] In the present paper we show that the same force can
be derived from a novel combination of special relativity’s speed limit, Ein-
stein’s equivalence principle, and the inverse-square law of gravity. Our use of
the speed limit as a maximum echoes Schiller’s thesis. The present derivation
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diverges from Schiller’s thesis, however, with regard to the significance of hori-
zons. Gravitational horizons play a key role in Schiller’s argument. Whereas,
though the present derivation arrives at exactly the same maximum force, it
actually implies an absence of gravitational horizons.

Insofar as our derivation is based on well established principles and agrees
with the maximum force prediction, it is appropriate to explore a few of its
other consequences. It implies, for example, that for observationally accessible
circumstances, spacetime is curved almost exactly as predicted by General Rel-
ativity (hereafter, GR). There is no conflict with empirical evidence within the
limits set by the Parametric Post Newtonian comparison scheme. For extreme
cases, however, i.e., for large m/r ratios, the present result is significantly dif-
ferent from GR. Specifically, the predicted absence of gravitational horizons
naturally also means an absence of gravitational singularities, i.e., black holes.
According to the present result, what are now thought to be physical black
holes would thus instead be more properly called, “dim compact massive ob-
jects.” The collapse of stars or collections of large masses in the centers of
stellar systems need not result in any singularities. The line of thought leading
to this result also leads to a possible test by laboratory experiment.

2 Hyperbolic Motion

Let’s begin by considering a body undergoing uniform proper acceleration with
respect to an inertial system, I. The equation for the velocity of the body is
well known to be

v =
at√

1 + a2t2/c2
, (1)
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Fig. 1 Hyperbolic motion: The asymptote defines a light cone that B’s time track never
reaches because B’s speed will never reach the speed of light. The asymptote also represents
a horizon, a communication barrier, because B will never receive signals from A after the
time c/a.
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where a is the acceleration given by an accelerometer attached to the body,
t is the time given by a clock in I, and c is the light speed constant. As
t → ∞, v → c. This is often called hyperbolic motion because the track on
a spacetime diagram is a hyperbola whose asymptote represents the speed
of light. This is shown in Figure 1, which also illustrates another important
property of constant proper acceleration, that is, a horizon. In the figure the
vertical track of A represents an observer who remains at rest in I, while the
hyperbolic track of B reflects B’s acceleration. The asymptote to B’s trajectory
also represents a light cone and therefore a horizon. B will never receive signals
from A emitted after the time, c/a. These are elementary consequences of
special relativity.

3 Equivalence Principle

Appealing now to Einstein’s equivalence principle, we note that if body B has
an extent, h in the direction of motion, then observers who exchange signals
from the ends of h can detect a shift in light frequency, f . If B1 and B2
represent the leading and trailing ends of h, respectively, then an observer at
B1 would see B2’s signal red-shifted according to

fB2 ≈ fB1(1− ah/c2) . (2)

And B2 would see a signal from B1 correspondingly blue-shifted. This result
is often used by analogy (“equivalence”) to derive the variation of clock rates
found at different heights near a gravitating body. The reasoning behind (2)
appeals to the Doppler effect, which makes sense in the kinematic circum-
stance. In the time between emission and reception, B acquires the speed
≈ ah/c, which produces the shift. In a stationary gravitational field, however,
the expression “gravitational Doppler effect” is a bit of a misnomer because
the observed frequency difference isn’t due to a spectral shift caused by a
change in motion between emitter and receiver. It is due to the difference in
frequency between two clocks, neither of whose speeds change while the signals
are en route. Another obvious and important distinction, i.e., non-equivalence,
between these circumstances is that, over the course of its accelerated journey
through a real universe such as ours, system B would find light from sources in
its direction of acceleration to get increasingly hotter, while light from sources
in the opposite direction would get correspondingly colder. This doesn’t hap-
pen on a gravitating body.

What is important here is that effects that are found in the flat space of
a uniformly accelerating system permit deducing similar effects near a grav-
itating body. In the latter case one cannot consistently ascribe the effects to
kinematics because the system is stationary. Since the effects nevertheless ex-
ist, one is led to the conclusion that time is curved by massive bodies. The
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spirit of the equivalence principle is thus to deduce this curvature and to not
worry too much about the differences between the kinematic and gravitational
circumstances.

4 Modified Kinematic Equation

In this spirit, then, we note that what makes B’s circumstance unlike life on
a gravitating body is, in terms of (1), the time variable. The speed of light
is approached with increasing time. We can replace the time variable and
also the explicit acceleration a, with a stationary gravitational quantity that
traces back to the inverse-square character of gravity’s force law. If not clearly
analogous, this is at least mathematically permissible. Specifically, we replace
(at) by

√
2GM/r. This gives

VS =

√
2GM
r√

1 + 2GM
rc2

=

√
2GM

r + 2GM
c2

. (3)

The only obvious physical meaning we could attach to this velocity is that it
is (at least approximately) the relative speed of the surface at r, with respect
to a geodesic trajectory “from infinity.” Two things adding to its possible
signifcance are: 1) For any physical values of M and r, it remains that VS < c .
And 2) It leads to a maximum force, FMAX = c4/4G, equal to the maximum
force expounded upon by Schiller. Squaring both sides, we get

V 2
S =

2GM

r(1 + 2GM
rc2 )

=
2GM

(r + 2GM
c2 )

. (4)

The length in the denominator on the right side is the sum of the coordinate
radius, r and the gravitational radius, 2GM/c2. Let’s call this sum, rγ =
r + 2GM/c2. This suggests that, whatever the coordinate radius may be, by
virtue of its mass, a body possesses an additional spatial extent. This idea is
consistent with GR. Spacetime curvature—or at least the spatial part of the
curvature—can be described in similar terms. Motivated by the suggestiveness
of (3), we diverge from standard GR, however, by treating 2GM/rc2 as a
quantity to be added to rather than subtracted from unity. Thus we assume
that the quantity (1 + 2GM/rc2) appearing in (4) plays a role similar to
(1− 2GM/rc2)−1 appearing in the Schwarzschild solution—applying to both
space and (its inverse) to time. This is clearly a mathematical possibility, so
perhaps it is also a physical possibility. The likelihood that we are within the
limits set by empirical observations follows from the smallness of the difference,
for most cases, between the quantities:

[
1− 2GM

rc2

]−1
−
[
1 +

2GM

rc2

]
=

4G2M2

r2c4(1− 2GM/rc2)
. (5)
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5 Maximum Force

Because (r+ 2GM/c2) is the radial length whose inverse square root gives VS,
we assume that its inverse square gives the surface acceleration, gS. Recalling
the kinematic origins of this derivation, we expect gS to be the acceleration
given by an accelerometer at the body’s surface. Expand the square of the sum
rγ , gives

gS =
GM

r2γ
=

GM

(r + 2GM
c2 )2

=
GM

r2 + 4rGM
c2 + 4G2M2

c4

. (6)

In the limit, r → 0, this leads to

gMAX = gS(r→0) =
c4

4GM
. (7)

In Figure 2 this acceleration is plotted against the full range of known masses
in the universe. Multiplying (6) by any mass, M ′, will result in a force less
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than the maximum, FMAX = c4/4G, because multiplication in the numerator
also entails adding (at least) the distance 2GM ′/c2 within the parentheses in
the denominator. Thus, the maximum force is the product of the mass of any
body, such as those in Figure 2, times the corresponding acceleration (7):

FMAX =
c4

4G
= 3.0256× 1043 N . (8)

6 Singularity-Free Geometry

Let’s now consider a few of the geometrical consequences. To reiterate what
was said above in connection with (3), any M/r ratio is permissible. Since
there can be no mass within zero volume, if r = 0, M is also zero, so we
simply get zero velocity. But any other M/r leaves VS, the “stationary surface
velocity,” finite and less than c. This implies that a gravitational horizon can
never form. We can see this graphically by using the quantity (1 + 2GM/rc2)
[from (4)] to make an embedding diagram and a plot which compares it to the
Schwarzschild metric coefficient, (1−2GM/rc2)−1. These are shown in Figure
3. Though our initial equation involving kinematic acceleration gives rise to a
horizon, curiously, our gravitational adaptation of this equation does not.

Since the form of the equations is the same, we naturally expect the new one
to also exhibit a hyperbola for some physical circumstance. This comes about
when we increase the M/r ratio by adding ever more shells of matter of the
same density. In this case the slope of the asymptote is 2, as shown in Figure
4. In the figure the increasing size of the embedding parabolas represents
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2). The latter points lie on the upwardly opening parabola as shown. The
tangents from these points to the z-axis have lengths, RPT, that are equal to the horizontal
lengths whose end points lie on the upwardly opening hyperbola. The relationship between
RPT, the coordinate radius R, Rγ , and the circumference, C, are given by the equation.
Note that the case (R = 2, M = 1, z = 4) corresponds to that of a Schwarzschild black
hole. In the present model, it is just one unexceptional case in a continuous series.

mass increases in increments of
√

8. Astronomical sized spheres of constant
density are unlikely or impossible in nature. But this idealization is useful for
illustrating some interesting geometrical relationships.

Progression up the figure can be understood as follows. By adding ever
more matter, both M and R increase. As the surface grows, so does the size
of the embedding parabola. But the relation between M and R is such that,
with each increase, R grows proportionally closer to the vertex of the parabola.
Points on the hyperbola are the distances, RPT, gotten by multiplying the
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circumference, C, (measured with unshortened rods) by
√

1 + 2GM/Rc2/2π.
Since C/2π = R, we have

RPT = R
√

1 + 2GM/Rc2 . (9)

Thus as M/R → ∞, z/RPT → 2. This may therefore be called hyperbolic
stationary motion, which does not increase with time, but with increasing
M/R.

7 Tangherlini’s Shell, Rotation Analogy, and Higher Dimensions

7.1 Interior Questions

If the only difference between GR and the present approach were that rep-
resented by (5), it would be extremely difficult to decide between them from
observations. Of the other possible differences one can deduce, we’ll address
the most important one: What happens for the interior? For example, though
we can build up a mass, as in connection with Figure 4, so that the surface
remains well-behaved (VS < c), what happens inside the body? This question
brings out the curious feature of GR that the spatial and temporal parts of
the metric are affected in equal magnitude only outside massive bodies. In the
exterior Schwarzschild solution the inverse of the temporal coefficient is ev-
erywhere equal to the spatial coefficient. As exemplified by the Schwarzschild
interior solution, however, [3] within massive bodies the spatial coefficient
goes back to unity at r = 0; at the center space is flat. By contrast, from the
surface inward, the inverse of the temporal coefficient continues increasing to
r = 0. A clock located there would be the slowest one in the field. This is
shown graphically in Figure 5 for a rather strong field case, R = 3GM/c2. The
figure displays these temporal and spatial coefficients in terms of r, R and M
from both Schwarzschild solutions.

It is important to emphasize that if we had empirical evidence proving the
correctness of Figure 5 or its weak field counterparts, there would be little point
in exploring alternatives. But we do not. We certainly have no direct evidence.
The difference between the rate of a clock at the center and at the surface
of any convenient-sized massive body would be much too small to measure.
Indirect evidence would be convincing, but this too has not been gathered—
although in this case it could be. Specifically, a consequence of the central clock
having the slowest rate is that motion through the center—as in the common,
idealized “hole through the center of Earth” problem—would yield harmonic
oscillation from one end of the hole to the other. Though a laboratory test
of this prediction is possible (using a modified Cavendish balance) it has not
yet been carried out. Our trail thus far—which was initiated by modifying
the proper acceleration equation—has led to the maximum force in nature,
and now to some empirically unexplored territory. Hence, we continue. We’ll
return to the possibility of a laboratory test in §8.
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Fig. 5 Schwarzschild interior and exterior space and inverse time coefficients. From the
surface inward, clocks get slower and space gets flatter.

7.2 Tangherlini’s Solution

This is not the first time that the interior question and alternative answers
to it have been discussed. In a paper by Tangherlini titled, ‘Postulational
approach to Schwarzschild’s exterior solution with application to a class of
interior solutions,’ [4] one of the latter (interior) solutions led to predictions
similar to those suggested by the present inquiry. Perhaps not surprisingly,
Tangherlini’s postulates were similar to our starting point: assumed validity
of the equivalence principle and the inverse square law of gravity. Tangherlini
also began with a few auxiliary assumptions that differ from ours, so the
results differ correspondingly. The case exhibiting the closest similarity is that
of a spherical shell of matter. According to the usual application of GR, the
spacetime properties found inside the shell would be essentially an enlarged
version of what is found at r = 0 for the case of a uniformly dense sphere.
That is, space would be flat throughout the interior and the rates of clocks
throughout would be a uniform minimum.

What Tangherlini derived on the basis of his postulates, by contrast, is
that clocks inside the shell have maximum rates, such that “the region inside
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Fig. 6 Tangherlini shell potentials. Outside the shell’s surface gravity abides by
Schwarzschild’s exterior solution. But inside, the behavior deviates from both Einstein’s
and Newton’s theories of gravity. An object dropped into a hole through the shell from the
outer surface or radially falling from the outside to the inside, would never enter the inner
cavity. This behavior corresponds to the equations predicting that the rate of a clock inside
the cavity is the same as the rate of a clock at infinity.

the shell [may be regarded as] an inversion of the region ‘outside matter at
infinity’.” Therefore, as Tangherlini also explains, an object dropped into the
shell from its outer surface would not fall through to the inner cavity. This
behavior can be seen in terms of the “potentials” derived from Tangherlini’s
equation, as shown in Figure 6. For at least half of its trajectory the falling
object is slowing down while between the inner and outer surface of the shell;
the cavity is never entered. Tangherlini acknowledges the “rather peculiar”
nature of these features. Surely it is shocking to one’s physical instinct to
think Newton’s predictions for this problem could be so grossly violated.

The reason for the peculiar behavior in Tangherlini’s solution traces back
to one of the auxiliary assumptions alluded to above. Within the boundary of
the sphere, the space curvature coefficient does not abruptly start going back
to unity; rather it changes continuously so as to always remain the inverse of
the temporal coefficient.

Although extremely unlikely to be physically true, this is of interest for
the present exploration because it illustrates the possibility that the spatial
and temporal coefficients need not diverge as they do in the usual treatment.
Furthermore, it is of interest because Tangherlini’s “postulational approach”
resulted in an exact derivation of the exterior Schwarzschild solution. [5] Thus
he demonstrated that it is possible to have a solution which matches the
Newtonian approximation and GR for exterior fields, but which predicts novel,
unexpected properties for interior fields.

In light of this, a third possibility presents itself. It is best illustrated not for
a material shell, but for a uniformly dense sphere. Instead of having the spatial
coefficient continue to increase along with the inverse temporal coefficient (as
Tangherlini did) suppose it is the other way around; perhaps inside matter the
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Fig. 7 Schematic comparison of the behavior of space (blue) and time (red) coefficients in-
side a uniformly dense sphere for three cases. a) Schwarzschild solution exhibits pronounced
divergence. b) Unlike the behavior in Tangherlini’s shell solution, the inverse of the time
coefficient continues increasing to the center and the space coefficient coincides with it. c)
Based on the present scheme, we expect the coefficients to coincide, but in the sense of
decreasing to unity at the center. Also shown in (c) are the Schwarzschild curve tending to
infinity as it approaches the Schwarzschild radius, and the same curve, based on this paper,
offset toward the vertical axis by (2GM/c2). Units are the same as in Figure 5.

inverse temporal coefficient decreases along with the spatial coefficient. If that
were true, it would permit our shifted parabolic profile and metric coefficient,
as in Figure 3; and it would permit the horizonless build-up of massive bodies,
as in Figure 4. A comparison of these cases is illustrated in Figure 7. Figure 7a
is a simplification of Figure 5; in 7b we have added the results of Tangherlini;
and 7c represents the implications of the present approach. Justification for
Figure 7c is found in an analogy intimated by Tangherlini’s remark about the
interior being an inversion of the exterior.

7.3 Rotation Analogy and Higher Dimensions

Reflecting on Tangherlini’s remark, we note that at least one gravitational
effect goes to zero at the center of a body, not because it is infinitely far
away, but because of symmetry. The acceleration due to gravity goes to zero
at the center because mass, which produces the effect, is distributed equally
in every direction, so the effect is exactly neutralized. This is analogous to the
phenomenon of rotation. A rotating body may possess lots of energy due to
its motion; but there is none at the axis, which remains motionless.

It is widely known that, because of its properties that are analogous to
gravitation, uniform rotation played almost as important a role as the equiva-
lence principle in guiding Einstein to GR. On a rotating body there are actually
four effects that are neutralized to zero at the center and increase with radial
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distance. First, there is inward acceleration, which is always accompanied by
a tangential velocity—both of which vary directly as the distance. The other
two effects are more subtle, but their inevitable existence, as deduced by Ein-
stein, led him to conceive of non-Euclidean spacetime. These effects are the
shortening of measuring rods and the slowing of clocks—both of which are
caused by the velocity and both of which occur in equal magnitude.

At that time, Einstein was motivated by the idea that all motion should
be relative, so he reasoned as follows: Since a non-moving gravitating body
(and its field) can be described in terms of non-Euclidean geometry, a rotat-
ing body, which also exhibits properties of non-Euclidean geometry, invites
the conception that it too can be regarded as being “at rest.” The effects of
motion were to be subsumed under the more fundamental idea (to Einstein)
of spacetime curvature, i.e., gravitational field. [6]

I have summarized the story here to provide the context for taking the
opposite approach. It is equally (if not more) logical, I propose, to reason as
follows. First, acknowledge the absoluteness of rotational motion. Acknowledge
all the resulting effects suggesting non-Euclidean geometry, especially, non-zero
accelerometer readings, shortened rods and slow clocks. Then, upon finding or
deducing these same physical effects on or near a gravitating body, hypothesize
that they are due to the same cause: motion.

Section 6 ends with an only partly explained allusion to hyperbolic station-
ary motion. The idea of stationary motion has been used before (by Rindler [7],
Möller [8], and Landau and Liftshitz [9]) in connection with uniform rotation
because uniformly rotating bodies have the character of moving, yet giving
the same (or periodic) appearance over time. By analogy with gravity, we thus
infer the applicablilty of the expression in this case, too. Based on this reason-
ing and intimated throughout this paper is the following set of propositions
that we now make explicit: 1) Gravitational spacetime curvature is caused by
stationary motion. 2) Accelerometer readings and the variation of clock rates
establish the existence of this motion. And 3) If (1) and (2) are correct, then
gravitating bodies do not induce geodesic motion through their centers.

Though these propositions are clearly motivated by the rotation analogy, it
is important to point out some key distinctions. Rotational stationary motion
is motion through space. Whereas gravitational stationary motion is motion
of space. (A spherical array of accelerometers surrounding a body give a vol-
umetric measurement of this motion; i.e., the product, 4πGM .) Justification
for this distinction can begin with a comparison of the respective symme-
try properties. Rotation may be characterized as having essentially planar,
or cylindrical symmetry. Whereas gravitation is clearly characterized by its
volumetric, omnidirectional symmetry. Of crucial importance is how this im-
plies a higher dimension of space. Instead of sweeping out an area through
space that already exists (rotation) we infer a “sweeping” of volume as a kind
of generation of space that did not previously exist (gravitation). Motion of
space makes no sense if there are only three spatial dimensions, but it does
make sense if there are four; i.e., if the fourth spatial dimension is identified
with this process of space generation.
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The latter idea can be understood by comparison with a more popular
conception of higher dimensional space. In the context of quantum gravity
theories, space dimensions beyond the third are often imagined as being “com-
pactified” to an imperceptibly small size. But hyperdimensionality need not
have anything to do with compactification. We can infer its existence by the
observational fact of spacetime curvature. We can see this by a simple geo-
metrical analogy in which the idea of a compactified dimension’s size does not
arise.

The movement of a point traces out a line that represents entrance into
the first dimension. The line itself remains a one-dimensional object even if it
curves. But from a higher-dimensional perspective we can see that the figure
of a curved line extends also into the second dimension. In order to curve
the line needs another dimension, represented by a planar surface, to curve
into. Similarly, a surface remains a two-dimensional object even if it curves.
But from a higher-dimensional perspective we see that the figure of a curved
surface extends into the third dimension. The third dimension is needed so that
the surface has a volume to curve into. Inclusion of time is often expressed
by adding unity to the spatial dimension in parentheses. Thus, we can say
that, by curving, a (1 + 1)-dimensional line implies the existence of a (2 + 1)-
dimensional surface. By curving, a (2 + 1)-dimensional surface implies the
existence of a (3 + 1)-dimensional volume. Living in and having access to a
higher-dimensional perspective, we see that these implications are borne out
by experience.

The next step, of course, concerns the curvature of (3 + 1)-dimensional
spacetime. It is often argued, as by Hobson, et al [10] that in gravitational
contexts we should concern ourselves only with intrinsic curvature. By analogy,
this would be like insisting that imaginary two-dimensional creatures who
inhabit a spherical surface should restrict all dimensional considerations to
latitude and longitude. We can imagine, however, that surveying expeditions
by these imaginary “Sphereworld” inhabitants lead to the discovery of not only
the curvature (non-Euclidean geometry) of their surface, but also its extension
into another dimension. By circumnavigation, they discover that their world
is indeed a three-dimensional sphere. By empirical measurments, they deduce
the existence of a higher dimension. As yet higher-dimensional creatures we
applaud their discovery because it is correct. In spite of the possibility of
locating all points on the spherical surface with only two coordinates (intrinsic)
the Sphereworlders have gained important physical insight into the actual state
of their existence by positing the need for a higher dimension as the direction
that their curved surface curves into (extrinsic).

Taking the analogy in the other direction, the reader will see what we’re get-
ting at. Observational evidence indicates that our seemingly (3+1)-dimensional
world is curved in the same sense as that of our imaginary creatures. There-
fore, we surmise the existence of a fourth spatial dimension as that which
our (3 + 1)-dimensional spacetime curves into. By this reasoning, our world
is evidently (4 + 1)-dimensional. Insofar as evidence for the curvature always
corresponds to non-zero effects on motion-sensing devices such as clocks and
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accelerometers, we arrive at the logical working hypothesis that the cause of
curvature is always motion. Accordingly, we surmise that the stationary mo-
tion of gravitating bodies is the cause of spacetime curvature. Seemingly static
(3 + 1)-dimensional material bodies exhibit evidence of perpetually extending
themselves into (or outfrom) the fourth dimension of space.

The pronounced local inhomogeneity of gravitational accelerations and ve-
locities makes it obvious that this kind of stationary motion cannot be con-
ceived as motion through pre-existing three-dimensional space. Material bod-
ies would rapidly disintegrate. To be consistent, the idea therefore requires a
fourth space dimension to accommodate the inhomogeneous motion and to
insure the integrity of material bodies. Though this conception stretches the
imagination, it stems from a straightforward interpretation of accelerometer
readings. And a simple experiment can reveal whether or not it is correct.

8 Laboratory Test

The scope of this paper does not allow going into more detail about its higher
dimensional implications. Rather, it should suffice to elucidate the basis for
future work, to show the logical consistency by way of analogy and mathe-
matical connection to well established foundations. But future work in this
direction would clearly be pointless if we could prove with empirical evidence
that the idea is contrary to fact. Therefore, a brief description of an apparatus
for acquiring the needed fact is in order.

SIDE VIEW

TOP VIEW

Idealized (simplest)

experimental method:

sphere in outer space.

Practical experimental method:

modified Cavendish balance

in Earth-based laboratory.

Fig. 8 Schematic of Galileo’s experiment. Left: Ideal case, which could be well approximated
in an orbiting satellite. Right: Less expensive method, using a modified Cavendish balance.
Both options feature a characteristic absence of collision. Either apparatus may therefore
be called a Small Low-Energy Non-Collider.
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First, however, let’s clarify our prediction. The above reasoning implies
that, not just acceleration, but all four of the effects of spacetime curvature
(including now velocity, rod shortening and clock slowing) are due only to the
mass within a given radial distance. The gravitational effect of concentrically
distributed matter beyond this distance is canceled by symmetry. By this
reasoning, or by analogy with rotation, we predict a maximum clock rate at
the center, which corresponds to the prediction that a test object dropped
into an antipodal hole through a massive body will not pass the center. This
can be tested by modifying a Cavendish balance so as to allow motion of the
balance arm through the center of the large source masses. [11] The basic idea
is shown in Figure 8. Note that the experiment could also be carried out in an
orbiting satellite, as proposed by Smalley and other experimentalists whose
work he reviews. [12]

With regard to the Earthbased laboratory version, the most challenging
aspect is the stringent requirements of the arm’s suspension system. Almost
every previous Cavendish-like balance has involved a suspension system with
a restoring force. The arm is allowed to move through only a short range of
motion. Clearly, this will not work for our purpose. We need to allow a wide
range of free motion. This becomes possible with either a fluid or magnetic
suspension. In 1976 a measurement of Newton’s constant was conducted by
Faller and Koldewyn with a balance using a magnetic suspension. [13, 14]
Especially since electronic and magnetic technology have vastly improved since
then, it is reasonable to expect that a similar apparatus could be adapted to
the present purpose.

A noteworthy historical fact is that the first scientist to suggest this ex-
periment was Galileo in 1632. His famous Dialogue contains three separate
references to the idea of dropping a cannonball into a tunnel through the
Earth. [15] Also noteworthy is the extreme contrast with present-day emphasis
on high-energy collision experiments. Galileo’s experiment has the remarkable
property of seeking to observe matter in its natural undisturbed state. It seeks
to observe two bodies of matter that are allowed to interact in the simplest
possible way (purely radial motion) with no collision at all. The apparatus
may therefore be called a Small Low-Energy Non-Collider. How many more
years are we to wait before finally carrying out Galileo’s simple experiment?

9 Interior Acceleration, Velocity, and Embedding Diagram

9.1 Stationary Acceleration

Our route to the maximum force has illuminated a new interpretation of the
meaning of spacetime curvature, and a way to test whether or not this new
interpretation is correct. Since this test involves the interiors of massive bod-
ies, we now give the interior a fuller (though certainly far from complete)
mathematical and graphical expression. Recalling that the acceleration due to
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Fig. 9 Stationary acceleration inside and outside of a uniformly dense sphere. In this very
strong field regime, the same acceleration at the surface of a body could be due to at least
two different density distributions in the interior. The curves are color coded to facilitate
comparison with Figures 10 and 11. In the units of the graph, the cyan curve corresponds
to a density ρ = 3/32π, which makes M(R) = 1.

gravity outside a spherical mass is given by GM/(r + 2GM
c2 )2, adapting this

equation for the simplest case of uniform density yields:

gSINT =
4π

3

Gρ r[
1 + 8π

3
Gρ r2

c2

]2 . (10)

For weak fields, gSINT varies directly as the distance. But for densities and/or
distances so large that 8πGρ r2/3c2 approaches or exceeds unity, a maximum
acceleration is reached inside the body, as shown in Figure 9. The rise and
fall of acceleration within a uniformly dense body only happens for systems
with large m/r ratios, and is a manifestation of remaining below the maximum
force, which is equivalent to the stationary velocity remaining less than c. No
matter how large the density, the product of density, volume, and acceleration
never reaches c4/4G.

