The Smarandache Sequence Inventory

Compiled by Henry Ibstedt, July 1997

A large number of sequences which originate from F. Smarandache or are of similar nature appear scattered in various notes and papers. This is an attempt bring this together and make some notes on the state of the art of work done on these sequences. The inventory is most certainly not exhaustive. The sequences have been identified in the following sources where <u>Doc. No.</u> refers the list of Smarandache Documents compiled by the author. Nearly all of the sequences listed below are also found in Doc. No. 7: *Some Notions and Questions in Number Theory*, C. Dumitrescu and V. Seleacu, with, sometimes, more explicit definitions than those given below. Since this is also the most comprehensive list of Smarandache Sequences the paragraph number where each sequence is found in this document is included in a special column "D/S No"

Source	Seq. No.	Doc. No.
Numeralogy or Properties of Numbers	1-37	1
Proposed Problems, Numerical Sequences	38-46	2
A Set of Conjectures on Smarandache Sequences	47-57	16
Smarandache's Periodic Sequences	58-61	17
Only Problems, Not Solutions	62-118	4
Some Notions and Questions in Number Theory	119-133	7

Classification of sequences into eight different types (T):

The classification has been done according to what the author has found to be the dominant behaviour of the sequence in question. It is neither exclusive nor absolutely conclusive.

<u>Recursive</u> :	I R	$t_n=f(t_{n-1})$, iterative, i.e. t_n is a function of t_{n-1} only. $t_n=f(t_i,t_j,)$, where i,j <n, a="" and="" at="" f="" function="" is="" i≠j="" least<br="" of="">two variables.</n,>
Non-Recursive:	F	t _k =f(n), where f(n) may not be defined for all n, hence k≤n.
<u>Concatenation</u>	С	Concatenation.
Elimination:	E	All numbers greater than a given number and with a certain property are eliminated.
<u>Arrangement:</u>	A	Sequence created by arranging numbers in a prescribed way.
Mixed operations:	М	Operations defined on one set (not necessarily N) to create another set.
Permutation:	Р	Permutation applied on a set together with other formation rules.

					State of the
Seq. No.	D/S No.	Т	Name	Definition (intuitive and/or analytical)	Art References
	NO.	4	Reverse Segueres	1, 21, 321, 4321, 54321, 10987654321,	Kererenees
2		f R	Reverse Sequence Multiplicative	2, 3, 6, 12, 18, 24, 36, 48, 54, For arbitrary n1 and n2:	
2			Sequence	n_k =Min(ni nj), where k≥3 and j≤k, i≤k, i≠j.	
3		R	Wrong Numbers	$n=\underline{a_1a_2a_k}$, $k\ge 2$ (where $\underline{a_1a_2a_k}=\underline{a_1}\cdot 10^{k-1}+\underline{a_2}\cdot 10^{k-2}++\underline{a_k}$).	Reformulated
_			Ű	For n>k the terms of the sequence $a_1, a_2, \dots a_n \dots$ are	
				<u>n-1</u>	
				defined through $a_n = \prod_{i=n-k} a_i$. n is a wrong number if	
				the sequence contains n.	
4		f	Impotent Numbers	2, 3, 4, 5, 7, 9, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49,	
				53, 59, 61, A number n whose proper divisors product	
		-		is less than n, i.e. {p, p ² ; where p is prime}	
5		E	Random Sieve	1,5,6,7,11,13, 17, 19, 23, 25, General definition:	
				Choose a positive number u ₁ at random; -delete all multiples of all its divisors, except this number; choose	
]		another number u_2 greater than u_1 among those	
				remaining; -delete all multiples of all its divisors, except	
		ļ		this number, and so on.	
6		F	Cubic Base	0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,	
				Each number n is written in the cubic base.	<u> </u>
7		1	Anti-Symmetric	11,1212,123,123,12341234,	
		<u> </u>	Sequence	123456789101112123456789101112,	
8		R	ss2(n)	$1,2,5,26,29,677,680,701, \dots$ ss2(n) is the smallest number,	Ashbacher, C.
				strictly greater than the previous one, which is the squares sum of two previous distinct terms of the	Doc.14, p 25.
				sequence.	
9		R	ssl(n)	1,1,2,4,5,6,16,17,18,20, ss1(n) is the smallest number,	
,				strictly greater than the previous one (for $n \ge 3$), which is	
				the squares sum of one ore more previous distinct terms	
				of the sequence.	
10		R	nss2(n)	1,2,3,4,6,7,8,9,11,12,14,15,16,18, nss2(n) is the smallest	Ashbacher, C.
				number, strictly greater than the previous one, which is	Doc.14, p 29.
				NOT the squares sum of two previous distinct terms of the sequence.	
11		R	nss1(n)	1,2,3,6,7,8,11,12,15,16,17,18,19, nss1(n) is the smallest	
•••				number, strictly greater than the previous one, which is	
				NOT the squares sum of one ore more previous distinct	
				terms of the sequence.	
12		R	cs2(n)	1,2,9,730,737,389017001, 389017008,389017729, cs2(n)	Ashbacher, C.
				is the smallest number, strictly greater than the previous	Doc.14, p 28.
				one, which is the cubes sum of two previous distinct	
13		R	csl(n)	terms of the sequence 1,1,2,8,9,10,512,513,514,520, cs1(n) is the smallest	
10		K		number, strictly greater than the previous one (for $n \ge 3$),	
				which is the cubes sum of one ore more previous	
				distinct terms of the sequence.	
14		R	ncs2(n)	1,2,3,4,5,6,7,8,10,11,12,13,14,15, ncs2(n) is the smallest	Ashbacher, C.
				number, strictly greater than the previous one, which is	Doc.14, p 32.
				NOT then cubes sum of two previous distinct terms of the	
17		<u> </u>			
15		R	ncs1(n)	1,2,3,4,5,6,7,10,,26,29, ncs1(n) is the smallest number,	
				strictly greater than the previous one, which is NOT the cubes sum of one or more previous distinct terms of the	
				sequence.	
16		R	SGR, General	Let $k \ge j$ be natural numbers, and $a_1, a_2,, a_k$ given	
			Recurrence Type	elements, and R a j-relationsship (relation among j	
			Sequence	elements). Then: 1) The elements a1, a2,, ak belong to	
				SGR. 2) If m_1, m_2, \ldots, m_j belong to SGE, then $R(m_1, m_2, \ldots, m_j)$	
				m;) belongs to SGR too. 3) Only elements, obtained by	
				rules 1) and/or 2) applied a finite number of times,	1
			1	belong to SGR.	1
17					
17		F	Non-Null Squares, ns(n)	1,1,1,2,2,2,2,3,4,4,, The number of ways in which n can be written as a sum of non-null squares. Example:	

		1	2 ² =3 ² . Hence ns(9)=4.	
18	F	Non-Null Cubes	1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,8)3,(3)4,	
19	F	General Partition	Let f be an arithmetic function, and R a relation among	
	'	Sequence	numbers. {How many times can n be written in the form:	
			$n=R(f(n_1), f(n_2),, f(n_k))$ for some k and $n_1, n_2,, n_k$ such	
1			that $n_1 + n_2 + + n_k = n$?	
20	с	Concatenate Sea.	1,22,333,4444,55555,666666,	<u> </u>
21	F	Triangular Base	1,2,10,11,12,100,101,102,110,1000, Numbers written in	
2.	1.		triangular base, defined as follows: $t_n=n(n+1)/2$ for $n \ge 1$.	
22	F	Double Factorial	1,10,100,101,110,200,201,1000,	
		Base		
23	R	Non-Multiplicative	Let $m_1, m_2, \dots m_k$ be the first k given terms of the	
		Sequence	sequence, where $k \ge 2$; then m_i , for $i \ge k+1$, is the smallest	
			number not equal to the product of the k previous	
			terms.	
24	R	Non-Arithmetic	If m_1 , m_2 are the first k two terms of the sequence, then	lbstedt, H.
		Sequence	m_{ik} for k≥3, is the smallest number such that no 3-term	Doc. 19, p. 1.
			arithmetic progression is in the sequence.	
25	R	Prime Product	2,7,31,211,2311,30031,510511, pn=1+p1p2pn, where pk	lbstedt, H.
		Sequence	is the k-th prime.	Doc. 19, p.4.
26	R	Square Product	$2,5,37,577,14401,518401,25401601, \dots S_n=1+s_1s_2\dots s_n$, where	lbstedt, H.
		Sequence	s _k is the k-th square number.	Doc. 19, p. 7.
27	R	Cubic Product	2,9,217,13825,1728001,373248001, Cn=1+c1c2cn,	
		Sequence	where c_k is the k-th cubic number.	
28	R	Factorial Product	1,3,13,289,34561,24883201, $F_n=1+f_1f_2f_n$, where f_k is the	
		Sequence	k-th factorial number.	
29	R	U-Product	Let u_n , $n \ge 1$, be a positive integer sequence. Then we	
		Sequence	define a U-sequence as follows: $U_n=1+u_1u_2u_n$.	
		(Generalization)		
30	R	Non-Geometric	1,2,3,5,6,7,8,10,11,13,14,15, Definition: Let m1 and m2	
		Sequence	be the first two term of the sequence, then m_k ,for $k \ge 3$, is	
			the smallest number such that no 3-term geometric	
			progression is in the sequence.	
31	F	Unary Sequence	11, 111, 11111, 1111111, 11111111111, u _n =111, p _n	
	-	N D' D' ''	digits of "1", where p _n is the n-th prime.	
32	F	No Prime Digits	1,4,6,8,9,10,11,1,1,14,1,16,1,18, Take out all prime digits	
33	F	Sequence	from n.	
33		No Square Digits Sequence	2,3,4,6,7,8,2,3,5,6,7,8,2,2,22,23,2,25, Take out all square	Ì
34	c	Concatenated	digits from n. 2.23,235,2357, 235711, 23571113,	11
54		Prime Sequence	2,23,233,2337, 233711, 23371113,	Ibstedt, H.
35	c	Concatenated Odd	1,13,135,1357,13579,1357911,135791113,	Doc. 19, p. 13. Ibstedt, H.
55		Sequence	1,13,133,1337,13379,1337911,133791113,	Doc. 19, p. 12
36	c	Concatenated	2.24.246.2468.246810.24681012	the second s
~~		Even Sequence	1 4,47,470,2900,2900 I U,2900 I U I Z,	Ibstedt, H.
37	С	Concatenated S-	Let s1, s2, s3, sn be an infinite integer sequence. Then s1,	Doc. 19, p. 12.
		Sequence	s_1s_2 , $s_1s_2s_3$, \ldots s_n be drivining integer sequence. Then s_1 , s_1s_2 , $s_1s_2s_3$, $s_1s_2s_3$, \ldots s_n is called the concatenated S-	
		(Generalization)	sequence.	
38	A	Crescendo Sub-Seq.	1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5	
39	A	Decrescendo Sub-S.	1, 2,1 3,2,1 4,3,2,1 5,4,3,2,1	
40	A	Cresc. Pyramidal	1. 1,2,1 1,2,3,2,1, 1,2,3,4,3,2,1	
		Sub-S	τι τ. μ. τ.	
41	A	Decresc. Pyramidal	1, 2,1,2, 3,2,1,2,3, 4,3,2,1,2,3,4,	
		Sub-S	······································	
42	A	Cresc. Symmetric	1, 1, 2,1,1,2, 3,2,1,1,2,3, 1,2,3,4,4,3,2,1	
		Sub-S		
43	A	Decresc. Symmetric	1.1, 2.1,1,2, 3,2,1,1,2,3, 4,3,2,1,1,2,3,4,	· · · · · · · · · · · · · · · · · · ·
		Sub-S	· · · · · · · · · · · · · · · · · · ·	
44	A	Permutation Sub-S	1. 2. 1,3,4,2. 1,3,5,6,4,2. 1,3,5,7,8,6,4,2,1,	
45	E	Square-Digital Sub-	0, 1, 4, 9, 49, 100, 144, 400, 441,	Ashbacher, C.
	-	Sequence		Doc.14, p 45.
46	E	Cube-Digital Sub-	0, 1, 8, 1000, 8000,	Ashbacher, C.
	_	Sequence	,,,	Doc.14, p 46.
	E	Prime-Digital Sub-	2, 3, 5, 7, 23,37,53,73	Ashbacher, C.
47				
47		Sequence		Doc.14 n 48
47		-		Doc.14, p 48. Ibstedt, H.

48	1	E	Square-Partial-	49, 100, 144, 169, 361, 400, 441, Squares which can be	Ashbacher, C.
			Digital Sub-Seq.	partitioned into groups of digits which are perfect squares	Doc.14, p 44.
49		E	Cube-Partial-Digital Sub-Sequence	1000, 8000, 10648, 27000,	Ashbacher, C. Doc.14, p 47.
50		E	Prime-Partial-Digital	23, 37, 53, 73, 113, 137, 173, 193, 197, Primes which can	Ashbacher, C.
			Sub-Sequence	be partitioned into groups of digits which are also primes.	Doc.14, p 49.
51		F	Lucas-Partial Digital Sub-Sequence	123, (1+2=3, where 1,2 and 3 are Lucas numbers)	Ashbacher, C. Doc.14, p 34.
52		E	f-Digital Sub- Sequence	If a sequence $\{a_n\}$, $n\geq 1$ is defined by $a_n=f(n)$ (a function of n), then the f-digital subsequence is obtained by screening the sequence and selecting only those terms which can be partitioned into two groups of digits g_1 and $g_2=f(g_1)$.	
53		£	Even-Digital Sub-S.	12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224,	Ashbacher, C. Doc.14, p 43.
54		E	Lucy-Digital Sub-S.	37, 49, (i.e. 37 can be partioned as 3 and 7, and 1 ₃ =7; the lucky numbers are 1,3,7,9,113,15,21,25,31,33, <u>37</u> ,43, <u>49</u> ,51,63,	Ashbacher, C. Doc.14, p 51.
55		м	Uniform Sequence	Let n be an integer $\neq 0$, and $d_1, d_2,, d_r$ distinct digits in base B. Then: multiples of n, written with digits $d_1, d_2,, d_r$ only (but all r of them), in base B, increasingly ordered, are called the uniform S.	
56		м	Operation Sequence	Let E be an ordered set of elements, $E=\{e_1, e_2,\}$ and θ a set of binary operations well defined for these elements. Then: $a_{18}\{e_1, e_2,\}$, $a_{n+1}=min\{e_1 \ \theta_1 \ e_2 \ \theta_2 \ \ \theta_A$ $e_{n+1}>a_n$ for $n\geq 1$.	
57		м	Random Operation Sequence	Let E be an ordered set of elements, $E=\{e_1, e_2,\}$ and θ a set of binary operations well defined for these elements. Then: $a_1 \in \{e_1, e_2,\}$, $a_{m+1}=\{e_1, \theta_1, e_2, \theta_2,, \theta_A$ $e_{m+1} \ge a_n$ for $n \ge 1$.	
58		M	N-digit Periodic Sequence	42, 18, 63, 27, 45, 09, 81, 63, 27, Start with a positive integer N with not all its digits the same, and let N' be its digital reverse. Put $N_1 = N-N' $ and let N_1 ' be the digital reverse of N_1 . Put $N_2 = N_1-N_1' $, and so on.	lbstedt, H. Doc. 20, p. 3.
59		M	Subtraction Periodic Sequence	52.24,41,13,30,02,19,90,08,79,96,68,85,57,74,46,63,35,52, Let c be a fixed positive integer. Start with a positive integer N and let N' be its digital reverse. Put $N_1 = N' - c $ and let N_1 ' be the digital reverse of N_1 . Put $N_2 = N_1' - c $, and so on.	lbstedt, H. Doc. 20, p. 4.
60		м	Multiplication Periodic Sequence	$68,26,42,84,68, \dots$ Let c>1 be a fixed integer. Start with a positive integer N, multiply each digit x of N by c and replace that digit by the last digit of cx to give N ₁ , and so on.	lbstedt, H. Doc. 20, p. 7.
61		м	Mixed Composition Periodic Sequence	75,32,51,64,12,31,42,62,84,34,71,86,52,73,14,53,82,16,75, Let N be a two-digit number. Add the digits, and add them again if the sum is greater then 10. Also take the absolute value of their difference. These are the first and second digits of N ₁ . Now repeat this.	lbstedt, H. Doc. 20, p. 8.
62	1		Consecutive Seq.	1, 12, 123, 12345, 123456, 1234567,	
63	2	I/P	Circular Sequence	1, (12, 21), (123, 231, 312), (1234, 2341, 3412, 4123),	Kashihara, K. Doc. 15, p. 25.
64	3	A	Symmetric Sequence	1, 11, 121, 1221, 12321, 123321, 1234321, 12344321,	Ashbacher, C. Doc.14, p 57.
65	4	A	Deconstructive Sequence	1, 23, 456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891,	Kashihara, K. Doc. 15, p.6.
66	5	A	Mirror Sequence	1, 212, 32123, 4321234, 543212345, 65432123456,	Ashbacher, C. Doc.14, p 59.
67	6 7	A/P	Permutation Sequence Gen. in doc. no. 7	12, 1342, 135642, 13578642, 13579108642, 135791112108642,1357911131412108642,	Ashbacher, C. Doc.14, p 5.
68 *		м	Digital Sum	(0,1,2,3,4,5,6,7,8,9), (1,2,3,4,5,6,7,8,9,10), (2,3,4,5,6,7,8,9,10,11), (d _s (n) is the sum of digits)	Kashihara, K. Doc. 15, p.6.
69 *		м	Digital Products	0.1.2.3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,2,4,6,8,19,12,14,16,18, 0,3,6,9,12,15,18,21,24,27,0,4,8,12,16,20,24,28,32,36,0,5,10,1	Kashihara, K. Doc. 15, p.7.

				simple number if the product of its proper divisors is less than or equal to n.	Doc.14, p20.
71	19	1	Pierced Chain	101, 1010101, 10101010101, 1010101010101	Ashbacher, C.
	ļ			c(2)=101*10001, c(3)=101*100010001, etc	Doc.14, p 60.
	1			Qn. How many c(n)/100 are primes?	Kashihara, K. Doc. 15, p. 7.
72	20	F	Divisor Products	1,2,3,8,5,36,7,64,27,100,11,1728,13,196,225,1024,17, pd(n)	
12		'	Divisor riodocia	is the product of all positive divisors of n.	Doc. 15, p. 8.
73	21	F	Proper Divisor	1,1,1,2,1,6,1,8,3,10,1,144,1,14,15,64,1.324, p _e (n) is the	Kashihara, K.
74	22	F	Products Square	product of all positive divisors of n except n. 1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1,26,	Doc. 15, p. 9. Ashbacher, C.
/4	22		Complements	For each integer n find the smallest integer k such that nk is a perfect square.	Doc.14, p 9. Kashihara, K.
75	23	F	Cubic	1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289, For	Doc. 15, p. 10. Ashbacher, C.
, ,	24		Complements Gen. to m-power complements in doc. no. 7	each integer n find the smallest integer k such that nk is a perfect cube.	Doc. 14, p 9. Kashihara, K. Doc. 15, p. 11.
76	25 26	E	Cube free sieve Gen. in doc. no. 7	2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26 ,28,	
77	27	E	Irrational Root Sieve	2.3.5.6.7.10.11.12.13.14.15.17. Eliminate all a ^k , when a is squarefree.	
78	37	F	Prime Part (Inferior)	2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,13,17,17,19,19,19,19,19,23,23,2	Kashihara, K.
, 0				3,23,23,23, For any positive real number n $p_{\rm p}(n)$ equals the largest prime less than or equal to n.	Doc. 15, p. 12.
79	38	F	Prime Part (Superior)	2.2.2.3.5.5.7.7.11.11.11.11.13.13.17.17.17.17.19.19.23.23.23.	Kashihara, K.
				23, For any positive real number n $p_p(n)$ equals the	Doc. 15, p. 12.
80	39	F	Square Part (Inferior)	smallest prime number greater than or equal to n. 0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9, The largest square less	Kashihara, K.
		.		than or equal to n.	Doc. 15, p. 13.
81	40	F	Square Part	0,1,4,4,4,9,9,9,9,9, The smallest square greater than or	Kashihara, K.
		L	(Superior)	equal to n.	Doc. 15, p. 13.
82	41	F	Cube Part (Inferior)	0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,	
83	42	F	Cube Part (Superior)	0,1,8,8,8,8,8,8,8, The smalest cube greater than or equal to n.	
84	43	F	Factorial Part (Inferior)	1,2,2,2,2, (18)6, $F_p(n)$ is the largest factorial less than or equal to n.	
85	44	F	Factorial Part (Superior)	1.2, (4)6, (18)24, (11)120, fp(n) is the smallest factorial	
86	45	F	Double Factorial	greater than or equal to n. 1,1,1,2,3,8,15,1,105,192,945,4,10395,46080,1,3,2027025,	
			Complements	For each n find the smallest k such that nk is a double factorial, i.e. nk=1.3.5.7.9n (for odd n) and nk=2.4.6.8n (for even n)	
87	46	F	Prime additive	1,0,0,1,0,1,0,3,2,1,0,1,0,3,3,2, t _n =n+k where k is the	Ashbacher, C.
			complements	smallest integer for which n+k is prime (reformulated).	Doc.14, p 21. Kashihara, K.
