In our paper we prove that the Smarandache function S does not verify the Lipschitz condition, giving an answer to a problem proposed in [2] and we investigate also the possibility that some other functions, which involve the function S, verify or not verify the Lipschitz condition.

Proposition 1 The function $\{n - S(n)\}$ does not verify the Lipschitz condition, where $S(n)$ is the smallest integer m such that $m!$ is divisible by n. (S is called the Smarandache function.)

Proof. A function $f : M \subseteq \mathbb{R} \to \mathbb{R}$ is Lipschitz iff the following condition holds:

$$\exists K > 0, \forall x, y \in M \Rightarrow |f(x) - f(y)| \leq K |x - y|$$

(K is called a Lipschitz constant).

We have to prove that for every real $K > 0$ there exist $x, y \in \mathbb{N}^*$ such that $|f(x) - f(y)| > K |x - y|$. Let $K > 0$ be a given real number. Let $x = p > 3K + 2$ be a prime number and consider $y = p + 1$ which is a composite number, being even. Since $x = p$ is a prime number we have $S(p) = p$. Using [1] we have $\max_{n \in \mathbb{N}^*,n \neq 1} \{S(n)/n\} = \frac{2}{3}$, then $\frac{S(x)}{x} = \frac{S(x + 1)}{x + 1} \leq \frac{2}{3}$, which implies that $S(p + 1) \leq \frac{2}{3}(p + 1) < p = S(p)$. We have

$$|S(p) - S(p + 1)| = p - S(p + 1) \geq p - \frac{2}{3}(p + 1) > \frac{3K + 2 - 2}{3} = K$$

Remark 1. The idea of the proof is based on the following observations:
If \(p \) is a prime number, then \(S(p) = p \), thus the point \((p, S(p))\) belongs to the line of equation \(y = x \).

If \(q \) is a composite integer, \(q \neq 4 \), then \(\frac{S(q)}{q} \leq \frac{3}{2} \) which means that the point \((q, S(q))\) is under the graph of the line of equation \(y = \frac{3}{2} x \) and above the axe \(O_{x} \).

Thus, for every consecutive integer numbers \(x, y \) where \(x = p \) is a prime number and \(y = p - 1 \), the length \(AB \) can be made as great as we need, for \(x, y \) sufficiently great.

Remark 2. In fact we have proved that the function \(f : \mathbb{N}^* \to \mathbb{N} \) defined by \(f(n) = S(n) - S(n - 1) \) is unbounded, which implies that the Smarandache's function is not Lipschitz.

In the sequel we study the Lipschitz condition for other functions which involve the Smarandache's function.

Proposition 2 The function \(S_1 : \mathbb{N} \setminus \{0, 1\} \to \mathbb{N} \), \(S_1(n) = \frac{1}{S(n)} \) verify the Lipschitz condition.

Proof. For every \(x \geq 2 \) we have \(S(x) \geq 2 \), therefore \(0 < \frac{1}{S(x)} \leq \frac{1}{2} \). If we take \(x \neq y \) in \(\mathbb{N} \setminus \{0, 1\} \), we have

\[
\left| \frac{1}{S(x)} - \frac{1}{S(y)} \right| \leq \frac{1}{2} \leq \frac{1}{2} |x - y|.
\]
For $x = y$ we have an equality in the relation above, therefore S_1 is a function which verifies the Lipschitz condition with $K = \frac{1}{2}$ and more, it is a contractant function.

Remark 3. In [2] it is proved that $\sum_{n \geq 2} \frac{1}{n^2}$ is divergent.

Proposition 3 The function $S_2: \mathbb{N}^* \to \mathbb{N}^*, S_2(n) = \frac{S(n)}{n}$ verifies the Lipschitz condition.

Proof. For every $x, y \in \mathbb{N}, 1 < x < y$ we have $x = r$ and $y = r - m$ where $m \in \mathbb{N}^*$. In [2] is proved that

$$\frac{1}{(n-1)!} \leq \frac{S(n)}{n} \leq 1, \quad (\forall m \in \mathbb{N} \setminus \{0, 1\}).$$

Using this we have

$$\frac{|S(x) - S(y)|}{x - y} = \frac{|S(r) - S(r - m)|}{r - (r - m)} \leq 1 - \frac{1}{(r - m - 1)!} < 1 \leq |x - y|$$

therefore

$$\frac{|S(x) - S(y)|}{x - y} \leq |x - y|$$

for x and y as above. For $x = y$ we have an equality in the relation above. It follows that S_2 verifies the Lipschitz condition with $K = 1$.