9.2 Stationary Velocity

The interior stationary velocity equation follows from a similar adaptation of
the exterior equation:

VSINT =
r
√

8π
3 Gρ√

1 + 8π
3
Gρ r2

c2

. (11)
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This has the same form as (1), of course. For weak fields the velocity varies
directly as the distance, and as 8πGρ r2/3c2 approaches or exceeds unity, VSINT

flattens out as it approaches c. When the density changes abruptly, so does the
stationary velocity. This is evident in Figure 10 at the surface radius, r = 2.

9.3 Embedding Diagram

It is well known that the spatial part of the Schwarzschild exterior solution,
as represented by Flamm’s paraboloid, joins up with the interior solution as
a “spherical cap.” [16] By contrast, our interior field “cap” is a paraboloid
of revolution. The cross-section is an upwardly opening parabola that joins
smoothly to the exterior, given by

z =
1

4
r2
√

32π

3

Gρ

c2
+

3

4
R2

√
32π

3

Gρ

c2
. (12)

The right hand term is a constant which defines the surface radius, R, and
the vertex height on the z-axis. Figure 11 shows a series of different interior
profiles all joined to one exterior profile. The colored curves correspond to the
densities from Figures 9 and 10. In the latter figures each spherical body has a
different coordinate mass and has the same coordinate surface radius, equal to
that given by R = 2GM/c2 for the cyan colored curve. Surface radii in Figure
11, on the other hand, vary so that the coordinate mass (active gravitational
mass) of each sphere is the same. Note that this means the proper masses
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Fig. 10 Stationary velocity inside and outside of a uniformly dense sphere. For the highly
idealized case of uniform density, the velocity varies directly as the radius for weak fields;
but for very strong fields (as shown here) the variation is non-linear.
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would have to be greater as they get smaller and denser. This is due to the
greater spatial curvature in such compact fields. It bears repeating that, for the
present model, this embedding diagram indicates both spatial and temporal
curvature.

9.4 Clock-Rate Comparison

With our final set of graphs we compare clock rates as between GR and the
present model, from far outside into the center of a spherical body. Figure 12
reveals the sharp contrast between the severe limits of GR and the virtual
limitlessness of the present scheme. However evident is the dramatic disagree-
ment with GR in the strong field regime, note that in the weak field regime,
we have very close agreement, as shown in Figure 13.

10 Rethinking motion

Having no horizons or singularities, the geometry of the present scheme is, in at
least this respect, simpler than GR. Also the conceptual basis is simpler. In GR,
a positive accelerometer reading is equivocal as to whether it indicates motion
or not. Of course, it indicates “acceleration with respect to a local geodesic.”
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Fig. 11 Nested interior parabolas. Projected length segments of the parabolas onto cor-
responding length segments on the r-axis represent both rod length and clock rate ratios.
(Coordinate lengths are shorter and coordinate clocks tick faster.) The colored curves cor-
respond to density variations as in Figures 9 and 10. In this figure the active gravitational
mass is the same for each case, as represented by the solitary exterior parabola.
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Fig. 12 Comparison of clock rate coefficients for a range of coordinate distances to the
center of a uniformly dense spherical mass. Top: GR predicts that clocks stop and densities
become infinite when M/r ≥ c2/2G. Bottom: New model accommodates all non-negative
M/r ratios. F is the rate of a clock at radius r; F∞ is the rate of a clock at infinity.

But the body on which the accelerometer rests is typically deemed to be static.
The prevailing understanding of motion thus involves scrambling up the terms
so that it is not unusual to find oxymoronic expressions as “acceleration of a
particle at rest.” [17, 18] This is all due to our heritage of having evolved on
the surface of a huge spherical mass. In spite of the readings on co-moving
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Fig. 13 Clock rate comparison for the smallest M/r ratio from Figure 12 (i.e., 2GM/Rc2 =
1/16). Curves are rescaled to emphasize near agreement for the exterior and stark disagree-
ment for the interior.

accelerometers, most things around us appear not to move, so we think we
too are at rest. Our visual impressions dominate our thinking, even as our
tactile experience (flattened undersides) indicates that we accelerate, as though
matter were an inexhaustible source of perpetual propulsion. Contrary to this
experience, the laws of physics have evolved to reflect our visual impression of
staticness. Of course these laws have proven to be remarkably successful for
an impressively wide range of circumstances.

But there is a huge gap—not because it is inaccessible, but because we have
simply not thought about looking into it. We don’t know how test objects
fall near the centers of gravitating bodies. The laws give clear predictions.
But these particular predictions have not been tested. If in fact gravity is
a force of attraction, if spacetime curvature causes falling bodies to move
inwardly, then the predictions will be verified when they are finally tested. But
if accelerometer readings are actually not equivocal, if they really indicate the
state of motion of matter and space, then how are we to conceive that a falling
test object doesn’t pass the center?

We again come to the distinction between motion through pre-existing
space and the motion of space. This corresponds to the distinction between
thinking spacetime curvature causes inward motion versus the present idea
that outward motion is the cause of spacetime curvature. Attractive forces
cause motion through space. If true for gravity, then the test object would os-
cillate through the antipodal hole. By the present view, what happens instead
is that the space that once separated the test object from the center—when
the object begins to fall—moves outwardly past it. At first this results in an
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increasing relative speed. But as the amount of intervening space diminishes
and as the amount of matter responsible for the separation also diminishes
(because the falling body is increasingly below the surface of the larger body)
so does the rate at which it moves past the falling body.

It must be borne in mind that this description rests on the idea that dif-
ferences in accelerometer readings and differences in clock rates correspond
to physically real differences in acceleration and velocity. An object rigidly
attached to the gravitating body (beyond r = 0) is thus initially endowed
with both a stationary outward acceleration and a stationary outward veloc-
ity. Accordingly, the speed of the dropped object immediately after release
does not fall from zero to increasingly negative values. Rather, its initially
positive value remains positive and decreases to zero as it gets closer to the
center. The standard of “rest” is thus not the seemingly static body, but the
trajectory of a test object falling radially from infinity (“maximal geodesic”).
If this view is correct then any test object whose apparent motion is due only
to the gravitating mass and which falls radially inside the gravitating mass,
will not quite reach the center.

11 Deeper Implications: Inertial Mass and the Direction of Time

This conception of motion conflicts with standard physics in many ways. To
make sense it would require the existence of a fourth dimension of space,
as mentioned in §7.3. To serve as a perpetual source of propulsion to sustain
gravitational stationary motion, the energy in matter must not be conserved; it
would have to continually increase. One of the benefits of Galileo’s experiment
is that it would test the energy conservation law inside matter, where it has
not been tested before. If the test supports our prediction, then at least two
persistent enigmas in standard physics could begin to be understood. If gravity
is correctly conceived as a process of stationary outward motion, then the
resistance posed to linear acceleration (inertia) could be understood as being
due to this same process. The greater the magnitude of omnidirectional motion
(of space) the more difficult it is to change the state of linear motion (through
space). We thus elucidate the simple conceptual and physical reason, i.e., the
physical mechanism for the identity of inertia and gravity.

Finally, we have the potential to shed light on the time asymmetry problem.
This is easily understood in terms of the proposed experiment. If the Newto-
nian oscillation prediction were to be confirmed, then an idealized video of the
motion would look exactly the same whether it was played forward or back-
ward. Whereas, if the non-oscillation prediction were to be confirmed, then
one direction could be clearly distinguished from the other. If the test object
appears to move upward and reach the surface, the video is being played back-
ward because this cannot happen in Nature (without an extraneous source of
propulsion). If the non-oscillation prediction were confirmed then time asym-
metry could be succinctly characterized as follows. Time only increases because
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space and matter also only increase. The failure to solve the problem of time’s
arrow has been due to the failure to discover space’s arrow and matter’s arrow.

12 Conclusion

Schiller has argued that the maximum force principle and GR are equivalent,
that they can each be derived from the other. In the present paper we have
shown that exactly the same maximum force follows from a simple application
of the equivalence principle, the limiting speed of light and the inverse square
law of gravity. Maximum force thus clearly does not necessarily lead back to
GR; it leads just as well—and more simply—to the present model.

Our first equation, representing the speed acquired from constant proper
acceleration, involves a horizon, a communication barrier with respect to the
accelerating observer and an observer remaining at rest in the original inertial
system. Motivated by the equivalence principle, we have exchanged the time
variable and the acceleration in this equation with stationary gravitational
quantities (3). By the arguments presented in the later sections we have come
to see that the key difference in the meaning of these equations is that (1)
represents motion through space, whereas (3) represents motion of space. In
both cases the speed of light is an unreachable limit. But in the latter, grav-
itational case, this does not lead to a horizon. There is no communication
barrier. Also there are no singularities. These features are all conducive to
simple geometrical expression.

Of great importance for the new approach is that the magnitude of space-
time curvature for exterior fields is nearly the same as that for GR, except
in the strong field regime. Even more important is that it would be relatively
easy to test the emerging model with a laboratory experiment. If the results of
Galileo’s Small Low-Energy Non-Collider experiment should confirm the stan-
dard prediction, then our derivation of the maximum force would be proven
to be an inconsequential coincidence. The novel conceptions of matter, space,
time, and gravitation presented in this paper should then all be discarded. But
perhaps the experiment will support these conceptions. The highest priority
is to let Nature tell us directly, one way or the other.
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