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Abstract

In the recent paper Communications in Nonlinear Science and Numerical Simulation.
Vol.18. No.11. (2013) 2945-2948, it was demonstrated that a violation of the Leibniz rule
is a characteristic property of derivatives of non-integer orders. It was proved that all frac-
tional derivatives Dα, which satisfy the Leibniz rule Dα(fg) = (Dαf) g+ f (Dαg), should
have the integer order α = 1, i.e. fractional derivatives of non-integer orders cannot satisfy
the Leibniz rule. However, it should be noted that this result is only for differentiable
functions. We argue that the very reason for introducing fractional derivative is to study
non-differentiable functions. In this note, we try to clarify and summarize the Leibniz
rule for both differentiable and non-differentiable functions. The Leibniz rule holds for
differentiable functions with classical integer order derivative. Similarly the Leibniz rule
still holds for non-differentiable functions with a concise and essentially local definition of
fractional derivative. This could give a more unified picture and understanding for Leibniz
rule and the geometrical interpretation for both integer order and fractional derivative.

PACS: 45.10.Hj

1 Introduction

One longstanding problem of fractional calculus is that there exists too many definitions [2, 4,
1, 12, 15, 10, 5, 17, 11, 20, 3, 13, 18, 14, 16] while lacking physical or geometrical meanings.
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There are different definitions of fractional derivatives such as Riemann-Liouville, Riesz,
Caputo, Grünwald-Letnikov, Marchaud, Weyl, Sonin-Letnikov and others [17]. Unfortunately
most these fractional derivatives have a lot of unusual properties. The well-known Leibniz rule
Dα(fg) = (Dαf)g + f(Dαg) is not satisfied for differentiation of non-integer orders [17].

For example, we have the infinite series

Dα(fg) =
∞∑
k=0

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
(Dα−kf) (Dkg) (1)

for analytic functions on [a, b] (see Theorem 15.1 in [17]), where Dα is the Riemann-Liouville
derivative, Dk is derivative of integer order k. Note that the sum is infinite and contains
integrals of fractional order for k > [α] + 1.

Given all the unusual properties, there are some attempts to define new type of fractional
derivative such that the Leibniz rule holds (for example, see [7, 9, 8, 6, 22, 21]).

For all these different definitions about fractional derivative, each has some advantages and
disadvantages. The following are some very important and fundamental questions for studying
fractional calculus:

Geometric Interpretation A well-defined derivative should have reasonable geometric inter-
pretation, like the classical one.

Local It should be local in nature, thus does not rely on information of domain and boundary
conditions.

Derivative of Constant The derivative of constant function should be zero.

Generality It should be applicable to a large class of functions (i.e. continuous but non-
differentiable) which are not differentiable in the classical sense.

Calculation The calculation should be easy and straightforward.

Some different definitions are reviewed and some key issues are summarized and clarified in
[21]. Here this paper focus on the Leibniz rule.

2 ”No violation of the Leibniz rule. No fractional deriva-

tive”

In the recent paper [19], it was demonstrated that a violation of the Leibniz rule is a character-
istic property of derivatives of non-integer orders. It was proved that all fractional derivatives
Dα, which satisfy the Leibniz rule Dα(fg) = (Dαf) g + f (Dαg), should have the integer order
α = 1, i.e. fractional derivatives of non-integer orders cannot satisfy the Leibniz rule.
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In [19] fractional derivatives Dα of non-integer orders α was considered by using an algebraic
approach. Special forms of fractional derivatives are not important for our consideration.

For the operator Dα, the following conditions are considered.
1) R-linearity:

Dαx (c1f(x) + c2g(x)) = c1(Dαxf(x)) + c2 (Dαxg(x)), (2)

where c1 and c2 are real numbers.
2) The Leibniz rule:

Dαx (f(x) g(x)) = (Dαxf(x)) g(x) + f(x) (Dαxg(x)). (3)

3) If the linear operator satisfies the Leibniz rule, then the action on the unit (and on a
constant function) is equal to zero:

Dαx1 = 0. (4)

Theorem 1 (”No violation of the Leibniz rule. No fractional derivative”). [19]
If an operator Dαx can be applied to functions from C2(U), where U ⊂ R1 be a neighborhood of
the point x0, and conditions (2), (3) are satisfied, then the operator Dαx is the derivative D1

x of
integer (first) order, i.e. it can be represented in the form

Dαx = a(x)D1
x, (5)

where a(x) are functions on R1.

However, it should be noted that this result is only for differentiable functions, applied
to functions from C2(U). We argue that the very reason for introducing fractional derivative
is to study non-differentiable functions. In this note, we try to clarify and summarize the
Leibniz rule for both differentiable and non-differentiable functions. The Leibniz rule holds
for differentiable functions with classical integer order derivative. Also the Leibniz rule still
holds for non-differentiable functions with a concise and essentially local definition of fractional
derivative. This could give a more unified picture and understanding for Leibniz rule and the
geometrical interpretation for both integer order and fractional derivative.

3 A simple definition directly from geometrical meaning

We expect that the fractional derivative could give nonlinear (power law) approxi-
mation of the local behavior of non-differentiable functions:

f(x+ h) ≈ f(x) +
f (α)(x)

Γ(1 + α)
hα (6)
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in which the function f is not differentiable because df ≈ (dx)α so the classical derivative df/dx
will diverge. Note that the purpose of adding the coefficient Γ(1+α) is just to make the formal
consistency with the Taylor series.

We can give a very simple definition directly from the above meaning:

Definition 1. For function f ∈ Cα, 0 < α < 1, the fractional derivative is defined as

f (α)(x) := Γ(1 + α) lim
h→0+

f(x+ h)− f(x)

hα
(7)

And we call f(x) is α-differentiable on x0 if f (α)(x0) exist. We call f(x) is exactly α-
differentiable on x0 if f(x+ h)− f(x) and hα is of the same order.

Remark 1. 1. The derivative of constant function is zero.

2. It could be applicable to a large class of functions Cα 0 < α < 1 which are not differentiable
in the classical sense.

3. It do have reasonable geometric interpretation, similar to the classical one. The fractional
derivative could give nonlinear (power law) approximation of the local behavior of non-
differentiable functions.

4. The calculation of derivative is numerically easy.

5. Last but not least, this definition is local by nature. This property facilitate the general-
ization of one variable fractional derivative to vector derivative, which is very hard if the
nonlocal domain and boundary condition of the function is needed for calculation.

The local behavior of a non-differentiable function is quite different from any smooth func-
tion like xn, ex, sinx. So it’s not trivial to find suitable non-differentiable function in expression
by fundamental smooth function like xn, ex, sinx. Here we can give such example expressed by
fundamental smooth function, but these examples are only non-differentiable on a single point.

Example 1. xβ for 0 < β < 1
u(x) = xβ is smooth when x > 0, it’s not differentiable only at x = 0. So for x > 0 the
Dαxβ, α < 1 is trivially vanished. The only interesting results can be found at x = 0.

Dαxβ|x=0 = Γ(1 + α) lim
h→0+

(0 + h)β − 0β

hα
=


0, 0 < α < β < 1

Γ(1 + α), α = β

∞, 0 < β < α < 1

(8)
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Example 2. Mittag-Leffler function
Another interesting example is the Mittag-Leffler function v(x) = Eα(xα) =

∑∞
k=0

xαk
Γ(1+αk)

at
x = 0 which also have non-trivial α-derivative.

DαEα(xα)|x=0 = Dα
∞∑
k=0

xαk

Γ(1 + αk)
|x=0 = Γ(1 + α) lim

h→0+

∑∞
k=1

hαk

Γ(1+αk)

hα
= Eα(xα)|x=0 = 1 (9)

4 Leibniz rule still holds for non-differentiable functions

It follows directly from the definition of α-derivative that if j and k are both α-differentiable
on x0, then the Leibniz rule still holds (for non-differentiable functions in classical sense while
α-differentiable in the new sense):

f (α) (x0) = Γ(1 + α) lim
h→0+

f (x0 + h)− f (x0)

hα

= Γ(1 + α) lim
h→0+

j (x0 + h) k (x0 + h)− j (x0) k (x0)

hα

= Γ(1 + α) lim
h→0+

j (x0 + h) k (x0 + h)− j (x0 + h) k (x0) + j (x0 + h) k (x0)− j (x0) k (x0)

hα

= Γ(1 + α) lim
h→0+

(
j (x0 + h)

k (x0 + h)− k (x0)

hα
+
j (x0 + h)− j (x0)

hα
k (x0)

)
= j (x0) k(α) (x0) + j(α) (x0) k (x0)

Example 3. α-derivative Leibniz rule
As shown in above examples, non-differentiable functions in classical sense could still be α-
differentiable in the new sense. Both xα and Eα(xα) are α-differentiable at x = 0.

Dα[u(x)v(x)]|x=0 = Dα[xαEα(xα)]|x=0

= Dα
∞∑
k=0

xα(k+1)

Γ(1 + αk)
|x=0

= Γ(1 + α) lim
h→0+

∑∞
k=0

hα(k+1)

Γ(1+αk)

hα
|x=0 = Γ(1 + α)

At the other hand,

[Dαu(x)]v(x)|x=0 + [Dαv(x)]u(x)|x=0

= [Γ(1 + α) + xα]Eα(xα)|x=0 = Γ(1 + α)
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To conclude, the Leibniz rule holds for 1-differentiable functions with classical first order
derivative, similarly the Leibniz rule still holds for α-differentiable functions with α-derivative.
This could give a more unified picture and understanding for Leibniz rule and the geometrical
interpretation for both integer order and fractional derivative.
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