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ABSTRACT
It is generally assumed that Einstein’s General Theory of Relativity (GTR) is
silent on the issue of planetary recession such as has been measured recently
by Standish (2005); Krasinsky and Brumberg (2004) and as-well by Williams and
Boggs (2009); Williams et al. (2004). In this short note, we demonstrate that the
GTR is not silent on this matter, it does make a clear predictions albeit, predic-
tions that is contrary with experience and for this task, we use the same solution
that was and has been used triumphantly to explain the perihelion precession
of the planet Mercury. From a pure stand-point of binary logic, we expect this
solution to stand-up to all its predictions for both the precession of perihelion
precession and as-well the expansion of orbits. At any rate imaginable, this ap-
parent contradiction presents an interesting state of affairs for the GTR.

Key words: astrometry – celestial mechanics – ephemerides – planets and satel-
lites: formation.

1 INTRODUCTION

It is generally assumed that Einstein’s General Theory
of Relativity (GTR) is silent on the issue of planetary
recession such as has been measured recently by Stan-
dish (2005); Krasinsky and Brumberg (2004) for the Earth-
Moon system from the Sun and as-well the Moon’s reces-
sion from the Earth (Williams and Boggs 2009; Williams
et al. 2004). In this short note, we demonstrate that the
GTR is not silent on this matter, it does make a prediction
albeit one that runs contrary with experience. In-order to
arrive at this very interesting result, we use the same so-
lution that was and has been used triumphantly to explain
the perihelion precession of the planet Mercury. Unfortu-
nately, this solution’s predictions do not agree with physi-
cal and natural reality.

It is interesting that that we have a theoretical result
that runs contrary with experience. What this may mean
is that, for the first time since the GTR was conceived, a
legitimate and valid solution of the GTR disagrees with
observational data. This is an interesting state of affairs.
If one believes the solution leading to the the GTR’s tri-
umphant prediction of the anomalous perihelion preces-
sion of the planet Mercury, then, equally, they have to
believe its solution on the secular changes in the mean
Earth-Sun and Earth-Moon distance. There really is no
escape from this. We might as-well have to accept this as

a tiny – albeit, important and noticeable crack in the oth-
erwise beautiful edifice of the GTR.

2 PRELIMINARY COMPUTATIONS

First, from the measurements of Standish (2005); Krasin-
sky and Brumberg (2004), we obtain a single obversational
value for the recession of the Earth-Moon system the Sun.
Thereafter, we obtain a formula relating the change in the
eccentricity and the mean distance.

2.1 A Single Recessional Value

We need to establish a single value for the recession of the
Earth-Moon system from the Sun. As is common knowl-
edge, the mean distance from the Sun of the Earth-Moon
system is referred to as the Astronomical Unit and de-
noted by the symbol AU. Let us represent the secular
change in the Astronomical Unit by δAU. At present, there
are two values for this quantity, that is, the Russian as-
tronomers Krasinsky and Brumberg (2004) find δAU =
+150.00 ± 3.00 mm/yr, while the American astronomer
Standish (2005) finds δAU = + 70.00± 2.00 mm/yr. From
these two values we need the best estimate. For this, we
need to appeal to statistical methods to find a best esti-
mate.
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Assuming that these two measurements are governed
by Gaussian statistics and that the errors in the mea-
surements random and independent, then, the best esti-
mate of these two measurements can be obtained by tak-
ing the weighted mean of the two values. For example if
(xi + δxi : i = 1, 2, . . . n) is set of n measurements of
a constant quantity x, where xi is the best value of for
the nth measurement and δxi is its accompanying error
margin, then, the best estimate of xbest from this set is
xbest =

∑
wixi/

∑
wi where wi are the weights such that

wi = 1/(δxi)
2 and the best estimate in the error margin

δxbest is δxbest = (
∑
wi)

−1/2 (see e.g. Taylor 1982, p.150).
Applying this prescription to the two measurements of
Standish (2005); Krasinsky and Brumberg (2004), we ob-
tain:

δAU = +95.00± 2.00 mm/yr. (1)

We shall from heron adopt this value (1) as representative
of the change in the mean distance between the Sun and
Earth-Moon system.