88		F	Factorial Quotients	1,1,2,6,24,1,720,3,80,12,3628800, t _n =nk where k is the	Doc. 15, p. 14. Kashihara, K.
50				smallest integer such that nk is a factorial number	Kashinara, K. Doc. 15, p. 16.
89 *		F	Double Factorial	(reformulated). 1,2,3,4,5,6,7,4,9,10,11,6, d _i (n) is the smallest integer	
90	55	F	Numbers Primitive Numbers	such that d _{t(n)} !! is a multiple of n. 2,4,4,6,8,8,8,10,12,12,14,16,16,16,16,16, S ₂ (n) is the smallest	Important
			(of power 2)	integer such that $S_2(n)!$ is divisible by 2^n .	
91	56 57	F	Primitive Numbers (of power 3)	$3,6,9,9,12,15,18,18, \dots$ $S_3(n)$ is the smallest integer such	Kashihara, K.
	37		Gen. to power s) prime.	that S ₃ (n)! is divisible by 3 ⁿ .	Doc. 15, p. 16.
92		м	Sequence of Position	Definition: Unsolved problem: 55	
93	58	F	Square Residues	1,2,3,2,5,6,7,2,3,10,11,6, Sr(n) is the largest square free number which divides n.	. <u></u>
94	59	F	Cubical Residues	1,2,3,4,5,6,7,9,10,11,12,13, C _r (n) is the largest cube free	
	60	·	Gen. to m-power residues.	number which divides n.	
95	61	F		0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4, e2(n)=k if 2* divides n but	Achbeches C
					Ashbacher, C.

<u> </u>	+	+ -	2)	2 ^{k+1} if it does not.	Doc.14, p 22.
96	62	F	Exponents (of power	0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2, e ₂ (n)=k if 3 ^k divides n	Ashbacher
	63		3). Gen. to exp. of	but 3 ^{k+1} if it does not.	Doc.14, p 24.
97	64	F/P	power p Pseudo-Primes of		
77	65		first kind, Ext. to	2,3,5,7,11,13,14,16,17,19,20, A number is a pseudo- prime if some permutation of its digits is a prime	Kashihara, K.
	66		second and third	(including the identity permutation).	Doc. 15, p. 17.
			kind in doc. no. 7.	the later in period and it.	
98	69	F/P		1,4,9,10,16,18,25,36,40, A number is a pseudo-square if	Ashbacher, C.
	70		first kind. Ext. to	some permutation of its digits is a perfect square	Doc.14, p 14.
	71		second and third	(including the identity permutation).	Kashihara, K.
			kind in doc. no. 7.		Doc. 15, p. 18.
99	72	F/P		1.8, 10, 27, 46, 64, 72, 80, 100, A number is a pseudo-cube	Ashbacher, C.
	73		first kind. Ext. to	if some permutation of its digits is a cube (including the	Doc.14, p 14.
	74		second and third	identity permutation).	Kashihara, K.
	75		kind in doc. no. 7.		Doc. 15, p. 18.
	76		(Gen. Pseudo-m- powers)		
100	78	F/P	Pseudo-Factorials of	1,2,6,10,20,24,42,60,100,102,120, A number is a pseudo-	
	79	''	first kind. Ext. to	factorial if some permutation of its digits is a factorial	
	80		second and third	number (including the identity permutation).	
			kind in doc. no. 7.		
101	81	F/P		1,10,100,1,2,10,20,100,200,1,3,10,30, A number is a	<u> </u>
	82		first kind. Ext. to	pseudo-divisor of n if some permutation of its digits is a	
	83		second and third	divisor of n (including the identity permutation).	
100			kind in doc. no. 7.		
102	84	F/P		1,3,5,7,9,10,11,12,13,14,15,16,17, A number is a pseudo-	Ashbacher, C.
	85 86		Numbers of first	odd number if some permutation of its digits is an odd	Doc.14, p 16.
	00		kind. Ext. to second and third kind in	number.	
			doc. no. 7.		
103	87	F/P	Pseudo-Triangular	1,3,6,10,12,15,19,21,28,30,36, A number is a pseudo-	
			Numbers	triangular number if some permutation of its digits is a	
				triangular number.	1
104	88	F/P		0,2,4,6,8,10,12,14,16,18,20,21,22,23, A number is a	Ashbacher, C.
	89		Numbers of first	pseudo-even number if some permutation of its digits is	Doc.14, p17.
	90		kind. Ext. to second	an even number.	
			and third kind in		
105	91	E/D	doc. no. 7. Regudo Multiplas (of	0.5.10.15.00.05.20.05.40.45.50.51	
100	92	177	Pseudo-Multiples (of 5) of first kind. Ext.	0,5,10,15,20,25,30,35,40,45,50,51, A number is a	Ashbacher, C.
	93		to second and third	pseudo-multiple of 5 if some permutation of its digits is a multiple of 5 (including the identity permutation).	Doc.14, p19.
	94		kind in doc. no. 7.	membre of a final during the identity permutation).	
	95		(Gen. to Pseudo-		
	96		multiples of p.)		
106	100	F	Square Roots	0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3, s _a (n) is the superior integer	······································
107				part of the square root of n.	
107	101	F	Cubical Roots	0,1,1,1,1,1,1,1,19(2), 37(3), cq(n) is the superior integer	
	102			part of the cubical root of n.	
108	47	F	roots m _c (n) Prime Base	0 1 10 100 101 1000 1001 10000 10001 10010	14 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-1/	'		0,1,10,100,101.1000,1001,10000,10001,10010, See Unsolved problem: 90	Kashihara, K.
109	48	F		0.1,2,3,10,11,12,13,20,100,101, See Unsolved problem:	Doc. 15, p. 32.
	49			91	
		ĺ	base and gen.		
			base (Unsolved		
			problem 93)		
110	28	м	Odd Sieve	7,13,19,23,25,31,33,37,43, All odd numbers that are not	
111	29	E	Ringer Sieve	equal to the difference between two primes.	
111	27	-	Binary Sieve	1,3,5,9,11,13,17,21,25, Starting to count on the natural	Ashbacher, C.
		ļ		numbers set at any step from 1: -delete every 2-nd	Doc.14, p 53.
		1		numbers; -delete, from the remaining ones, every 4-th	
				numbers and so on: delete, from the remaining ones, every 215th numbers, k=1,2,3,	
112	30	E		1,2,4,5,7,8,10,11,14,16,17, (Definition equiv. to 114)	Ashbacher, C.
	31		Gen. to n-ary sieve		Ashbacher, C. Doc.14, p 54.
	00			1,3,5,9,11,17,21,29,33,41,47,57, From the natural	
13	32	Ē	Conseconve sieve	1, 3, 3, 7, 1 1, 17, 2 1, 27, 33, 41, 47, 37, rrom the natural	Ashbacher, C.

		1	1	of 2 from all remaining numbers; - keep the first	I
				remaining number, delete one number out of 3 from the	
				next remaining numbers; and so on	
114	33	E	General-Sequence	Let ui>1, for i=1, 2, 3,, be a strictly increasing integer	
			Sieve	sequence. Then: From the natural numbers: -keep one	
				number among 1,2,3, ,u1-1 and delete every u1-th	
				numbers; -keep one number among the next u_{2} -1	
				remaining numbers and delete every u2-th numbers; and	
				so on, for step k ($k \ge 1$): keep one number among the next	
				u_k -1 remaining numbers and delete every u_k -th numbers;	
115	36	M	General Residual	$(x+C_1)$ $(x+C_{F(m)})$,m=2, 3, 4,, where C_i , $1 \le i \le F(m)$,	Kashihara, K.
			Sequence	forms a reduced set of residues mod m. x is an integer	Doc. 15, p. 11.
11/				and f is Euler's totient.	K 13 K
116		М	Table:(Unsolved	6,10,14,18,26,30,38,42,42,54,62,74,74,90, t _n is the largest	Kashihara, K.
			103)	even number such that any other even number not	Doc. 15, p. 19.
117		м	Second Table	exceeding it is the sum of two of the first n odd primes. 9,15,21,29,39,47,57,65,71,93,99,115,129,137, v _n is the	Kashihara, K.
117			Second Table	7, 13, 21, 27, 37, 47, 57, 60, 71, 75, 77, 113, 127, 137,, Vn is the largest odd number such that any odd number ≥9 not	Doc. 15, p. 20.
				exceeding it is the sum of three of the first n odd primes.	DOC. 13, p. 20.
