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   Abstract 

The Tolman-Oppenheimer-Volkov (TOV) equation is solved with a new ansatz:  the external 

boundary condition with mass M0 and radius R1 is dual to the internal boundary condition 

with density ρbc and inner radius ri , the two boundary conditions yield the same result. 

The inner boundary condition is imposed with a density ρbc and an inner radius ri, which is 

zero for the compact neutron stars, but non-zero for the shell-stars:  stellar quasi-black-hole 

and galactic quasi-black-hole. Parametric solutions are calculated for neutron stars, stellar 

quasi-black-holes, galactic quasi-black-holes. From the results an M-R-relation and mass 

limits for these star models can be extracted. A new method is found for solving the Einstein 

equations for Kerr space-time with matter (extended Kerr space-time), i.e. rotating matter 

distribution in its own gravitational field. Then numerical solutions are calculated for several 

astrophysical models: white dwarf, neutron star, stellar quasi-black-hole, galactic quasi-

black-hole. The results suggest that quasi-black-hole star models resemble the behaviour of 

abstract black holes, but have finite redshifts and escape velocity v<c and  no singularity . 

 

1. Introduction 

In General Relativity, one of the most important applications is to calculate the mass 

distribution and the space-time metric for a given equation-of-state of a stellar model. 

Without rotation, one has spherical symmetry and in then the Tolman-Oppenheimer-Volkov 

(TOV) equation in radius r, which is derived directly from the Einstein equations (see [2]) , is 

being used. The TOV equation consists originally of 2 coupled non-linear ordinary differential 

equations (odeq) of degree 1  in r for mass M(r) and density ρ(r) , where   )()(4 2
rMrr =ρπ , 

and can be transformed into one odeq  of degree 2 for M(r) by eliminating  ρ(r). 

The boundary condition is imposed normally at r=0 with M=0 and ρ=ρ0 , where ρ0  is the 

maximal density. 

The new ansatz  presented here is the extended  (inner) boundary condition at  r=ri  with the 

non-zero inner radius  ri ,  M=0 and ρ=ρ0 , i.e. the star becomes a shell-star with an (almost) 

void interior.  With the parameters  ri and ρ0 this ansatz generates a 2-parametric solution 

manifold, where, because of energy minimization,  the stable physical solution is the one 

with minimal ri  for a given ρ0 (which determines the total mass M0).  

The dual (outer) boundary condition is the one at r=R with M=M0 and ρ=ρbc  , where ρbc 

depends on the equation-of-state (eos): for neutron stars with interacting nucleon fluid  

ρbc = ρc >0 with the equilibrium nucleon density ρc , and for the eos of non-interacting 

nucleon Fermi-gas (stellar quasi-black-holes)  ρbc =0 . The 2 parameters R and M0 in the dual 

outer boundary condition correspond uniquely to the 2 parameters ri and ρ0  in the inner 

boundary condition. 



2 

 

With rotation, one has an axisymmetric  model in the variables r and θ (azimuthal angle) , 

and has to solve the Einstein equations in these 2 coordinates. In vacuum, the corresponding 

solution is the Kerr space-time in r and θ . With mass, a good starting point is using the 

extended Kerr space-time   in Boyer-Lindquist coordinates with correction-factor  functions 

A0,…,A4 and B0,…B4 and the mass M(r, θ) as variables and insert this into the Einstein 

equations. Setting Bi=0  some of the  10 Einstein equations become trivial and one is left 

with 6 partial-differential equations (pdeq) in r and θ  for the 6 variables A0,…,A4 and M.  

The (outer) boundary condition here at the effective star radius R with total mass M0 is: Ai=1, 

M=M0 and  ∂ rAi=0  , ∂ rM=0 , as the density becomes 0 and the space-time becomes the 

normal Kerr space-time in vacuum. 

Now, with rotation, we have a new model parameter, the angular velocity ω , to which 

corresponds a third parameter in the outer boundary condition: (outer) ellipticity ∆R1, where 

 R1x=R1y-∆R1   and R1x and R1y are the equatorial and the polar radius. As in the TOV-case, 

here to the 3 parameters R1y, M0 and ∆R1  correspond the 3 inner parameters riy, ρ0 and  ∆ri . 

So here we get a 3-parametric solution manifold, and as in the spherical case, for a given 

total mass M0 we have to find the stable physical solution. As before, these will be the ones 

with minimal riy  and among them the one with minimal mean energy density: this defines 

the inner ellipticity ∆ri  .  In all considered cases, it can be shown numerically, that such a 

(non-trivial) minimum exists. 

The paper is organized as follows. 

In 2 we present the mathematical setup, in 3 the equations for the extended Kerr space-time 

with rotation, in 4 the solution algorithm for it. In 5 the TOV-equation is introduced, in 6 the 

equation-of-state  for the nucleon fluid and nucleon gas. In 7 the results for the TOV-

equation are shown: the parametric solution manifold in 7.1. and the case study for typical 

stars in 7.2. In 8 the results for the extended Kerr space-time with rotation are presented for 

three typical star configurations: compact neutron star, stellar quasi-black-hole, galactic 

quasi-black-hole. 

 

2. The Kerr space-time, Schwarzschild space-time, Einstein equations  

Using the Minkowski metric µνη  = diag(1,-1,-1,-1), the Kerr space-time metric in original Kerr 

coordinates (u, θ, φ) has the line element [2] 
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radius (amr) , a has the dimension of a distance: [ ] [ ]ra =  , and J is the angular momentum. 

With this line element the Kerr metric tensor µνg  is as follows: 
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In the limit a->0 the Schwarzschild space-time in advanced Eddington-Finkelstein 

coordinates emerges: 
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This form of the Schwarzschild line element has the advantage in comparison with the 

original line element 
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 that the (apparent) singularity at srr =  is missing . 

The same is valid for the original Kerr space-time: the denominator 12ρ  has no zeros, there is 

no singularity in abg , which makes it more well-behaved numerically. 

Alternatively, in Boyer-Lindquist-coordinates:
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with the line element  
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with the abbreviation 22

12 arrr s +−=Λ  . Here, Λ12 has zeros at the inner/outer horizon 

θ222 cos)2/()2/( arrr ss −±=  , so for numerical calculations the singularity has to be 

removed by adding a small ε : 2222

12 )( ε++−=Λ arrrs s  . 

In the limit a->0 the Schwarzschild space-time in  the standard form (4) emerges. 

 

The Einstein field equations with the above Minkowski metric are: 

µνµνµνµν κTgRgR −=Λ−− 0
2

1
        (5) 

where  µνR  is the Ricci tensor, R0 the Ricci curvature, 
4

8

c

Gπ
κ =  , µνT is  the energy-

momentum tensor, Λ is the cosmological constant (in the following neglected, i.e. set 0), 

with the Christoffel symbols (second kind) 
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and the Ricci tensor 
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The crucial part of the extended Kerr solution is the expression for the  energy-momentum 

tensor µνT . As usual, one uses the formula for the perfect fluid [2,(45.3)]: 

µννµµν ρ gPuu
c

P
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where P and ρ is the pressure and density, µu  is the covariant velocity 4-vector. 

In the Schwarzschild case, when deriving the TOV-equation, one sets the spatial 

contravariant velocity components to 0: 0=iu , in the Kerr case the tangential velocity 

03 ≠= ϕuu  . 

For the velocity one has: 

I

cMa
rru == ω3  , where I is the moment of inertia and ω the angular velocity, 
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If we make the obvious assumption that the star rotates as a whole, i.e. with constant 

angular velocity, then the moment of inertia I becomes r-dependent, like the mass M : 
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The factor 3 in the integral instead of the usual 4π comes from the dimensionless calculation 

in “sun units” (see below).  

The amr a also becomes r-dependent:  
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In the relativistic axisymmetric case with rotation with angular velocity ω, u
µ
 has 

 the form [11]: 

u
µ=( u0 , 0, 0, ω u

0  ) 

Now  0
u  is calculated from the condition  

νµ
µν uugc =2

 

and the covariant velocity from 
ν

µνµ ugu =  

The resulting expression for 0
u  is (ε  is the singularity cancellation parameter, limit(ε)=0,  Ai 

are the Kerr correction-factors, mass M1[r1], moment of inertia I1[r1]):   (9a) 
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The state equation for the pressure P for the nucleon gas has the form 
γρ1cP =  

or in the dimensionless form with a critical density cρ  and dimensionless pressure 1P   and 

density 1ρ  
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For the horizon, with rotation there is the inner and the outer horizon (M=M0) 
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3. The equations for the extended Kerr space-time. 

The solution process starts with the metric tensor µνg  in original Eddington-Finkelstein-

coordinates, with 6 non-zero components, corresponding correction-factor  functions 

A0,…,A5, and additive correction functions B0,…B3 for the zero components.  

 (11) 
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and alternatively in Boyer-Lindquist-coordinates, corresponding correction-factor  functions 

A0,…,A4, and additive correction functions B0,…B4 for the zero components  

         (12) 
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The equations are the 10 Einstein equations 

eqR00,eqR11,eqR22,eqR33,eqR12,eqR23,eqR31,eqR01,eqR02,eqR03 in the (dimensionless) 

variables relative radius 
ssr

r
r =1  and complementary azimuth angle  θ

π
θ −=

2
1  with energy 

tensor µνT  from (8) and the state equation ( )γ
ρ11 1kP =   for the relative pressure 1P  and 

the relative density 1ρ . We are using the so called “sun units”   )(sunrr sss = , 

)(sunMM s = ,  
3

4 ss

s

s
r

M

π
ρ = , 2

cP ss ρ=   for  radius r, mass M, density ρ, and pressure P, 

respectively. 

In “sun units” the original angle differential θθπ ddrrd 2sin4=Ω  is transformed into 

θθ ddrrd 2cos3=Ω ,  as for θ=0...π/2 ,r=0..1:  1=Ω∫ d . 

Also, all equations and variables are symmetric (even) in θ : Ai(-θ)=Ai(θ) . 
From now on we skip the index of the dimensionless variables and use the original notation, 

e.g. r instead of  1r  . 

Furthermore, we adopt the Boyer-Lindquist coordinates and the metric tensor (12). 

In sun units, the Boyer-Lindquist metric tensor becomes:   (12a) 
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where M0 is the mass in sun units. 

The 10 Einstein equations have a distinctive structure: 

there are 6 primary variables A0, A2, A3, A4,B1,B4 with highest derivative ∂ rr   

and 4 secondary variables A1,B2,B0,B3 with highest derivative ∂ r  . Primary variables have 

boundary conditions for the variable and its r-derivative, secondary variables only for the 

variable itself. 

This structure is dual in θ: again there are 6 θ-primary and 4 θ-secondary variables. 

6 of Einstein equations contain only one 2-derivative rr∂  of a primary variable: 



7 

 

eqR03( 4Arr∂ ) , eqR22( 2Arr∂ ) , eqR00( 0Arr∂ ) , eqR33( 3Arr∂ ) , eqR02( 1Brr∂ ) , 

eqR23( 4Brr∂ )  

3 contain only 2-derivatives of a secondary variable: 

eqR12, eqR01, eqR31 

eqR11 contains all derivatives rr∂  of a primary variable. 

If we make the ansatz Bi=0, several of the eqRij become identically 0, and we get the 6 

equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR12  for the 6 variables Ai and ρ, with the 

highest derivatives resp. 0Arr∂  , 1Aθθ∂  , 2Arr∂  , 3Arr∂  , 4Arr∂ , ( 2Arr∂  , 1Aθθ∂   ). 

Thus, we are left with the 6 differential  equations degree 2 in r, θ   

 non-linear (quartic) in variables Ai  and their 1-derivatives and linear in ρ , γρ . 

In total, we have 6 algebro-differential eqs for 6 variables Ai  and ρ  (ρ enters only 

algebraically). 

We can add 2 dependent equations eqR41== 01 =µ
µ TD  and eqR42== 02 =µ

µ TD  , from 

the covariant continuity equations 0=µν
µ TD  , where µκν

λκ
κνµ

λκ
µν

λ
µν

λ TTTTD Γ+Γ+∂=  is 

the gravitational covariant derivative. 

In eqR41 ρ enters with ρr∂  , in eqR42 ρ enters with ρθ∂  . 

So, alternatively, we have the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR41  , 

with the highest derivatives resp. 0Arr∂  , 1Aθθ∂  , 2Arr∂  , 3Arr∂  , 4Arr∂  , ρr∂   (diff. eq. 

degree 1 in r for ρ)  

or  

the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR42  , with the highest derivatives 

resp. 0Arr∂  , 1Aθθ∂  , 2Arr∂  , 3Arr∂  , 4Arr∂  , ρθ∂   (diff. eq. degree 1 in θ for ρ) . 

In the Schwarzschild spacetime ω=0 and a=0, we have spherical symmetry, no dependence 

on θ , and the TOV-equation can be derived from the non-trivial  eqR00, eqR11, eqR22, 

eqR41 . 

We impose an r-θ-analytic boundary condition for Ai, Air∂  , at r=R1 (R1 is the star radius) :  

Ai=1, ∂ rA0=0 , ∂ rA2=0, ∂ rA3=0, ∂ rA4=0 . For A1, there is no differential boundary 

condition, as ∂ rA1 is the highest r-derivative, for ρ there is no boundary condition at all, 

because r is algebraic in the equations, but there is an integral condition:  

0
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In order to avoid the clumsy integral condition for ρ , we can introduce the mass M as a 

variable:  
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 is the mass of the sphere(r) and 

23),(),( rrrMr θρθ =∂   

For M(r,θ) we impose the boundary condition at r= 1R :  

M( 1R ,θ)=M0 , ∂ r M( 1R ,θ)=0  (i.e. density ρ is zero at boundary, and total mass M0). 

So, if we take the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR41 and replace 

ρ(r,θ)  by ∂ rM(r,θ), we have 6 diff.equations in r,θ    of degree 2, for the variables Ai(r,θ)  
(metric correction factors=mcf) and the mass M(r,θ) , with the highest derivative ∂ rrM(r,θ) in 

M.  
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According to the Cauchy-Kovalevskaya theorem there exists then a unique solution in a 

region irrR >>1   within the boundary. Inside the region 0>> rri  we can enforce the 

vacuum Kerr-spacetime with the trivial solution Ai=1, ρ = 0 ,  i.e. there is no matter there, ri 

the inner radius. 

The Cauchy-Kovalevskaya theorem guarantees the existence of a mathematical solution 

outside the horizon, but for a physical solution we must have r>=0 (meaning ∂ rM(r,θ)>0) 

and M(r,θ)<=0 for r<= ir   : the mass must become non-positive at the inner radius. 

Therefore, for certain {M0,R1} values there will be no physical solution, even for the TOV 

equation. 

 

4. The solving process for the extended Kerr space-time. 

 

The r-θθθθ-slicing algorithm with an Euler-step obeys the iterative procedure with slice step size 

1h  in r , and step size  2h  in θ , starting with the r-boundary at r= 1R  (slice n=0). 

The transition from slice n to n+1 proceeds as follows. 

At slice n all variables and 1-derivatives are known from the previous step, 2-derivatives 

Airr∂  , Birr∂   and ρ are calculated from the 6 equations. 

At slice n+1  the variables and 1-derivatives are calculated by Euler-formula (or Runge-Kutta) 

nrnn AihAiAi ∂+=+ 11  

nrrnrnr AihAiAi ∂+∂=∂ + 11  

The 2-derivatives Airr∂  , Birr∂   and ρ are again calculated from the 6 significant equations 

with variables and 1-derivatives inserted from above. 

The θθθθ-slicing r-backward algorithm with an Euler-step obeys the iterative procedure with 

slice step size 1h  in θ  as above for r, starting with θ=0, and solves an ordinary differential 

equation in r in each θ -step .  The boundary condition for the r-odeq is set at r= 1R  (the 

outer radius) with Ai=1, M=M0 My0(θ) , bcrr RMAi ρ2

1 )(3,0 =∂=∂ ,  

where ρbc is the outer boundary value for the density, ρbc =0 for the (non-interacting) 

neutron-gas in a shell-star (black-hole) and ρbc >0 , ρbc = ρequilibrium  for the (interacting) 

neutron fluid in a neutron star.  My0(θ)  is the mass-form-factor with the condition 

1)()(0
2/

0
=∫ θθθ

π

dCosMy  , i.e. the overall mass at the outer boundary is M0  . With the 

assumption that My0 is simplest possible trigonometric function, this adds a third 

fundamental parameter dM0=relative-mass-amplitude to the 2 fundamental TOV-

parameters { R1 , M0 } . 

The alternative (dual)  θθθθ-slicing r-forward algorithm starts with the boundary condition at r= 

ri(θ)   

Ai=1, M=0, bcirr rMAi ρ2)(3,0 =∂=∂ ,  

 where ρbc =ρi  is the inner boundary value for the density, ρi  is approximately the inner 

(maximum) density  ρ(ri)  from the corresponding TOV-equation, the value must be adapted, 

so that the resulting total mass is M0. For the compact neutron star the inner radius ri(θ) is 

zero. 

It is sufficiently general to assume that ri(θ)  is an ellipse with radii rxi  and ryi=ri , the latter 

equality arising from the fact that centrifugal distortion acts only in the x-direction (the y-

axis being the rotation axis). At the inner boundary the tangential pressure is uniform, so the 

density is also uniform and equal to the maximum density, ρ(θ) =ρi  . 
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As we see, in addition to the fundamental dual parameters {ri , ρi } corresponding to 

 { R1 , M0 } in the rotation-free TOV-case, in the Kerr-case there is the new fundamental 

parameter ∆ri ( rxi  = ri- ∆ri) (ellipticity)  to account for the  angular velocity ω . 

The odeqs in r  consist of the 6 significant Einstein equations eqR00, eqR11, eqR22, eqR33, 

eqR03, eqR41 for the six variables A0(r,θ), A1(r,θ), A2(r,θ), A3(r,θ) , A4(r,θ), M(r,θ) with θ=θi 

and θ-derivatives calculated by Euler-step from the preceding q-slice. For i=0 i.e. θ=0 the θ-

derivatives are taken from start values for all variables, which normally represent  the 

corresponding TOV-solution (here only A0(r), A1(r), M(r) are non-trivial and do not depend 

on θ ). The odeqs are highly non-linear algebraic differential equations and hard to solve 

numerically with classical methods for linear odeqs extended by an algebraic equation 

solver. In the case of an nonlinear odeq-system one uses an Euler or Runge-Kutta method 

and calculates in each step the highest derivatives with a numerical algebraic equation 

solver. As an alternative one can use minimization of the least-squares-error in the highest 

derivatives instead of a numerical algebraic equation solver. Minimization has also the 

advantage that one can minimize the complete set of Einstein equations plus the 2 

additional continuity equations eqR41, eqR42 in the error goal function instead of the 6 

significant equations, which improves the stability of the solution (e.g. in case of 

degeneracy). 

The numerical error of the algorithm is calculated from max{abs(eqi),i=1...n} i.e. the 

maximum absolute deviation of the equation values from 0. As the equations are 

homogeneous in {Ai,M} and their derivatives, the error must be scaled somehow. Here, we 

choose the error of the test-function for {Ai,ρ} lorentzhill(r)flin(1,Cos(θ), Sin (θ)) as the error 

scale for every equation, i.e. the equations will be normalized by this factor. Here flin is a 

function of degree 1, and lorentzhill is a parametrized model of a “hill” i.e. function with a 

finite support area (=0 at both infinities) of the Lorentzian form (step at r1=R resp. r1=-R) 

bfunc[r1_,R_,dR_] = 1/(1+Exp[(r1-R)/(dR*R)]) positive step 

bnfunc[r1_,R_,dR_] = 1/(1+Exp[(r1+R)/(dR*R)]) negative step 

lorentzhill= bfunc*bnfunc 

lorentzhill models the behaviour of ρ(r), which vanishes at  ±∞=r  . 

The actual calculation was carried out in Mathematica using its symbolic and numerical 

procedures. In the first stage, the Einstein equations were derived from the ansatz for gµν 

from section 2 and simplified automatically. The arising complexity of the equations is such, 

that it is practically impossible to handle them manually: the Mathematica function 

LeafCount, which returns the number of terms in the equation,  gives the complexity of  

LeafCount[eqR00]=17408 , LeafCount[eqR11]=27528 , LeafCount[eqR22]=134929   

for the first 3 equations. To verify the equations, the TOV equation was derived by symbolic 

manipulation for ω=0 a=0 from eqR00, eqR11, eqR22, eqR41 .  

The power of Mathematica is sufficient to solve the TOV equation with the single procedure 

NDSolve . For the full Einstein equations it fails even for the ordinary differential equations 

(odeq)  in r  arising for fixed θ . It took us a long time to find an algorithm, which could 

handle the complexity of the equations and solve them  in an acceptable time (4 hours) on a 

PC-desktop and converge in the required region with an acceptable error of around 0.05.  

For the second numerical stage we tried several slicing algorithms, and the best alternative 

proved to be the  θ-slicing r-backward and  θ-slicing r-forward algorithm implemented by 

hand in Mathematica.  The solution of the resulting odeq in each r-step was far too slow 

using NDSolve, so we chose a minimization procedure instead, which had to be carefully 

tuned to ensure sufficient continuity in  r, given the partly random method of  minimization. 

In each r-step, there was a fit in r on the result  value list {M(ri[i]),A0(ri[i]),…}, which was used 
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for the next step. The error was continually monitored and the minimization was adapted 

appropriately. Also, for every star model and parameter set, the TOV solution with ω=0 a=0  

was calculated first with the algorithm and compared with the exact TOV solution. 

 

5. The TOV equation as the limit ωωωω->0 for the extended Kerr space-time. 

In the Schwarzschild spacetime ω=0 and a=0, we have spherical symmetry, no dependence 

on θ , then the TOV-equation can be derived from the remaining non-trivial  Einstein 

equations eqR00, eqR11, eqR22, eqR41 . 

 

The TOV-equation is  in the standard form: 

1

22

3

22
)

)(2
1()

)(

)(4
1)(

)(

)(
1()

)()(
()(' −−++−=

rc

rGM

crM

rPr

cr

rP

r

rrGM
rP

π

ρ

ρ
 (13) 

and using 
sr   

1

2

3

22

2

)
)(

1()
)(

)(4
1)(

)(

)(
1()

2

)(
()('

−−++−=
t

ss

rM

rMr

crM

rPr

cr

rP

r

rrc
rP

π

ρ

ρ
 , where 

tM  is the total mass, furthermore 

)()(4 2 rMrr =ρπ  , γρ )()( 1 rkrP =  
In order to make the variables dimensionless, one introduces ‘sun units’  

2

3

16

32
,1076.1

3/4
,3

2
)( cP

cm

g

r

M
km

c

GM
sunrr ss

sun
s

sun
sss ρ

π
ρ ======  

where 
ssr  Schwarzschild-radius of the sun, 

sρ  the corresponding Schwarzschild-density and 

sP  the corresponding Schwarzschild-pressure. 

In ‘sun units’ TOV-equation transforms into 

 

))(3)()()(
3

)('
(

2

1
))(()('

3

111011

2

111
011

0111

3

111 rrPMrMrrP
MrM

MrMrrrP ++−=−  (14) 

with the normalized mass M1(r1)  , and 1)( 11 =RM  , 

or 

))(3)()()(
3

)('
(

2

1
)(()('

3

1111

2

111
1

11

3

111 rrPrMrrP
rM

rMrrrP ++−=−   

where   
sun

t

M

M
M =0  , )( 1rM  is the mass within the radius r,  M(r1)= M0 M1(r1) 

in dimensionless variables γρρ )(,,
3

)('
)(, 1112

1

1
11 rkPM

r

rM
rr ==  

and 1R  is the dimensionless radius of the star. 

With the replacement γρ1kP =  for the pressure from the equation of state and  

2

0

3

'

r

MM
=ρ   we obtain a diff. equation for M  degree 2 in r and we impose the boundary 

condition in r=R1: 

M(R1)=M0 , M’(R1)=0  for non-interacting Fermi-gas 

and 
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for an interacting Fermi-gas : M(R1)=M0 , eRRRRM ρρρ == )(,3)()(' 1

2

111 , where ρe is the 

equilibrium density in the minimum of Vnn and P1’(ρe)=0 (here an equivalent boundary 

condition is ∞=)(' 1Rρ ). 

 

6. The equation of state and rotation parameters 

 

6.1. The equation of state for an (non-interacting) nucleon gas 

Here, γρ1kP =  is the equation of state of the star, derived from the thermodynamic Fermi 

gas equation at T=0 ([2], chap. 48). 

))(1
3

(8
2

3

0 FF

F xfx
x

P
V

E
P −+=

∂

∂
−= π       (15) 

3

54

3

2

0
h

cmmc
P

c

==
λ

 , where λc is the de-Broglie wavelength of the Fermi gas with particle 

mass m, 
mc

h
c =λ  

3/13/1)3(
2

n
mc

p
x cF

F π
λ

== , where xF is the Fermi-angular-momentum, n the particle density  

∫ +=
Fx

F xxdxxf
0

22 1)(  

The resulting approximate equations of state for P are 
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12

15
8       (16) 

valid for the density ρ and the critical density ρc 

3

8
3

π

λ
ρ

c

c

m
=  

The full expression for P, including temperature T, is as follows ([4],chap.15). 

Here, we use dimensionless variables (r1 distance unit de-Broglie-wavelength λc , V1 volume 

unit λc
3
,n1 particle density unit 1/ λc

3
, E1 energy unit 

πλ 2

2

0

mcc
E

c

==
h

, inverse thermal 

energy 
kT

E0

1 =β , chem. potential µ1 in E0)., for the gas model we use the Debye model with 

the state density 12/711
4

1
)( EED

π
=  , maximum energy 

3/2

1

3/13/2

1
4

3
nF

π
ε =  , the resulting 

particle density is 

))(exp(12

1

))(exp(1

)(2

111

1

0
12/7

111

11

0
1

11

1
µωβ

ω
ω

πµωβ

ω
ω

−+
=

−+
== ∫∫

∞∞

d
D

d
VV

N
n

op
 

From this relation the chem. potential µ1  can be calculated, an approximation formula is 

)(
12

11

1

2

1

2

11 n

F

F µ
εβ

π
εµ =−=  

Finally, the resulting pressure (=energy density) p1(β1,n1):  
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)))((exp(13

4
),(

1111

2/3

1

0
12

2/3

111
n

dnp
µωβ

ω
ω

π

π
β

−+
= ∫

∞

     (17) 

Below a 3D-diagram of p1(β1, n1) in dimensionless variables for a nucleon gas (m=mn, 

density 
2

0

c

nE
=ρ  in sun units, E0=149.4MeV ) is depicted: 

 

 
Here  kT is in E0 units, and one sees the dependence γρ1kP =  except on the left side, when 

kT reaches the magnitude of 1Gev (T=10^10K). 

 

6.2. The equation of state for an (interacting) nucleon fluid 

For the interacting nucleon gas we take into account the nucleon-nucleon-potential in the 

form of a Saxon-Woods-potential modeled on the experimental data: 
Vsw[r_,V0_,r0_,dr0_]=V0/(1+Exp[(r-r0)/dr0])  
Vnn[r_]= Vsw[r,Va,ra,dra]+ Vsw[r,Vc,rc,drc] where Vnn is the 

nucleon-nucleon-potential with an attractive part Vsw[r,Va,ra,dra] and a repulsive 

core  Vsw[r,Vc,rc,drc]  , the distance r between the nucleons is  
3/1)/( ρnEr = , where En= 23/12 4.149))2/(( cmMeVcmn ππ ≈=  is the nuclear energy scale 

mπ=pion mass = 140MeV, mn=neutron mass = 140MeV. 

0.5 1.0 1.5 2.0

-200

200

400
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800

1000

Vnn(r) with energy(MeV), r(fm)[] 

The pressure of the interacting nucleon fluid becomes then 
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)))(/(()()( 3/1

1111111 rEVrcrP nnn ρρ=       (18) 

The experimental data used here are those from [7] 

 
And the hard-core potential from the lattice calculation Reid93  from [5] 

 
 

both fitted with a double Saxon-Woods-potential Vnn 
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-200
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with r(fm) , V(MeV). 
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From the nucleon-nucleon-potential the pressure is calculated taking into account the low-

density Fermi-pressure of the nucleons   K1*rho^(5/3) 
Pnn[rho]=Vnn[1/((rho))^(1/3)]*rho 

0.05 0.10 0.15 0.20
rho

-0.10

-0.05

0.05

0.10

0.15

0.20

Pnn

 
Pfg[rho]=K1*rho^(5/3)+Pnn[rho] 

0.02 0.04 0.06 0.08 0.10
rho

-0.10

-0.05

0.05

0.10

0.15

PfgHrho L

 
total pressure Pfg(r) , pressure P and density r  shown in sun-units. 

This equation-of-state has a minimum at ρ=ρc=0.0417 and P’(ρ)=1 at ρ = ρm=0.0544 . 

As the sound velocity 
ρ

ρ

d

dP
v

)(
=  , v>0  and v<1 (i.e. subluminal), the admissible density 

range in the neutron-fluid model is  ρc<=ρ<= ρm  . 

6.3. Maximum omega-values in Kerr-space-time 

We consider here a rotation model with constant angular velocity ω . With this model the 

resulting 4-velocity  u
µ
 has the form [11]: 

u
µ=( u0 , 0, 0, ω u

0  ) 
 

The maximum values for ω are calculated from the minimal zeros in omega of the 

denominator in  u
0
  from (9a) , minimized over r1 and th in their respective regions  

ri <= r1 <= R1 and 0<= θ<= π/2 . 

The resulting value is 
fR α

ω
12

1
≤  , where αf is the form-factor in  the moment of inertia I1 . 

2

11 RMI fα=  , αf =2/3 for a shell , αf =2/5 for a sphere. 

With non-vanishing density the actual ωmax depends on {Ai,ρ}  , and has to be calculated 

from the above expression for  0
u  . 

7. The TOV-equation: a new ansatz 

Generally speaking, the parameters of the solution are : 

angular momentum radius a (=alpha1, =0 for TOV), the factor in the state equation k1, the 

power in the state equation γ (=gam),radius R, mass M0, the relative radius uncertainty 
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reldr02 (=dr02rel), the moment of inertia factor If (=infac, 0 for TOV), the singularity 

smoothing parameter ε (=epsi, see below), and the boundary factor nrmax (=nrmax). Here the 

boundary factor enters the upper boundary of the TOV differential equation as 

)021( maxmax relr drnRr += . 

The dimensionless TOV-equation is an differential equation in the mass M(r) of degree 2, 

and is highly non-linear, the dimensionless mass-density relation is 
23

'

r

M
=ρ . 

The customary way of solving the TOV equation is to impose the boundary condition at r=0 

with M(0)=0, M’(0)= 0

23 ρr  where ρ0 the maximum central density . 

In the new ansatz for the mass M(r)  we impose the outer boundary condition at  r=R1: 

for a pure Fermi-gas without interaction: M(R1)=M0 , 0)(,3)()(' 1

2

111 == RRRRM ρρ  ; 

for an interacting Fermi-gas : M(R1)=M0 , eRRRRM ρρρ == )(,3)()(' 1

2

111 , where ρe is the 

equilibrium density in the minimum of Vnn and P1’(ρe)=0 (here an equivalent boundary 

condition is ∞=)(' 1Rρ ). 

The star parameters mass M0 and radius R1  , which enter the outer boundary condition 

determine completely the solution. In general, there will be an inner radius ri  >0 with the 

maximum density  )('3 2

0 irMr=ρ  and M(ri)=0.  The corresponding ‘dual’ parameters are 

the inner radius ri  and the maximum density ρ0  . One can show that for ρ0>>ρc  (where ρc  is 

the critical density of the equation of state) there is no solution with a compact star ri  =0, 

i.e. there is a maximum mass Mc for the TOV equation, in case of compact neutron stars Mc = 

3.04Msun  (see below). As we will see, there is in general a solution, if we allow ri  >0 and 

impose an outer boundary condition at r=R1 , as long as R1  is not too close to the 

Schwarzschild radius rs = M0 of the star. In the limit R1  -> rs  there will be no positive zero of 

M(r) ,i.e. ri  <0 and the resulting (mathematical) TOV-solution will be no physical solution. 

But in general, speaking naively, the gravitational collapse of the star is avoided for large 

masses (M0  > Mc), if it has a shell structure with the inner radius ri and the outer radius  R1 > 

M0 . 

As we will see, this outer boundary condition together with allowing  ri  >0  changes 

dramatically the resulting manifold of physical solutions. 

7.1. The TOV-equation: the parametric solution and resulting star types 

By setting-up a  parametric solution of the TOV-equation one gets a map of possible physical 

solutions, i.e. possible star structures. As parameters one can use either (M0, R1) in the outer 

boundary condition at r1= R1  or the dual parameter pair  (ri , ρbc ) in the inner boundary  

condition r1= ri   .  

Both approaches yield the same results, which are as follows. 

Neutron stars consist of interacting neutron fluid and are compact stars with 

 (M0, R1)=(0.14,1.49)...(3.04,3.95) and the maximum density 0.048<= ρbc <=0.0544=ρbcmax in 

sun-units, 

or shell-stars with ρbc ==ρbcmax and  (M0, R1)= (3.04,3.95)…(4.91,4.92), 

neutron star R-M-relation follows approximately a cubic-root-law: R~M
1/3 

  . 

Stellar quasi-black-holes consist of (almost) non-interacting Fermi-gas of neutrons and are 

thin  

shell-stars with siss rrrRrR ≈≈> ,, 11  , i.e. the shell is close to the Schwarzschild-radius and 

its outer edge outside the Schwarzschild-horizon with max. density 0.0025<=ρbc <=0.042,  

and obey an almost linear R-M-relation  
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(M0, R1)= (5.5,9.1)…(18.8,20.8), independent of ρbc  for  ρbc >=0.028, with redshift factor 

around 10 for M= 18 Msun. 

Galactic (supermassive) quasi-black-holes are very thin shell-stars, which obey the equation-

of-state of a white-dwarf (i.e. gravitation counterbalanced by Fermi-pressure of electron gas) 

and have an almost linear R-M-relation with redshift factor 20…100 . 

Neutron stars 

The parametric solution of the TOV-equation has been carried out for the parameters  (ρbc , ri  

)   at the boundary r= ri  , in the range: density  0.02<= ρbc <=0.15  and  inner radius 0.01<= ri 

<=15. , yielding physical solutions  for density 0.048<= ρbc <=0.0544=ρbcmax     and inner radius 

 0.01<= ri <=3 . The TOV-equation is solved for M(r)  and ρ(r) , and a physical solution is a 

mathematical solution with  M>=0 and ρ>=0 , ρ'<=0  and subluminal equation-of-state within 

a certain interval r={ ri , r02 }, which reaches a point, where M’(r)=0   and ρ(r)=0 . The radius 

R1 and the total mass M0 is reached at M’(R1)=0 , the physical solution ends there.   

The validity interval for ρ is explained by the fact, that the sound velocity 
ρ

ρ
ρ

∂

∂
=

)(
)(

P
vs  

 must be positive and below 1 (subluminal in c-units ).    

The parametric mapping results in the following dependence for M0(ri,ρbc) , R1(ri,ρbc) (ri,ρbc , 

M0, R1  in sun-units): 

 

 
 

For ri =0 the mapping describes the compact neutron stars, resulting in R1(M0) function: 
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Rêrssun

ri=0.01

 
 

The R-M-relation follows approximately a cubic-root-law: R~M
1/3 

  , 

with a range of   (M0, R1)=(0.14,1.49)...(3.04,3.95) , i.e. the resulting maximum compact mass 

is Mmaxc=3.04Msun . 

 For M0>= Mmaxc  the function  R1(ri =const,ρbc)   is flat or slightly decreasing with ρbc , son one 

expects the stable configuration to be the one with maximum ρbc =ρbcmax  :   

3.5 4.0 4.5
MêMsun

4.0

4.2

4.4

4.6

4.8

Rêrssun

rhobc=0.0544

 
with a range of   (M0, R1)= (3.04,3.95)…(4.91,4.92) .The admissible mass range ends, where 

the thickness of the shell above the Schwarzschild-radius becomes very small (minimum 

0.01).  

So in total the R-M-relation for neutron stars becomes 

1 2 3 4 5
MêMsun

1

2

3

4

5

Rêrssun

ri=0.01

 
The maximum mass for a repulsive-hardcore-model for the equation-of-state DD2 [10] is  

2.42Msun , from our mapping we have the maximum compact neutron star mass of   

Mmaxc=3.04Msun  . 

The actual theoretical limit for neutron star core density is ρmax =3.5 10
15

 g/cm
3
=0.199 in 

sun-units  [8,9]. 

The limit for ρbc reached in our mapping is only ¼ of this ρbc =ρbcmax  =0.0544  , due to the 

subluminal-sound-condition and the use of an (attractive) nucleon-nucleon-potential for the 

nucleon-fluid instead of a pure repulsive-hardcore-model. 
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The classical argument for the collapse of a neutron star to a black-hole for   ρbc > ρmax, 

dating back to Oppenheimer [2], is invalidated here by the simple introduction of shell-star 

models, where ri >0 , and therefore there is no mass at the center, which means physically, 

there is only a very diluted nucleon gas there. 

 

Stellar quasi-black-holes 

The parameter range of the mapping is : density  0.025<= ρbc <=0.0417=ρoc  and   

inner radius 0.01<= ri <=90 , where  ρoc is equilibrium value of the nucleon-nucleon-

potentials with Pnf’(ρoc )=0, the transition point from the nucleon-fluid to the nucleon-gas 

phase . The mapping gives the M0-R1-range of (M0, R1)= (5.5,9.1)…(18.8,20.8) . 

The underlying equation-of-state is the Fermi-gas of nucleons with the low-density limit of  
3/5

1)( ρρ KP =  . 

 

 
As the resulting M0(ri,ρbc) , R1(ri,ρbc)  are practically independent of ρbc  , we see that the M-

R-relation is given by the M0,R1 values for ρbc =0.0417=ρoc  .  

The resulting R-M-relation is practically linear and has a maximum mass value of Mmax=18.8  . 
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MêMsun
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Rêrssun

rhobc=0.0417558
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And the corresponding relative shell thickness dRrel=dR/M is 

6 8 10 12 14 16 18
MêMsun

0.05

0.10

0.15

0.20

0.25

dR êM
rhobc=0.0417558

 
and the relative Schwarzschild-distance dRsrel=(R-M)/M is 

6 8 10 12 14 16 18
MêMsun
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HR-MLêM

rhobc=0.0417558

 
The inverse of  dRsrel  gives roughly the light attenuation factor of {1.7…13.9}. Taken the 

attenuation factor and the small relative shell thickness of around 0.042, these stellar quasi-

black-holes have approximately the properties expected of a genuine black-hole, when 

measured from a distance r>>R1 . Furthermore, the phase space volume of a thin spherical 

shell is proportional to its surface A, which approximates the Bekenstein black-hole entropy 

formula S=(kB/LP
2
)A/4 . 

 

Galactic (supermassive) quasi-black-holes 

The mean density of a black-hole scales with its radius R like 
23 4

3

)3/4(
)(

RR

R

V

M
R

ππ
ρ ===  

i.e. for supermassive black-hole with M=10
6
Msun we have 1210−≈ρ   in sun units (su). 

In the following we use the abbreviation M Msun =10
6
Msun . 

The density scale of a white-dwarf star is 10
6
g/cm

3
=5.7 10

-11
su [2]. Therefore it is plausible to 

try a parametric mapping with the white-dwarf equation-of-state, where the underlying 

Fermi-pressure is that of an electron gas instead of a nucleon gas, i.e. equation-of-state   
γρ )()( 11111 rkrP = for a pure Fermi gas, γ=5/3 if the density is below the critical density ρc  . 