The maximum distance of the Earth from the Sun
Rmax

orb = 1.52098232 × 1011 m and minimum distance is
Rmin

orb = 1.47098290×1011 m (Standish and Williams 2010).
In our calculation, we need one single value for the mean
distance between the Sun and the Earth-Moon system.
From Rmin

orb and Rmax
orb , the best estimate would the aver-

age of these two values, that is, Rbest
orb = (Rmax

orb +Rmax
orb )/2

and the best estimate in the error margin to this value
is δRbest

orb = (Rmax
orb − Rmax

orb )/2, so that the best value for
the mean distance between the Sun and the Earth-Moon
system is:

〈R⊕〉 = (1.50± 0.03)× 1011 m. (2)

For the Moon Rmax = 4.055 × 108 m and Rmin = 3.633 ×
108 m, from this Rmean = (3.80± 0.20)× 108 m

〈Rem〉 = (3.80± 0.20)× 108 m. (3)

In the next section, we deduce a relationship between the
secular change in the eccentricity and the mean radial dis-
tance.

2.2 Secularly Changing Eccentricity

We are going to derive the relationship between the time
variation of the eccentricity and the mean distance be-
tween a planet and its parent body. This relationship we
shall need in the next section. For an orbit with a aphelion
and perihelion distances Rmax and Rmin, respectively; the
eccentricity of such an orbit is defined:

ε =
Rmax −Rmin

Rmax +Rmin
. (4)

Differentiating this with respect to time and then dividing
the resultant equation by ε, one obtains:

δε

ε
=

δRmax − δRmin

Rmax −Rmin
− Ṙmax + Ṙmin

Rmax +Rmin
. (5)

Now, for low eccentricity orbits as those found in the So-
lar system, if (δRmax ∼ δRmin) := δRmean and (Rmax ∼
Rmin) := Rmean where Rmean is the mean distance of the
test body from the central massive body about which it or-
bits, it follows that:

δε

ε
= −δRmean

Rmean
. (6)

Thus, for expanding orbits, the eccentricity will decrease,
while for contracting orbits, the eccentricity will increase.

3 EINSTEINIAN PLANETARY RECESSION

As is now common knowledge, when Einstein applied his
newly discovered GTR to the problem of the precession of
the perihelion of the planet mercury he obtained that the
trajectory of solar planets must be described by the equa-
tion:

d2u

dϕ2
+ u− GM

J2
=

(
3GM
c2

)
u2, (7)

where again u = 1/r. To obtain a solution to this equation,
we note that the left hand side is the usual Newtonian
equation for the orbit of planets, i.e.:

d2u

dϕ2
+ u− GM

J2
= 0, (8)

and the solution to this equation is: u = (1 + ε cosϕ)/l
where ε is the eccentricity of the orbit as determined from
Newtonian gravitational theory and l = (1+ ε)Rmin where
Rmin is the planet’s distance of closest approach to the
Sun. It follows that:

r =

(
1 + ε

1 + ε cos θ

)
Rmin. (9)

This solution is a good approximate solution to (7) because
the orbit of Mercury is nearly Newtonian. Consequently,
we can rewrite the small term on the right hand side of
(7) as: 3GM(1 + ε cosϕ)2/l2c2; and in so doing, we make
an entirely negligible error – all we do is to obtain an ap-
proximate solution to the exact solution which can only be
accessed via a numerical solution. With this substitution
in (7), we obtain:

d2u

dϕ2
+ u− GM

J2
=

3GM
l2c2

(
1 + 2ε cosϕ+ ε2 cos2 ϕ

)
, (10)

and the solution to this equation is:

u =
1 + ε cosϕ

l
+

3GM
l2c2

[
1 +

ε2

2
+
ε2 cos 2ϕ

6
+ εϕ sinϕ

]
.(11)