118		M	Second Table	0.0,0,0,1,2,4,4,6,7,9,10,11,15,17,16,19,19,23, a _{2k+1}	Kashihara, K.
	1		Sequence	represents the number of different combinations such	Doc. 15, p. 20.
				that 2k+1 is written as a sum of three odd primes.	200. io, p. 20.
119	34	E	More General-	Let $u_i > 1$, for $i=1, 2, 3,, be a strictly increasing integer$	
			Sequence Sieve	sequence, and $v \leq u_i$ another positive integer sequence.	
				Then: From the natural numbers: -keep the v-th number	
				among 1,2,3,, u1-1 and delete every u1-th numbers; -	
				keep the v_2 -th number among the next u_2 -1 remaining	
				numbers and delete every u2-th numbers; and so on, for	
		[step k (k \geq 1): -keep the v _k -th number among the next u _k -1	
				remaining numbers and delete every ukth numbers;	
120	35	F	Digital Sequences	In any number base B, for any given infinite integer or	
			Special case:	rational sequence s_1, s_2, s_3, \ldots , and any digit D from 0 to	
			Construction	B-1, build up a new integer sequence which associates	
			sequences	to s_1 the number of digits of D of s_1 in base B, to s_2 the	
121	50	F	Factorial Base	number of digits D of s_2 in base B, and so on.	
121	50	F	racional base	0,1.10,11,20,21,100,101,110,111,120,121,200,201,210,211, (Each number n written in the Smarandache factorial	
				base.)(Smarandache defined over the set of natural	
				numbers the following infinite base: for $k \ge 1$, $f_k = k!$	
122	51	F	Generalized Base	(Each number in written in the Smarandache	·
				generalized base.)(Smarandache defined over the set	
				of natural numbers the following infinite base: $1=g_0 < g_1 <$	
				<g<sub>k<)</g<sub>	
123	52	F	Smarandache	1.2.3,4,5,3,7,4,6,5, S(n) is the smallest integer such that	
			Numbers	s(n)! is divisible by n.	
124	53	F	Smarandache	1,1,2,6,24,1,720,3,80,12,3628800, For each n find the	
			Quotients	smallest k such that nk is a factorial number.	
125	54	F	Double Factorial	1,2,3,4,5,6,7,4,9,10,11,6,13, d _f (n) is the smallest integer	· · · · · · · · · · · · · · · · · · ·
			Numbers	such that d _f (n)!! is a multiple of n.	
126	67	R	Smarandache	$a_1 \ge 2$, for $n \ge 2$ a_n = the smallest number that is not divisible	
			almost Primes of the	by any of the previous terms.	
			first kind		
127	68	R	Smarandache	$a_1 \ge 2$, for $n \ge 2$ a_n = the smallest number that is coprime	
			almost Primes of the	with all the previous terms.	
100			second kind		
128	97	C	Constructive Set S	1: 1,2 belong to S	
		R	(of digits 1 and 2)	II: if a and b belong to S, then <u>ab (</u> concatenation)	
				belongs to S	
				III: Only elements obtained be applying rules I and II a	
129	98	С	Constructive Set S	finite number of times belong to S 1: 1,2 , 3 belong to S	
· - /	70 99	R	(of digits 1,2 and 3)	I: 1,2,3 belong to S II: if a and b belong to S, then <u>ab (</u> concatenation)	
		ix.	Gen. Constructive	belongs to S	
			Set (of digits d_1 , d_2 ,	III: Only elements obtained be applying rules I and II a	
			d _m) 1≤m≤9.	finite number of times belong to S	
		-	Goldbach-	6,10,14,18,26,30,38,42,42,54,t(n) is the largest even	
130	104	F	Golabach-		
130	104	F	Smarandache Table	number such that any other even number not	

131	105	F	Smarandache- Vinogradov Table	9,15,21,29,39,47,57,65,71,93, V(n) is the largest odd number such that any odd number ≥9 not exceeding it is the sum of three of the first n odd primes.	
132	106	F	Smarandache- Vinogradov Sequence	0,0,0,0,1,2,4,4,6,7,9,10,a(2k+1) represents the number of different combinations such that 2k+1 is written as a sum of three odd primes.	
133	115	F	Sequence of Position	Let $\{x_n\}$, $n \ge 1$, be a sequence of integers and $0 \le k \le 9$ a digit. The Smarandache sequence of position is defined as $U_n^{(k)} = U^{(k)} \{x_n\} = \max\{i\}$ if k is the 10-th digit of x_n else -1.	