ON THE THIRD SMARANDACHE CONJECTURE ABOUT PRIMES

Maohua Le

Abstract. In this paper we basically verify the third Smarandache conjecture on prime.

Key words. Smarandache third conjecture, prime, gap.

For any positive integer \(n \), let \(P(n) \) be the \(n \)-th prime. Let \(k \) be a positive integer with \(k > 1 \), and let

(1) \[c(n,k) = (P(n+1))^{1/k} - (P(n))^{1/k} \]

Smarandache [3] has been conjectured that

(2) \[c(n,k) < \frac{2}{k} \]

In [2], Russo verified this conjecture for \(P(n) < 2^{25} \) and \(2 \leq k \leq 10 \). In this paper we prove a general result as follows.

Theorem. If \(k > 2 \) and \(n > C \), where \(C \) is an effectively computable absolute constant, then the inequality (2) holds.

Proof. Since \(k > 2 \), we get from (1) that

(3) \[C(n,k) = \frac{P(n+1) - P(n)}{(P(n+1))^{(k-1)/k} + (P(n+1))^{(k-2)/k}(P(n))^{1/k} + \ldots + (P(n))^{1/k}} \]

By the result of [1], we have

(4) \[P(n+1) - P(n) < C(a)(P(n))^{1/2} + a \]

for any positive number \(a \), where \(C(a) \) is an effectively
computable constant depending on \(a \). Put \(a = 1/20 \). Since \(k \geq 3 \) and \((k-1)/k \geq 2/3 \), we see from (3) and (4) that

\[
C(n,k) < \frac{2 C(1/20)}{k \left(2(P(n))^{1/15} \right)}.
\]

Since \(C(1/20) \) is an effectively computable absolute constant, if \(n > C \), then \(2(P(n))^{1/15} > C(1/20) \). Thus, by (5), the inequality (2) holds. The theorem is proved.

References

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA