ON THE SMARANDACHE UNIFORM SEQUENCES

Maohua Le

Abstract. Let \(t \) be a positive integer with \(t > 1 \). In this paper we give a necessary and sufficient condition for \(t \) to have the Smarandache uniform sequence.

Key words. Smarandache uniform sequence, decimal notation.

Let \(t \) be a positive integer with \(t > 1 \). If a sequence contains all multiples of \(t \) written with same digit in base 10, then it is called the Smarandache uniform sequence of \(t \). In [2], Smith showed that such sequence may be empty for some \(t \).

In this paper we give a necessary and sufficient condition for \(t \) to have the Smarandache uniform sequence. Clearly, the positive integer \(t \) can be expressed as

\[
t = 2^a 5^b c,
\]

where \(a, b \) are nonnegative integers, \(c \) is a positive integer satisfying \(\gcd(10, c) = 1 \). We prove the following result.

Theorem. \(t \) has the Smarandache uniform sequence if and only if

\[
(a, b) = (0, 0), (1, 0), (2, 0), (3, 0), (0, 1).
\]

Proof. Clearly, \(t \) has the Smarandache uniform sequence if and only if there exists a multiple \(m \) of \(t \) such that

\[
m = d d \ldots d, \ 1 \leq d \leq 9.
\]
By (1) and (3), we get

\[ts = 2^q b \frac{10^r - 1}{10 - 1}, \]

where \(r, s \) are positive integers. From (4), we obtain

\[2^q b c s = d (10^r - 1). \]

Since \(\gcd (2^q b, 10^r - 1) = 1 \), we see from (5) that \(d \) is a multiple of \(2^q b \). Therefore, since \(1 \leq d \leq 9 \), we obtain the condition (2).

On the other hand, since \(\gcd (10, q) = 1 \), by Fermat-Euler theorem (see [1, Theorem 72]), there exists a positive integer \(r \) such that \(10^r - 1 \) is a multiple of \(q \). Thus, if (2) holds, then \(t \) has Smarandache uniform sequence. The theorem is proved.

References

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA