ON SMARANDACHE CONCATENATED SEQUENCES I: PRIME POWER SEQUENCES

Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. Let \(A = \{p^n\}_{n=1}^\infty \), where \(p \) is a prime. Let \(C(A) = \{c_n\} \) denote the Smarandache concatenated sequence of \(A \). In this paper we prove that if \(n > 1 \) and \(p \neq 2 \) or 5, then \(c_n \) does not belong to \(A \).

Let \(A = \{a_n\}_{n=1}^\infty \) be an infinite increasing sequence of positive integers. For any positive integer \(n \), let \(a_n \) be the decimal integer such that

\[
1 \leq a_n \leq 9 \quad (1)
\]

Then sequence \(C(A) = \{c_n\}_{n=1}^\infty \) is called the Smarandache concatenated sequence of \(A \). In [1], Marimutha posed a general question as follows:

Question. How many terms of \(C(A) \) belong to \(A \)?

In this serial paper, we shall consider some interesting cases for the above question. In this part we prove the following result.

Theorem. Let \(A = \{p^n\}_{n=1}^\infty \), where \(p \) is a prime. If \(n > 1 \) and \(p \neq 2 \) or 5, then \(c_n \) does not belong to \(A \).

Proof. For any positive integer \(n \), let \(d(a) \) denote the figure number of \(a \) in the decimal system.

If \(A = \{p^n\}_{n=1}^\infty \), then from (1) we get

\[
2)c_n = p^n + p^{n-1} \times 10^{d(p^n)} + \ldots + p^1 \times 10^{d(p^2)} + p \times 10^{d(p^1)} + \ldots + p^{d(p)}
\]

Further, if \(c_n \) belongs to \(A \), then we have

\[
3)c_n = p^m,
\]

where \(m \) is a positive integer with \(m \geq n \). It implies that

\[
4)p^2 \mid c_n,
\]

if \(n > 1 \). However, if \(p \neq 2 \) or 5, then \(p \neq 10^k \) for any positive
integer k. Therefore, by (2), we get

\[(5) \quad p^2 \mid c_n,\]

which contradicts (4). Thus, c_n does not belong to A in this case. The theorem is proved.

Reference