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Abstract

The dichotomous cosmology is an alternative to the expanding Universe theory, and consists of

a static matter Universe, where cosmological redshifts are explained by a tired-light model with an

expanding luminous world. In this model the Hubble constant is also the photon energy decay rate,

and the luminous world is expanding at a constant rate as in de Sitter cosmology for an empty

Universe. The present model explains both the luminosity distance versus redshift relationship

of supernovae Ia, and ageing of spectra observed with the stretching of supernovae light curves.

Furthermore, it is consistent with a radiation energy density factor (1 + z)4 inferred from the

Cosmic Microwave Background Radiation.

I. INTRODUCTION

Our model is inspired by the tired-light

theory that was first proposed by [1] to ex-

plain cosmological redshifts, which has been

subject to other investigations [2–4]. Gener-

ally, tired-light models describe a static Uni-

verse; however, in the present model only the

matter component of the Universe is static,

and the luminous component is expanding.

The idea of a static Universe was proposed

in Einstein’s cosmological model [5], which is

the first of the relativist cosmologies. Ein-

stein had to introduce a cosmological con-

stant to make his Universe static; otherwise

it would have collapsed due to the gravita-

tional field. Einstein came to the conclusion

that his cosmology describes a spatially finite

spherical Universe, as he encountered a de-

generacy of coefficient gµν at infinity. Also,

Poisson’s equation, ∇2Φ = 4πGρ, where Φ

is the scalar potential and ρ the matter den-

sity, played an important role in Einstein’s

cosmology. As Einstein’s wrote in [5]: ”It is

well known that Newton’s limiting condition

of the constant limit for Φ at spatial infinity

leads to the view that the density of matter

becomes zero at infinity.”

Let us do a simple thought experiment for

inertial bodies in an infinite Universe that is

isotropic and has no edge in Newton’s ab-

solute Euclidean space. Imagine you are a
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galaxy, there is a galaxy on your left and on

your right, and both exert a gravitional force

of same magnitude on you; the two forces

would offset and you would not move from

your position. From this view, based on the

principle of inertia in an absolute Euclidean

space, each galaxy in an isotropic Universe

would be in this position of equilibrium, and

the Universe would be static overall. How-

ever, for galaxy clusters where the cluster has

an edge, we would expect that the galaxies

will end up merging.

De Sitter introduced the concept of ”rela-

tivity of inertia” based on his analysis of the

degeneracy of the gµν at infinity in Einstein

cosmology [8]. To overcome this problem,

de Sitter found a solution by extending Ein-

stein’s cosmology in three-dimensional space

to the four dimensional Minkowski space-

time – a world of hyperboloid shape – and

with no matter. De Sitter’s cosmological

model is a solution to Einstein’s field equa-

tion applied to a vacuum, with a positive

vacuum energy density, and describes an ex-

panding Universe. Contemporary cosmolog-

ical models based on general relativity such

as the ΛCDM assume a uniform distribution

of matter in space, but the effect of the de-

formation of space-time due to massive bod-

ies may be preponderant only locally, hence

this hypothesis may not be valid. In spe-

cial relativity, light moves along the geodesics

of the Minkowski space-time, whereas mat-

ter is confined in the three-dimensional Eu-

clidean space. From the equivalence princi-

ple in curved space-time, an inertial parti-

cle and a pulse of light both follow the same

geodesic. Contrary to Newtonian physics

which describe interactions between bodies,

general relativity is often employed to de-

scribe the dynamics of light, such as the de-

flection of light, or the event horizon of black

holes. In contrast, the theory of general rel-

ativity does not establish such a dichotomy

beteween matter and light; based on the weak

field approximation of general relativity [9],

Newton’s laws are a good approximation of

the properties of physical space only when

the gravitational field is weak. As a matter

of fact, in the present cosmological model,

the luminous portion of the Universe is ex-

panding at a constant rate as in the de Sitter

cosmology in a flat Universe; this is also the

condition required in order for the model to

match the luminosity distance versus redshift

relationship of supernovae Ia. The dichoto-

mous cosmology differs in the sense that it is

the light wavelength that gets stretched due

to a tired-light process and not space itself

that expands.

The present model describes the dynamics

of light using two transformations. First, we

allow a time-varying light wavefront in or-

der to accomodate the stretching of light’s
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wavelength when photons lose energy. Sec-

ond, a time dilation is incorporated into the

model in order for the light wavefront to stay

at the celerity of light. A consequence of this

model is the ”time-dilation effect” (a.k.a. the

ageing of spectra) observed for supernovae

light curves [10] with a stretching of the light

curves by a factor (1 + z). In addition, the

expanding luminous world is consistent with

the radiation energy density factor (1 + z)4

inferred from the CMBR (Cosmic Microwave

Background Radiation).

II. LIGHT AGEING MODEL

In the tired-light cosmology where red-

shifts are explained by a decay of the pho-

ton energy, the following equation replaces

the cosmological redshift equation of the ex-

panding Universe theory:

1 + z =
λobs
λemit

=
E(z)

E0

, (1)

where λobs and λemit are the observed and

emitted light wavelength respectively, E0 the

photon energy at reception, and E(z) the

photon energy when emitted at redshift z.

A simple law of decay of the photon energy

is considered:

Ė

E
= −H , (2)

where E is the photon energy, and H the

decay of photon energy. From now on we

assume that the decay rate of photon energy

is constant over time and is always equal to

H0.

By integrating (2) we get:

E(t) = E0 exp(−H0 t) , (3)

where t is the time which is equal to zero

time of observation, and E0 the photon en-

ergy at reception.

Let us apply the following change of coor-

dinates T = t0− t, where T is the light travel

time when looking back in the past and to the

present time. Hence, (3) can be rewritten as

follows:

E(T ) = E0 exp(H0 T ) , (4)

where T is the light travel time when look-

ing back in the past from the earth.

It is shown below that a constant decay

rate for the photon energy conforms to the su-

pernovae luminosity distance versus redshift

relationship.

III. LIGHT TRAVEL TIME WITH RE-

SPECT TO THE POINT OF EMISSION

AND LUMINOSITY DISTANCE

Here, we consider a set of two transfor-

mations to describe the photon energy decay.

During this process the number of light wave

cycles is constant, but due to the stretch-

ing of light wavelengths when photons lose
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energy we allow a superluminal light wave-

front, resulting in an expansion. Then a time

dilation is applied in order to maintain the

speed of light at the celerity with respect to

the emission point. The velocity of the light

wavefront before time dilation is expressed as

follows:

v(t) = c
Eemit
E(t)

, (5)

where Eemit is the photon energy at emis-

sion, E(t) the photon energy at time t, and c

the celerity of light. We note that in (5) the

light wavefront is at the speed of light at the

point of emission.

In order to maintain the light wavefront at

the speed of light with respect to the emission

point, the following time dilation is applied:

δt′

δt
=
Eemit
E(t)

, (6)

where δt′
δt

is a time scale factor between

time t′ and time t.

The light travel time with respect to the

point of emission is:

T ′ =
∫ 0

−T

δt′

δt
dt =

∫ 0

−T

Eemit
E(t)

dt , (7)

where T ′ is the light travel time with re-

spect to the point of emission, and T the light

travel time with time-varying speed of light.

