ON SMARANDACHE SIMPLE CONTINUED FRACTIONS

Charles Ashbacher¹

Charles Ashbacher Technologies, Box 294 119 Northwood Drive, Hiawatha, IA 52233, USA

and

Maohua Le¹

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let $A = \{a_n\}_{n=1}$ be a Smarandache type sequence. In this paper we show that if A is a positive integer sequence, then the simple continued fraction $[a_1, a_2, ...]$ is convergent.

Let $A = \{a_n\}_{n=1}$ be a Smarandache type sequence. Then The simple continued friction

is called the Smarandache simple continued fraction associated A (See [1]). By the usually symbol (see [2, Notion 10.1]), the continued frction (1) can be written as [a 1, a 2, a 3, ...]. Recently, Castillo [1] posed the following guestion:
Question. Is the continued fraction (1) convergent? In particular, is the continued fraction [1, 12, 123, ...] convergent? In this paper we give a positive answer as follows. Theorem. If A is a positive integer sequence, then the

¹Editor's Note (M.L.Perez): This article has been done by each of the above authors independently.

continued fraction (1) is convergent.

Proof. If A is a positive integer sequence, then (1) is a usually simple continued fraction and its quotient are positive integers. Therefore, by [2,Theorem165], it is convergent. The Theorem is proved.

On applying [2, Theorems 165 and 176], we get a further result immediately.

Theorem 2. If A is an infinite positive integer sequence, then (1) is equal to an irrational number α . Further, if A is not periodic, then α is not an algebraic number of degree two.

References

- 1. J.Castillo, Smarandache continued fractions, Smarandache Notions J., to appear. Vol. 9, No. 1-2, 40-42, 1998.
- 2. G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1938.