The results for M0(ri,ρbc) , R1(ri,ρbc)  are shown below: 
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From this result one can draw several consequences: first, the actual density is around 10

-12
, 

that is well below the critical density for a white-dwarf of  ρc =0.91 10
6
g/cm

3
=5.17 10

-11
su : 

γ=5/3 in the equation-of-state is justified. Second, the viable solutions lie to the left of a  

”ridge” reaching up to masses around 30 MMsun. Third, a stable solution for a fixed mass will 

have the highest possible maximum density ρbc  and that will lie on the ”ridge”  . So one can 

calculate the R-M-relation following the ”ridge”.   

The resulting R-M-relation is as follows: 
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The R-M-relation is almost linear, as expected, and goes up to 50MMsun. dRrel=(R1-ri)/M0 is 

the relative thickness, and shows, that the shells are very thin indeed, with a minimum of 

0.001 . The fourth  diagram shows the relative Schwarzschild-distance dRsrel= (R1-M0)/M0, 

which has a minimum at   

{ M0, dRsrel }={7.,0.00142857}, so that its reciprocal value (approximate light attenuation 

factor)  is around 700. So the overall result is, that the supermassive quasi-black-holes 

become ever thinner shells, while the distance from the Schwarzschild-horizon is increasing. 

 

7.2. The TOV-equation: a case study for typical star types 

In the nearly-rotation-free case the solution of the TOV-equation was calculated for 4 

models (sun units with 
sr = Schwarzschild radius  

2

32
,

3/4
,

2
)( cP

r

M

c

GM
sunrr ss

sun

s

sun

sss ρ
π

ρ ==== ): 

rss = 3km , ρs = 1.76 10
16 

g/cm
3
 , Msun = 3 10

30
 kg , 

- average compact neutron star with mass M0= 0.932 sunM  , radius R1= 2.767 ssr  

- maximum mass neutron shell-star M0=4.91, R=4.926 

- white dwarf with M0= 0.6 sunM  , radius R1=  3000 ssr  

- stellar black hole with M0= 15.69 sunM  , radius R1=  17.89 ssr , inner radius  ri==  17. ssr  

- galactic black hole with M0= 4.367*10
6

sunM  , R1= 4.380*10
6

ssr ,  ri= 4.356*10
6

ssr  

Compact neutron star 

parameters= { k1=0.40,gam=5/3,M0=0.932,R1=2.767,rhobc=0.0456,ri=0.01};  
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The mean density is here 
3

1

0

R

M
mean =ρ  = 0.04447 . 

The critical density of the neutron Fermi gas with neutron mass mn is 
32

34

3 hπ
ρ

cmn

cn = = 0.35 

(see [2]) , so the low-density approximation with γ=5/3 can be used.  

Results TOV: 

rho, M: 
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M HM0 ,R1 ,K1,gamact =0.932 ,2.767 ,0.4 ,5ê3L

 

0.0 0.5 1.0 1.5 2.0 2.5
r1

0.043

0.044

0.045

0.046

rho HM0 ,R1 ,K1,gamact =0.932 ,2.767 ,0.4 ,5ê3L

 
As can be seen in the ρ-diagram, the derivative ∞=)(' 1Rρ , because there the equilibrium 

density ρc  with P’(ρc)=0  in the pressure is reached. 

Maximum mass neutron shell-star  

parameters= { k1=0.40,gam=5/3,M0=4.91,R1=4.926,rhobc=0.0544,ri=3.};  

The mean density is here ρmean = 0.0530 . 

Results TOV: 

rho, M: 
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Stellar quasi-black-hole 

parameters= { k1=0.40,gam=5/3,M0=15.69,R1=17.89,rhobc=0.0359,ri=17.};  

The mean density is here ρmean = 0.0194 . 

The resulting rho and M are: 
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Here the radius R1 is reached, when M’(r1= R1)=0 , i.e. ρ(R1)=0 .  

 

White-dwarf star 

parameters= { k1= 

1.43*10
6
,gam=5/3,M0=0.6,R1=3000,rhobc=2.02*10

-11
,ri=0.};  

The underlying state equation is that of a small-momentum electron Fermi-gas with the 

critical density [2]  
32

33

3 hπ
ρ

cmm ne

cw =   =  0.517*10^-10su .   

The mean density is here ρmean = 2.22*10
-11

 , the maximum deviation of  ρ  is   

∆maxρ=0.21*10
-11

 , so the density is practically constant, as expected. 

The solution of the TOV-equation becomes 

rho, M: 
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Galactic quasi-black-hole 

parameters= { k11(γ=5/3)=0.0243*10
6
, k12(γ=4/3)=0.067*10

4
 ,M0=4.367*10

6
,R1=4.380*10

6
, 

rhobc=4.934*10
-12

,ri=4.356*10
6
};  

TOV equation was solved with an exterior boundary condition r02=R1 (M(r02)=M0, 

M’(r02)=0), which is equivalent to the interior boundary condition r01=ri (M(r01)=0, ρ 

(r01)= ρbc) , and with the full Fermi-gas equation-of-state instead of the simple power law 
γρρ 1)( KP =  . 

The mean density is here ρmean = 3.16*10
-12

  . 

The “naive” mean density is here 
3

1

0

R

M
mean =ρ  =3.16*10

-12
 ,i.e. by a factor 10 lower than  the 

mean density of white dwarf. Therefore, despite  its huge mass, the galactic black hole can 

be described by the state equation of a small-momentum (undercritical) Fermi electron gas 

with the relative density  xF= 0612.0=
cnρ

ρ
  much smaller than that for the white dwarf. 

TOV-solution for rho (in 10^-12 units), M (in 10^6 units) in r (in 10^6 units), is: 
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M HM0 ,R1 ,K1,gamact =4.36731477304323 ,4.38 ,0.024300000000000002 ,5ê3L
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Here there is an internal ”hole” with a radius ri= 4.356*10
6
, maximum ρ=4.934*10

-12
  at ri . 

The inner radius ri  lies a little below the Schwarzschild-radius rs=M0. The relative shell 

thickness  

dRrel=(R1- ri)/M0 =0.00551 , the relative Schwarzschild-distance  dRsrel=(R1- M0)/M0 =0.00290 , 

the light attenuation factor is roughly 1/ dRsrel =344 . 

Furthermore, ri is little sensitive to the temperature up to T=10^7K. 

As for a stellar black hole, when R converges to rs=M0, so does the inner radius ri , and there 

is no physical solution (with positive ρ and M) for a boundary within the horizon. 

 

8. The three star models for Kerr-space-time with mass and rotation 

The calculation of Kerr-space-time with mass and rotation was carried out for 3 star models: 

-a typical compact neutron star with mass around 1 solar mass 
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-a presumably typical stellar quasi-black-hole with a mass around 15 solar masses 

-a comparatively small galactic quasi-black-hole modelled on the central black-hole in the 

Milky Way with a mass of around 4 million solar masses 

The angular velocity ω was chosen at 0.65ωmax , i.e. about 2/3 of the maximum value.  

We are using the so called “sun units”  sun Schwarzschild-radius )(sunrr sss =  =3km, sun 

mass )(sunMM s = =3. 10
30

kg, sun Schwarzschild-density 
3

4 ss

s

s
r

M

π
ρ = =1.76 10

16
g/cm

3
,  

sun Schwarzschild-pressure 2
cP ss ρ= =1.58 10

35
J/m

3
  for  radius r, mass M, density ρ, and 

pressure P,  respectively. 

The mass element here is M1(r, θ) dr dθ  and the ring mass M1(r)  is the differential mass of 

the θ-beam x

r

x drrMdrMd ∫=
0

11 ),()( θθθ , the density ρ is  

),(),()(4 1 θθθρθπ θ rMddrrCos r ∂∂=  . 

As for the result values, dthrel is the maximum relative angular deviation (in θ) , and error 

(relative to the test function error) : wavefront error is the median (on lattice)  algorithm 

error, the spline fit and the Fourier fit error is the error of the respective fit of the discrete 

solution on the lattice. 

We are using here the θ-slicing r-forward algorithm. For each of the star models a 

verification step is run first with the angular velocity w=0, the result must be the same as in 

the corresponding TOV-equation.  Then a parameter study is made for different ellipticities  

∆ri  at the inner boundary condition in order to find ∆ri  with a minimal mean energy density: 

this is the stable solution of the Kerr-Einstein equations.  

The parameter denomination is:   

a=alpha1 with 
Mc

J
a =  the angular momentum radius (amr) of the Kerr model, 

ω=omega1 is the angular velocity, R1 = R1=r02 is the outer radius, M0=M0 is the total mass, 

r1 radius variable, th angle variable,  

M(r,θ)=M1(r1,th) is the mass function, A0(r1,th)… A4(r1,th) Kerr correction-factor functions, 

ρ(r,θ)=rho(r1,th) is the density  function, 

k1 is the parameter in the approximate Fermi-gas equation-of-state 
γρ )()( 11111 rkrP = , 

γ=gam, gam1, gam2 is the exponent , 

infac is the moment of inertia factor If   , 

epsi is the singularity cancellation parameter with limit(epsi)=0 introduced to improve the 

numerical stability in singularities 

ri=riact is the polar inner radius Ry 

∆ri the ellipticity is the difference between the polar Ry  and the equatorial inner radius Rx  , 

 Rx=Ry-∆ri   

rilow  is the minimal radius r1 reached in the solution 

ρbc= rhobcx is the boundary condition density  

Typical compact neutron star 

The underlying star model here is a compact (ri=0) neutron star of neutron liquid (i.e. 

strongly interacting neutrons), mass M0=0.93 sun-masses, radius R1=2.76 sun-Schwarzschild-

radii (=8.28km). 

parameters= {alpha1=0.74,omega1=0.188,k1=0.4,�1=2.7602,gam=5/3,gam1=5/3,gam2=4/3,

M0=0.932,dr02rel=0.33,infac=2/5,epsi=0.05, rilow=0.05, rhobcx=0.03396,riact=0.01} 
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The r-forward solution is first calculated with the lattice {nx=32, ny=16} for the rotation-free 

TOV-case with a corrected TOV-solution (rho-factor 1.05, R1-factor 1.17) as the initial 

function. The solution for the Kerr-case starts with this corrected TOV-solution and yields the 

values: 

radius(θ)  r02e={2.92...2.73},mean=2.82,max. rel. angular deviation dthrel=0.063 

ring-mass(θ)  M02e={1.12...0.079},mean=0.91,dthrel=0.179, 

dthrel(M1)=0.15,dthrel(rho)=0.099,dthrel(A0)=0.019, 

total mass M02eff=0.932 

error: med(err)=0.0015(0.054)  wavefront, =0.045(6.72)  spline fit =0.020(6.74)  Fourier fit 

mean energy density=0.0340 

 

 
density over x=radius r1, y=angle th 

The density distribution is similar to the TOV-case with a 

decrease in θ–direction of  dthrel(rho)=0.099 . 
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(ring) mass profile for th=0.1 (equatorial) and th=1.4708 

(polar) 
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effective radius r02e over angle th 
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The rotation results in the flattening in the polar direction of  dthrel=0.063. The neutron star 

behaves like a fluid because of its “viscosity”, that is, its nuclear interaction and becomes 

“pumpkin-like”. 

Typical stellar quasi-black-hole  

The star model here is a shell-star (ri>Schwarzschild-radius) with mass M0=15.69 sun-masses, 

radius R1=17.89 sun-Schwarzschild-radii (53.67km). The ellipticity ∆ri is at first a free 

parameter and it is fixed by the requirement of minimal mean energy density to ∆ri 

=0.3=0.1677 R1 . 

Parameters= {alpha1=8.7,omega1=0.0126,k1=0.4,�1=17.89,gam=5/3,gam1=5/3,gam2=4/3, 

M0=15.69,infac=2/3,epsi=0.1,rilow=15.9,rhobcx=0.036,riact=17.004} 

The r-forward solution is first calculated with the lattice {nx=32, ny=16} for the rotation-free 

TOV-case as the initial function. The result is correct in the first iteration, so there is no rho-

correction for the initial function. 

Then a case study with the parameter ellipticity ∆ri  is carried out in order to find the 

minimal mean energy density. 

The case study yields a minimum at ∆ri =0.3 (cigar-like inner boundary) , with a  mean energy 

density=0.0155 . 

The ensuing  r-forward solution with this ellipticity and maximum density ρbc= 0.0371 at the 

inner boundary yields the values: 

radius(θ)  r02e={17.61...18.06},mean=17.85,max. rel. angular deviation dthrel=0.026 

ring-mass(θ)  M02e={15.70...16.03},mean=15.80, dthrel=0.038, 

inner radius ri={16.70…17.0}, mean=16.85, dthrel=0.017 

dthrel(M1)=0.022,dthrel(rho)=0.064,dthrel(A0)=0.345, 

total mass M02eff=15.74 
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error: med(err)=0.012(0.26)  wavefront, =0.019(0.58)  spline fit =0.017(0.060)  Fourier fit 

mean energy density=0.0155 

 
density over x=radius r1, y=angle th 
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density over angle th at r1=17.12 

The density distribution increases in θ–direction with the 
relative span of dthrel(rho)=0.064 . 

17.5 18.0 18.5

-20

-10

10

20

30

M1@r1D, th=0.1

 

17.5 18.0 18.5

-20

-10

10

20

30

M1@r1D, th=1.4708

 
(ring) mass profile for th=0.1 (equatorial) and th=1.4708 

(polar) 
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The physical mass distribution ends at M1’(r02e)=0, i.e. at the end of the plateau, where the 

density becomes ρ=0 .  
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(ring) mass M1(r02e,th)  over angle th 

The ring mass has a sharp increase at about the half  angle (45°) because of the larger 

density and radius at the poles. 

A remarkable result, distinct from the case of the neutron star, is the shape with rotation. 

The stellar quasi-black-hole behaves like a ball of neutron gas (negligible interaction) and 

decreases slightly its equatorial radius, so that, speaking naively, the increased gravitation 

counteracts the centrifugal force, the shell-star becomes “cigar-like”, with the shell thickness 

approximately constant. 

The r-backward solution  with ∆r02e=0.4 and ∆M02e=0.3  yields similar results: 

radius(θ)  r02e={17.60...18.03},mean=17.81,max. rel. angular deviation dthrel=0.036 

ring-mass(θ)  M02e={15.74...16.08},mean=15.82, dthrel=0.0362, 

inner radius ri={16.59…17.08}, mean=16.85, dthrel=0.030 . 

The stellar quasi-black-hole has all its mass concentrated within a thin shell 

 (dR1=r02e-ri=1.01) which is situated outside its Schwarzschild-radius M0=15.69, where the 

minimum distance from the horizon is min(r02e)-M0=1.91, therefore the light  energy loss is 

approximately M0/ min(r02e)=0.891 and the attenuation factor 1/(1- M0/ min(r02e))=9.21, 

it means that visible green light of 0.514µm is shifted to 4.73µm into middle-range infrared. 

Galactic quasi-black-hole  

This is modelled (approximately) on the central black-hole in the Milky Way with mass 

M0=4.36 mega-sun-masses, radius R1=4.38 mega-sun-Schwarzschild-radii (13.14 10
6
km).  

 

In order to maintain numerical performance, we are using for mass and distance 10
6
 (mega) 

units  10
6
 Ms and 10

6
 rss  and for density 10

-12
 (mega

-2
) unit 10

-12 
 ρs. 



30 

 

Like in the case of the stellar quasi-black-hole, the ellipticity ∆ri is at first a free parameter 

and it is fixed by the requirement of minimal mean energy density to ∆ri =0.01725 mega 

=0.00394 R1 . 

parameters= {alpha1=0.670047,omega1=0.05239,k1=0.0243,k2=0.067,�1=4.38,gam=5/3, 

gam1=5/3,gam2=4/3,M0=4.36731,infac=2/3,epsi=0.0024, 

rilow=4.3,rhobcx=4.50374,riact=4.357} 

The r-forward solution is first calculated with the lattice {nx=32, ny=16} for the rotation-free 

TOV-case as the initial function. The result is correct in the first iteration, so there is no rho-

correction for the initial function, the initial density ρbc= 5.038. 

Then a case study with the parameter ellipticity ∆ri  is carried out in order to find the 

minimal mean energy density. 

The case study yields a minimum at ∆ri =0.01725  (cigar-like inner boundary) , with a  mean 

energy density=2.004 . 

The   r-forward solution with this ellipticity and maximum density ρbc=4.560 at the inner 

boundary and rho-correction factor rhofact=0.9985  yields the values: 

radius(θ)  r02e={4.365…4.387}, mean=4.378 ,max. rel. angular deviation dthrel=0.00491 

ring-mass(θ)  M02e={4.396...4.685},mean=4.491, dthrel=0.217, 

inner radius ri={4.339…4.357}, mean=4.348, dthrel=0.00388 

dthrel(M1)=0.0400,dthrel(rho)=0.155,dthrel(A0)=0.700, 

total mass M02eff=4.3679 

error: med(err)=0.0192(1.845)  wavefront, =0.544  spline fit =0.0666 Fourier fit 

mean energy density=2.004 . 

 
density over x=radius r1, y=angle th 
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density over angle th at r1=4.353 

The density distribution increases in θ–direction with the 
relative span of dthrel(rho)=0.155 . 
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(ring) mass profile for th=0.1 (equatorial) and th=1.4708 

(polar) 
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effective outer radius r02e over angle th 
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As in the case of the stellar quasi-black-hole, the polar radius is larger than the equatorial 

radius, so the outer shape and the inner shape are both  cigar-like, but the outer radius has a 

sharp increase at about a third of the full  angle (30°). The shell thickness is almost the same 

at the equator and at the poles. 
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(ring) mass M1(r02e,th)  over angle th 

As in the case of the stellar quasi-black-hole, the ring mass has a sharp increase at about a 

third of the full  angle (30°) because of the larger density and radius at the poles. 

The r-backward solution  with ∆r02e=0.0230 and ∆M02e= -0.007 with minimal mean energy 

density over  ∆r02e and ∆M02e  yields similar results: 

radius(θ)  r02e={4.356...4.378},mean=4.367,max. rel. angular deviation dthrel=0.00517 

ring-mass(θ)  M02e={4.172...4.757},mean=4.552, dthrel=0.129, 

inner radius ri={4.313…4.336}, mean=4.324, dthrel=0.00526 . 

The galactic quasi-black-hole is a shell object with a thin mass shell (∆R=0.057) situated close 

above its outer horizon r+=4.262.  

The maximum distance from the horizon is max(r02e)- r+ =0.125, therefore the minimal light 

energy attenuation is roughly 4.262/0.125=34 , it means that visible green light of 0.514µm 

is shifted to 17µm into far-infrared. 

9. Conclusions 

We introduce in chap. 6  an eos for the nucleon-fluid in the density range ρc<=ρ<= ρm   , 

where 

ρc=0.0417 ρs  and  ρm=0.0544 ρs ( sun units rss=3km  , ρs=1.76 10
16

 g/cm
3
) ,which is based on 

measurement data for the nucleon-nucleon-potential.  This suggests, that there is a phase 

transition at ρ=ρc from the (interacting) nucleon fluid to the (weakly interacting) nucleon 

Fermi-gas . 

Based on these 2  eos’s the results for the TOV-equation in chap. 7 are as follows. 

Neutron stars obey the nucleon fluid eos and there are compact neutron stars in the range  

  (M0, R1)=(0.14Msun,1.49 rss)...(3.04 Msun,3.95 rss) , the R-M-relation follows approximately a 

cubic-root-law: R~M
1/3 

  . 

Neutron shell-stars exist in the range (M0, R1)= (3.04 Msun,3.95 rss)…(4.91 Msun,4.92 rss) . 

Stellar quasi-black-holes exist in the range of (M0, R1)= (5.5 Msun,9.1 rss)…(18.8 Msun,20.8 rss) . 

The underlying equation-of-state is the Fermi-gas of nucleons with the  eos 
3/5

1)( ρρ KP =  .  The resulting R-M-relation is practically linear and has a maximum mass 

value of Mmax=18.8 Msun  . The light attenuation factor (redshift) is roughly  {1.7…13.9}. Taken 

the redshift and the small relative shell thickness of around 0.042, these stellar quasi-black-

holes have approximately the properties expected of a genuine black-hole, when measured 

from a distance r>>R1 . Furthermore, the phase space volume of a thin spherical shell is 

proportional to its surface A, which approximates the Bekenstein black-hole entropy formula 

S=(kB/LP
2
)A/4 . 

The galactic (supermassive) quasi-black-holes have the density scale and the eos of a white-

dwarf-star, i.e. of an electron Fermi-gas. The R-M-relation is almost linear and goes from 

1MMsun up to 50MMsun  (MMsun =10
6
Msun , Mrss =10

6
rss ). dRrel=(R1-ri)/M0 is the relative 
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thickness, and shows, that the shells are very thin indeed, with a minimum of 0.001 . The 

relative Schwarzschild-distance dRsrel= (R1-M0)/M0  has a minimum at  { M0, dRsrel }={7. 

MMsun,0.00142857}, the redshift is around 700. So the overall result is, that the 

supermassive quasi-black-holes become ever thinner shells, while the distance from the 

Schwarzschild-horizon is increasing. 

In chap. 8 we present numerical results for rotating stars of the 3 types compact neutron 

star, stellar quasi-black-hole and galactic quasi-black-hole. 

The angular velocity ω was chosen at ω=0.65ωmax, i.e. about 2/3 of the maximum. 

The compact neutron star with M0=0.932Msun, R1y=2.73rss=8.19km , R1x=2.92rss  , has the 

relative ellipticity of dthrel=0.099 . The neutron star behaves like a fluid because of its 

“viscosity”, that is, its nuclear interaction,  and becomes “pumpkin-like”. 

The stellar quasi-black-hole with M0=15.74Msun, R1mean= 17.85 rss, has maximum density  

ρbc= 0.0371 ρs , outer radii R1y=18.06rss=54.18km , R1x=17.61rss  , inner radii riy=17.0 rss , 

 rix=16.7 rss  , outer rel. ellipticity dthrel=0.026. The ring-mass (the differential mass of the θ-

beam) has a sharp increase at half-angle θ=45°  . The redshift is  9.21. 

The stellar quasi-black-hole behaves like a ball of neutron gas (negligible interaction) and 

decreases slightly its equatorial radius, so that, speaking naively, the increased gravitation 

counteracts the centrifugal force, the shell-star becomes “cigar-like”, with the shell thickness 

approximately constant. 

The galactic quasi-black-hole  is modelled (approximately) on the central black-hole in the 

Milky Way with mass M0=4.368MMsun  (MMsun =10
6
Msun , Mrss =10

6
rss ), radius R1=4.38Mrss  

(=13.14 10
6
km).  

It has maximum density  ρbc= 5.038 10
-12 ρs , outer radii R1y=4.387Mrss , R1x=4.365Mrss  , 

inner radii riy=4.357Mrss , rix=4.339Mrss  , outer rel. ellipticity dthrel=0.00491. 

As in the case of the stellar quasi-black-hole, the ring mass has a sharp increase at about a 

third of the full  angle (30°). The redshift is roughly 34. The galactic quasi-black-hole is a shell 

object with a thin mass shell (∆R=0.057M rss ) situated close above its outer horizon 

 r+=4.26 Mrss . As in the case of the stellar quasi-black-hole, the polar radius is larger than the 

equatorial radius, so the outer shape and the inner shape are both  cigar-like, but the outer 

radius has a sharp increase at about a third of the full  angle (30°). 

The overall result  is , that the introduction of numerical  shell-star solutions of the TOV- and 

Kerr-Einstein-equations creates quasi-black-hole star models, which mimic closely the 

behaviour of abstract black holes and satisfy the Bekenstein entropy formula, but have finite 

redshifts and escape velocity v<c, no singularity , no information loss paradox, and are 

classical objects , which need no recourse to quantum gravity to explain their behaviour. 
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