Introducing (3) into (7) we get:

T ′ =
Eemit
E0

∫ 0

−T
exp(H0t)dt . (8)

Integrating (8) we obtain:

T ′ =
Eemit
E0

1

H0

(1− exp(−H0T )) . (9)

By substitution of (4) into (9), we get:

T ′ =
Eemit
E0

1

H0

(
1− E0

Eemit

)
. (10)

Introducing (1) into (10) we get:

T ′ =
z

H0

. (11)

After the time dilation (6), the light wave-

front is at the speed of light, hence the lumi-

nosity distance is expressed as follows:

drL
dT ′

= c . (12)

By integrating (12) between 0 and T ′ we

get the following equation:

rL(T ′) = cT ′ . (13)

By combining (11) and (13) we get the fol-

lowing relationship between luminosity dis-

tance and redshifts:

rL =
c

H0

z . (14)

Ultimately, we find the linear relationship

between luminosity distance and redshifts

which is observed in supernovae Ia data. A

rectilinear plot of the luminosity distance ver-

sus redshift of slope of 14.65 where the lumi-

nosity distance is expressed in Gly (billion
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light years) was obtained in [11] using the

redshift adjusted distance modulus [12] which

is based on photon flux. The corresponding

decay rate of photon energy which is the in-

verse of the slope from (11) is equal to H0 =

2.16× 10−18 sec−1 or 67.3 kms−1Mpc−1.

To compute the luminosity distance, the

light travel time with respect to the emis-

sion point must be used. In the luminosity

distance the light wavefront is maintained at

the speed of light with respect to the emis-

sion point where the time dilation is equal to

unity. For an indication of distances of an

object with respect to the observer, the light

travel time with respect to the point of ob-

servation is used for which the time dilation

is equal to unity.

IV. LIGHT TRAVEL TIME WITH RE-

SPECT TO THE OBSERVER

The light travel time measured with re-

spect to the observer is the light travel time

obtained with a time dilation equal to unity

at the point of observation. In this scenario,

the velocity of the light wavefront before time

dilation is as follows:

v(t) = c
E0

E(t)
, (15)

Thus, the time-dilation effect is:

δt0
δt

=
E0

E(t)
, (16)

where δt0
δt

is a time scale factor between

present time t0 and time t.

Therefore, the light travel time with re-

spect to the observer is:

T0 =
∫ 0

−T

δt0
δt
dt =

∫ 0

−T

E0

E(t)
dt , (17)

where T0 is the light travel time with re-

spect to the point of observation, and T the

light travel time with time-varying speed of

light.

Introducing (3) into (17) and integrating

we get:

T0 =
1

H0

(1− exp(−H0T )) , (18)

Introducing (4) into (18) we get:

T0 =
1

H0

(
1− E0

Eemit

)
. (19)

Finally, introducing (1) into (19):

T0 =
1

H0

z

(1 + z)
. (20)

We note that in (20) when redshift tends

to infinity, the light travel time with respect

to the observer converges towards 1/H0. This

is the farthest distance from which light can

reach an observer in the Universe. There

is a squeezing effect by the factor (1+z) for

the light travel time when measured with re-

spect to the point of observation instead of
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the point of emission. This squeezing of light

travel time is due to the fact that time dila-

tion is relative to the reference point in time

from which the light wavefront is measured.

V. EQUIVALENCE IN THE DE SIT-

TER COSMOLOGY FOR AN EXPAND-

ING LUMINOUS WORLD

The de Sitter cosmology is dominated by

a repulsive cosmological constant Λ which

yields an expansion rate of the Universe H

that does not vary over time.

In this cosmology, the luminosity distance

is calculated as follows:

drL
dt

= c+H rL (21)

with boundary condition rL = 0 at t = 0

. Where rL is the luminosity distance, t the

time at the light wavefront of the supernovae

with reference to the emission time, and H

the Hubble constant.

By integrating (21) between 0 and T , we

get:

rL =
c

H0

(exp(H T )− 1) . (22)

Because da
dt

= Ha, we get dt = da
H a

, where

a is the scale factor. In addition, the cos-

mological redshift equation (1 + z) = 1
a

es-

tablishes the relationship between z and a,

hence the light travel time versus redshift is

as follows:

T =
∫ 1

1/(1+z)

da

H a
=

1

H
ln(1 + z) . (23)

Eqs. (22) and (23) yield:

rL =
c

H
z , (24)

which is the same equation than (14).

A measure of distance is obtained by cal-

culating the corresponding the distance if

there were no expansion of the Universe, that

we call the Euclidean distance. Let us intro-

duce y this distance measure, hence:

dy

dt
= −c+Hy . (25)

By setting time zero at a reference Tb in

the past, we get t = Tb − T ; therefore, dt =

−dT . Hence, (25) becomes:

dy

dT
= c−Hy , (26)

with boundary condition y(T = 0) = 0.

Integrating (26) between 0 and T we get:

y =
c

H
(1− exp(−HT )) . (27)

By substitution of (23) into (27) we get:

y =
c

H

z

(1 + z)
, (28)

which is the same equation than (20)

where T0 = y
c
.

We have shown that de Sitter expanding

Universe is equivalent to a our light ageing
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model. In the de Sitter cosmology, the cos-

mological constant Λ corresponding to a pos-

itive vacuum energy density sets the expan-

sion rate H =
√

1
3
Λ, for a flat Universe, which

is the photon energy decay rate of light trav-

eling in vacuum.

VI. RADIATION DENSITY AND THE

CMBR

The CMBR was a prediction of the work

of George Gamow, Ralph Alpher, Hans Bethe

and Robert Herman on the Big Bang nucle-

osynthesis [13, 14], and was discovered later

in 1964 by Penzias and Wilson. It is believed

that the CMBR is the remnant radiation of

a primordial Universe made of plasma, and

that galaxies are formed by gravitational col-

lapse of this plasma phase. Here, we inves-

tigate a requirement for the CMBR to origi-

nate from a hot plasma.

From Wien’s displacement law for thermal

radiation from a black body, there is an in-

verse relationship between the wavelength of

the peak of the emission spectrum and its

temperature is expressed as follows:

λpT = b , (29)

where λp is the peak wavelength and T the

absolute temperature.

From this law we get:

λobsT0 = λemitTemit , (30)

where T0 is the temperature of the black

body spectrum today, which is 2.7 K for the

CMBR, and Temit the temperature of the

emitting plasma.

Hence:

Temit = T0
λobs
λemit

= T0(1 + z) . (31)

From the Stefan-Boltzmann’s law, the en-

ergy flux radiating from a black body is as

follows:

Flux = σT 4 , (32)

where σ is the Stefan-Boltzmann constant,

and T the temperature of the black body.

Combining (31) and (32), we find that the

energy flux of the source of a black body that

is redshifted is of order (1 + z)4. Hence, the

energy flux of the emitting black body must

be diluted by a factor (1 + z)4. For an ex-

panding luminous phase, the photon flux is

diluted by a factor (1 + z)3. Because pho-

tons lose energy as the light wavelength is

stretched, another factor (1 + z) must be ac-

counted for, and the resulting energy flux is

diluted by a factor (1 + z)4. This is the re-

quired condition for the redshifted spectrum

of a black body to be a black body spectrum

itself. It appears that our cosmology with an
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expanding luminous world is consistent with

the radiation energy density inferred from the

CMBR.

VII. CONCLUSION

The dichotomous cosmology is inspired by

the tired-light model and consists of a static

material world and an expanding luminous

world. In this model the luminous world is

expanding at a constant rate as in de Sit-

ter cosmology. The model consists of two

transformations, respectively: (1) to compen-

sate for the stretching of the light’s wave-

length when the photon loses energy, we allow

a time-varying light wavefront; (2) a time-

dilation effect is incorporated into the model

in order for the light wavefront to stay at the

speed of light. This model explains both the

luminosity distance versus redshift relation-

ship of supernovae Ia, and ”time-dilation ef-

fect” observed with the stretching of super-

novae light curves. Furthermore, it is con-

sistent with a radiation energy density fac-

tor (1 + z)4 inferred from the CMBR. This

alternative cosmology only differs from the

expanding Universe theory from the view-

point that it is the light wavelength that is

stretched due to a tired light process and not

space itself that expands.
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