A SUM CONCERNING SEQUENCES

Maohua Le

Abstract. Let $A=\{a(n)\}_{n=1}^{\infty}$ be a sequence of positive integers. In this paper we prove that if the trailing digit of $a(n)$ is not zero for any n, then sum of $a(n)/\text{Rev}(a(n))$ is divergent.

Key words. decimal number, reverse, sequence of positive integers.

Let $a=a_{m}\ldots a_{2}a_{1}$ be a decimal number. Then the decimal number $a_{1}a_{2}\ldots a_{m}$ is called the reverse of a and denote by $\text{Rev}(a)$. For example, if $a=123$, then $\text{Rev}(a)=321$. Let $S=\{s(n)\}_{n=1}^{\infty}$ be a certain Smarandache sequence such that $s(n)>0$ for any positive integer n. In [1], Russo that proposed to study the limit

$$L(s)=\lim_{N \to \infty} \sum_{n=1}^{N} \frac{s(n)}{\text{Rev}(s(n))}.$$ (1)

In this paper we prove a general result as follows.

Theorem. Let $A=\{a(n)\}_{n=1}^{\infty}$ be a sequence of positive integers if the trailing digit of $a(n)$ is not zero for any n, then the sum of $a(n)/\text{Rev}(a(n))$ is divergent.

Proof. Let $a(n)=a_{m}\ldots a_{2}a_{1}$, where $a_{1} \neq 0$. Then we have

$$\text{Rev}(a(n))=a_{1}a_{2}\ldots a_{m}. \quad (2)$$

We see from (2) that

$$\frac{a(n)}{\text{Rev}(a(n))} > \frac{1}{10}. \quad (3)$$

Thus, by (3), the sum of $a(n)/\text{Rev}(a(n))$ is divergent. The
theorem is proved.

References

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA