ON SMARANDACHE SIMPLE CONTINUED FRACTIONS

Charles Ashbacher¹

Charles Ashbacher Technologies, Box 294
119 Northwood Drive, Hiawatha, IA 52233, USA

and

Maohua Le²

Department of Mathematics, Zhanjiang Normal College
Zhanjiang, Guangdong, P.R.China.

Abstract. Let \(A = \{a_n\}_{n=1}^{\infty} \) be a Smarandache type sequence. In this paper we show that if \(A \) is a positive integer sequence, then the simple continued fraction \([a_1, a_2, \ldots]\) is convergent.

Let \(A = \{a_n\}_{n=1}^{\infty} \) be a Smarandache type sequence. Then

The simple continued fraction

\[
\frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}
\]

(1)

is called the Smarandache simple continued fraction associated \(A \) (See [1]). By the usually symbol (see [2, Notion 10.1]), the continued fraction (1) can be written as \([a_1, a_2, a_3, \ldots]\).

Recently, Castillo [1] posed the following question:

Question. Is the continued fraction (1) convergent? In particular, is the continued fraction \([1, 12, 123, \ldots]\) convergent?

In this paper we give a positive answer as follows.

Theorem. If \(A \) is a positive integer sequence, then the

¹Editor's Note (M.L.Perez): This article has been done by each of the above authors independently.
continued fraction \((1) \) is convergent.

Proof. If \(A \) is a positive integer sequence, then \((1) \) is a usually simple continued fraction and its quotient are positive integers. Therefore, by [2,Theorem165], it is convergent. The Theorem is proved.

On applying [2, Theorems 165 and 176], we get a further result immediately.

Theorem 2. If \(A \) is an infinite positive integer sequence, then \((1) \) is equal to an irrational number \(\alpha \). Further, if \(A \) is not periodic, then \(\alpha \) is not an algebraic number of degree two.

References