i.e. $SP(n) = \min\{k : n | k^k\}$ is the case of $f(k) = k^k$. We note that the Definitions 39 and 40 give the particular case of S_t for t = 2 and t = 3.

In our paper we have introduced also the following "dual" of F_f . Let $g: \mathbb{N}^* \to \mathbb{N}^*$ be a given arithmetical function, which satisfies the following assumption:

 (P_3) For each $n \ge 1$ there exists $k \ge 1$ such that g(k)|n.

Let $G_g: \mathbb{N}^* \to \mathbb{N}^*$ defined by

$$G_g(n) = \max\{k \in \mathbb{N}^* : g(k)|n\}.$$
(2)

Since $k^t|n, k!!|n, k^k|n, \frac{k(k+1)}{2}|n$ all are verified for k = 1, property (P_3) is satisfied, so we can define the following duals of the above considered functions:

$$S_{t}^{*}(n) = \max\{k : k^{t}|n\};$$

$$SDF^{*}(n) = \max\{k : k!!|n\};$$

$$SP^{*}(n) = \max\{k : k^{k}|n\};$$

$$Z^{*}(n) = \max\left\{k : \frac{k(k+1)}{2}|n\right\}.$$

These functions are particular cases of (2), and they could deserve a further study, as well.

References

- F. Smarandache, Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, edited by M.L. Perez, Xiquan Publ. House (USA), 2000.
- [2] J. Sándor, On certain generalization of the Smarandache function, Notes Number Theory Discrete Mathematics, 5(1999), No.2, 41-51.
- [3] J. Sándor, On certain generalizations of the Smarandache function. Smarandache Notions Journal. 11(2000). No.1-2-3, 202-212.

SMARANDACHE STAR (STIRLING) DERIVED SEQUENCES

Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad,-380005 INDIA.

Let b_1, b_2, b_3, \ldots be a sequence say S_b the base sequence. Then the Smarandache star derived sequence S_d using the following star triangle {ref. [1]} is defined

1 1 1 1 3 1 7 6 1 1 15 25 10 1 1 . . . as follows $\mathbf{d}_{i} = \mathbf{b}_{i}$ $d_2 = b_1 + b_2$ $d_3 = b_1 + 3b_2 + b_3$ $d_4 = b_1 + 7b_2 + 6b_3 + b_4$ n $d_{n+1} = \sum_{k=0}^{\infty} a_{(m,r)} . b_{k+1}$ where $a_{(m,r)}$ is given by $a_{(m,r)} = (1/r!) \sum_{t=0}^{r-t} (-1)^{r-t} \cdot C_t \cdot t^m$, Ref. [1] e.g. (1) If the base sequence S_b is 1, 1, 1, ... then the derived sequence S_d is 1, 2, 5, 15, 52, ..., i.e. the sequence of Bell numbers. $T_n = B_n$ (2) $S_b \longrightarrow 1, 2, 3, 4, \ldots$ then $S_d \longrightarrow 1, 3, 10, 37, \dots$, we have $T_n = B_{n+1} - B_n$. Ref [1]

The Significance of the above transformation will be clear when we consider the inverse transformation. It is evident that the star triangle is nothing but the **Stirling Numbers of the Second kind (Ref. [2]).** Consider the inverse Transformation : Given the Smarandache Star Derived Sequence S_d , to retrieve the original base sequence S_b . We get b_k for k = 1, 2, 3, 4 etc. as follows ; $b_1 = d_1$ $b_2 = -d_1 + d_2$ $b_3 = 2d_1 - 3d_2 + d_3$

 $b_4 = -6d_1 + 11d_2 - 6d_3 + d_4$

$$b_5 = 24d_1 - 50d_2 + 35d_3 - 10d_4 + d_5$$

we notice that the triangle of coefficients is

1

-1 1

- 2 -3 1
- -6 11 -6 1

24 -50 35 -10 1

Which are nothing but the Stirling numbers of the first kind.

Some of the properties are

(1) The first column numbers are (-1)^{r-1}.(r-1)!, where r is the row number.

- 2. Sum of the numbers of each row is zero.
- 3. Sum of the absolute values of the terms in the rth row = r!.

More properties can be found in Ref. [2].

This provides us with a relationship between the Stirling numbers of the first kind and that of the second kind, which can be better expressed in the form of a matrix. Let $[b_{1,k}]_{1xB}$ be the row matrix of the base sequence.

 $[d_{1,k}]_{1x_0}$ be the row matrix of the derived sequence.

 $[S_{j,k}]_{axa}$ be a square matrix of order n in which $s_{j,k}$ is the kth number in the jth row of the star triangle (array of the Stirling numbers of the second kind, Ref. [2]). Then we have

 $[T_{j,k}]_{nxn}$ be a square matrix of order n in which $t_{j,k}$ is the kth number in the jth row of the array of the Stirling numbers of the first kind, Ref. [2]). Then we have $[b_{1,k}]_{1xn} * [S_{j,k}]_{nxn} = [d_{1,k}]_{1xn}$

 $[\mathbf{d}_{1,k}]_{1xa} * [\mathbf{T}_{j,k}]_{nxa} = [\mathbf{b}_{1,k}]_{1xa}$

Which suggests that $[T_{j,k}]'_{nxn}$ is the transpose of the inverse of the transpose of the Matrix $[S_{j,k}]'_{nxn}$.

The proof of the above proposition is inherent in theorem 10.1 of ref. [3]. Readers can try proofs by a combinatorial approach or otherwise.

REFERENCES:

[1] "Amarnath Murthy", 'Properties of the Smarandache Star Triangle', SNJ, Vol. 11, No. 1-2-3, 2000.

[2] "V. Krishnamurthy", 'COMBINATORICS Theory and applications', East West Press Private Limited, 1985.

[3] " Amarnath Murthy", 'Miscellaneous results and theorems on Smarandache Factor Partitions.', SNJ, Vol. 11, No. 1-2-3, 2000.