Of the additional terms, the first i.e. (1 + ε2/2) is a con-
stant and the second oscillates through two cycles on each
orbit; both these terms are immeasurably small. However,
the last term increases steadily in amplitude with ϕ, and
hence with time, whilst oscillating through one cycle per
orbit; clearly this term is responsible for the precession
of the perihelion. Dropping all unimportant terms we will
have:

u =
1 + ε(cosϕ+ ηϕ sinϕ)

l
=

1 + ε cos(βEϕ)

l
, (12)

where η = 3GM/lc2 is extremely small and βE = 1 + η.
This is the usual way to arrive at a solution to (7). This
solution is barren insofar as the secular changes in the
Earth-Sun and Earth-Moon distance is concerned. What
we shall do in the next section is to demonstrate that (12),
does contain a legitimate and overlooked solution that
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predicts secular changes in say the mean Earth-Sun and
Earth-Moon distance.

Unfortunately, this solution’s predictions do not agree
with experience. What this may mean is that, for the first
time since the GTR was conceived, a legitimate and valid
solution of the GTR disagrees with observational data.
This is an interesting state of affairs. If one believes the
solution (12) vis its predictions on the anomalous perihe-
lion precession of the planet Mercury, then, equally, they
have to believe its solution on the secular changes in the
mean Earth-Sun and Earth-Moon distance.

3.1 Einsteinian Planetary Recession

As already stated, it is a generally held view that Ein-
stein’s GTR in its bare and natural form does not predict
any such phenomenon as the secular increase in the mean
Sun-Planet distance. We show here that the GTR does pre-
dict such phenomenon and much against experience, its
predictions fall far short of explaining this phenomenon.

To arrive at this solution, we revisit the solution of (7)
as given in (12). We know that if a and b are constants and
ϕ is a variable, then, the following holds true for all a, b,
and ϕ:

a cosϕ+ b sinϕ ≡
√
a2 + b2 cos

[
ϕ+ arctan

(
b

a

)]
. (13)

With this in mind, we note that the term (cosϕ+ ηϕ sinϕ)
in (12) has the same form as above, thus, it follows that:

cosϕ+ ηϕ sinϕ ≡
√

1 + η2ϕ2 cos [ϕ+ arctan (ηϕ)] . (14)

Let ∆ϕ = arctan (ηϕ) so that cosϕ + ηϕ sinϕ '√
1 + η2ϕ2 cos (ϕ+ ∆ϕ). From this, it follows that the so-

lution (12) can also be written down as:

1

r
=

1 + ε

New Term︷ ︸︸ ︷√
1 + η2ϕ2 cos(ϕ+ ∆ϕ)

l
. (15)

This can be written more conveniently as:

1

r
=

1 + εeff cos(ϕ+ ∆ϕ)

l
. (16)

where εeff = ε
√

1 + η2ϕ2 is the effective eccentricity. We
should note at this point that the approximations made
leading to (12) assume that ηϕ is small i.e. ηϕ ∼ 0. We will
commit this to mind.

From this fact that εeff = ε
√

1 + η2ϕ2, it is clear that:

δεeff

εeff
=

1

2

η2δϕ2√
1 + η2ϕ2

. (17)

For one revolution, we will have δϕ2 = ±4π2/Torb, where
Torb is the period of orbit of the test body about the parent
body about which it orbits. The ± sign comes in as a result
of the fact that depending on the direction of rotation, ϕ
either increases of decreases. From a small ηϕ, we will
have 1 + η2ϕ2 ' 1. Putting all this together, (17) reduces
to:

δεeff

εeff
= ±2

(
3πGM
c2Rorb

)2
1

Torb
. (18)

Combining this result with (6), we will have:

δRmean

Rmean
= ±2

(
3πGM
c2Rorb

)2
1

Torb
. (19)

We will not apply this result to the recession of the Earth-
Moon system from the Sun and as-well the recession of the
Moon from the Earth.

3.1.1 Earth-Moon Recession

Substituting all the relevant values for the Sun-(Earth-
Moon) system in (19), one finds that this system must be
drifting at a paltry rate:

δAU = 2.60± 0.05 mm/yr. (20)

This value is about 2.5% of the measured result. Clearly,
there is no agreement here with experience. However, de-
spite being smaller than expected, it is a significant re-
sult when compared to what is actually measured. Per-
haps there is need to refine these measurements and have
them confirmed by a number of independent group of as-
tronomers.

3.1.2 Moon Recession

Again, substituting all the relevant values for the Earth-
Moon system into (19), one finds that this system must be
drifting at a rate:

δ 〈Rem〉 = (1.20± 0.05)× 10−7 mm/yr. (21)

Compared to the measured value of 38.247 ± 0.004 mm/yr
(Williams and Boggs 2009; Williams et al. 2004), this value
(21) is not only smaller than the measured result, it is
compatible with zero. Clearly, there is no agreement here
with experience.

However, we must realise that the conservation of to-
tal angular momentum (i.e., orbital angular momentum
plus spin angular momentum of the Earth-Moon system)
requires that the very recession of the Earth-Moon sys-
tem from the Sun must lead to a recession of the Moon
from the Earth as demonstrated e.g. in Nyambuya (2014).
This means that the curvature of spacetime around the
Earth may be too small to cause any significant recession
of the Moon from the Earth and this observed recession is
in-actual fact caused by the curvature of spacetime around
the Sun which affects the Earth-Moon system.

4 DISCUSSION AND CONCLUSION

Because of the impressive agreement with a plethora of
observational data to which it has been submitted to (see
e.g. Will 2009, 2006), the predictions of the GTR are usu-
ally held with great reverence, as very accurate, so much
that the GTR is now such an embellished theory that it
is held as a touchstone theory of gravitation. Even at a
minute-level as in the present case, finding predictions of
the GTR that run contrary to experience is very impor-
tant as a tool for a rigorous scrutiny of the theory. Be that
it may, important our result is, we do not believe that this
result that we have unearthed here calls for a revision of
the GTR let alone threatens its dominance.

What this result really calls for is for a closer scrutiny
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of both the observational result and as-well of the GTR.
A scrutiny of the GTR must be conducted with in mind
the idea of finding better models within or even outside
of the domains of the GTR. The reason for this is sim-
ple. We here have a solution that unprecedentedly gives
excellent predictions for the perihelion precession of So-
lar planets, especially for the planet Mercury and we have
this same solution making predictions about the recession
of test bodies and this time, its predictions run-afloat with
physically and natural reality. Unless off-cause we have
committed a fatal error in our analysis, from a purely logi-
cal standpoint, this state of affairs is at any rate, not good
news.

Amongst others, it would mean that if the GTR is
correct – as most physicists strongly believe; even on its
predictions of the recession of test bodies, then, the cur-
rently measured phenomenon of planetary recession may
not be a gravitational phenomenon, but something else
other than a gravitational driven phenomenon. There are
off-cause some researchers that think this maybe the case,
that the recession of the Earth-Moon and the Moon may
not be a gravitational phenomenon. As such, the result ob-
taining in present would support their assertion. It should
be stated that, at present, there has not been any calcula-
tion from with the confines of the GTR that would be used
to rule out the idea that this test body recessional phe-
nomenon is not a gravitational phenomenon.

Conclusion

From what we have presented herein, we here make the
following conclusion:

(i) It is pristine clear that Einstein’s GTR does predict
the secular drift of test bodies from the parent body about
which they orbit and in the case of the Solar system,
we have shown that these predictions are not in joyful
tandem with physical and natural reality – i.e., the
measured recession of the Earth-Moon system from and
Sun is only 2.5% of the observed value.

(ii) In the case of the Moon’s recession from the Earth, the
GTR fails to account for the observed 38.247±0.004 mm/yr
measured recession. This does not mean the GTR is
wrong, but one needs – in the light of the recession of
the Earth-Moon system from the Sun; to apply the con-
servation of total angular momentum (orbital + spin) to
the Earth-Moon system. Therefore, it is highly likely that
the recession of the Moon is not caused by the same effect
causing the recession of the Earth-Moon system from the
Sun but is a consequence of the conservation of total an-
gular momentum when applied to recession of the Earth-
Moon system.

This paper has been typeset from a TEX/ LATEX file pre-
pared by the author.
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