Remark 4. Using the proof of Proposition 5 proved below, it can be shown that the Lipschitz constant $K = 1$ is the best possible. Indeed, take $x = r = p - 1$, $m = 1$ and therefore $y = p$ (with the notations from the proof of Proposition 8), with p a primenumber. From the proof of Proposition 5, there is a subsequence of prime numbers $\{p_n\}_{k \geq 1}$ such that $\frac{S(p_n - 1)}{p_n - 1} \to 0$. For $k \geq 1$ we have, for a Lipschitz constant K of S_2

$$K \geq \frac{|S(p_n - 1) - S(p_n) - 1|}{S(p_n - 1) - 1} = 1 - \frac{S(p_n - 1)}{p_n - 1} \to 1$$

Thus, $K \geq 1$.
Proposition 4 The function \(S_1 = N \setminus \{0, 1\} \rightarrow N \) defined by \(S_1(n) = \sum_{\substack{p \mid n \atop p \leq \sqrt{n}}} p \) does not verify the Lipschitz condition.

Proof. (Compare with the proof of Proposition 3.)

We have to prove that for every real \(K > 0 \) there exists \(x, y \in \mathbb{N}^* \) such that \(S_1(x) - S_1(y) > K \cdot |x - y| \).

Let \(K > 0 \) be a given real number, \(x = p \) be a prime number and \(y = x - 1 \). Using the Proposition 3 proved below, which asserts that the sequence \(\left\{ \frac{p^n - 1}{S(p^n - 1)} \right\} \) is unbounded (where \(\{p\}_{n \geq 1} \) is the prime numbers sequence), we have, for a prime number \(p \) such that \(\frac{p^n - 1}{S(p^n - 1)} > K + 1 \):

\[
\frac{x}{S(x)} - \frac{y}{S(y)} = \frac{p}{S(p)} - \frac{p - 1}{S(p - 1)} = \frac{p - 1}{S(p - 1)} - 1 > K + 1 - 1 = K = K \cdot |x - y|
\]

\(\blacksquare \)

Proposition 5 If \(\{p_n\}_{n \geq 1} \) is the prime numbers sequence, then the sequence \(\left\{ \frac{p_n - 1}{S(p_n - 1)} \right\}_{n \geq 2} \) is unbounded.

Proof. Denote \(q_n = p_n - 1 \) and let \(\tau_n \) be the number of the distinct prime numbers which appear in the prime factor decomposition of \(q_n \) for \(n \geq 2 \). We show below that \(\{\tau_n\}_{n \geq 2} \) is an unbounded sequence.

For a fixed \(k \in \mathbb{N}^* \), consider \(\pi_k \overset{\text{def}}{=} p_1 \cdots p_k \) and the arithmetic progression \(\{1 + \pi_k \cdot m\}_{m \geq 1} \). From the Dirichlet Theorem [3, pg.194], it follows that this sequence contains a subsequence \(\{1 + \pi_k \cdot m \}_{m \geq 1} \) of prime numbers: \(\pi_k \cdot m \mid 1 + \pi_k \cdot m \), therefore \(\pi_k \cdot m \mid \pi_k \cdot m - 1 = q_n \), which implies that \(\tau_n \geq k \). It shows that the sequence \(\{\tau_n\}_{n \geq 2} \) is an unbounded sequence.

If \(q_n = \prod_{i=1}^{n} p_{\beta_i}^\alpha_i \) then it is known (see [4]) that:

\[
S(q_n) = \max_{1 \leq i \leq n} \left(S\left(p_{\beta_i}^{\alpha_i} \right) \right) = S\left(p_{\beta_1}^{\alpha_1} \right) \leq q_n \cdot \beta_1
\]

thus

\[
\frac{q_n}{S(q_n)} = \frac{\prod_{i=1}^{n} p_{\beta_i}^{\alpha_i}}{S\left(p_{\beta_i}^{\alpha_i} \right)} \geq \left(\prod_{i=1}^{n} p_{\beta_i}^{\alpha_i} \right) \frac{p_{\beta_1}^{\alpha_1}}{\alpha_1} \cdot \tag{1}
\]

62
We have:

\[u_j = \frac{a_j^{x_j - 1}}{x_j} \geq 2 \quad (2) \]

Indeed, if \(x_j = 1 \), then \(u_j = 1 \). If \(x_j > 1 \), then

\[u_j \geq \frac{(x_j - 1)(x_j - 1)}{x_j} \geq \frac{x_j - 1}{2} \geq \frac{1}{2} \]

But \(v_n = \prod_{i=1}^{k} p_{2i}^{2i} \) has \(r_n - 1 \) prime factors and \((r_n)_{n \geq 2} \) is unbounded, then it follows that \((v_n)_{n \geq 2} \) is unbounded. Using this, (1) and (2), it follows that the sequence \(\left\{ \frac{r_n}{x(r_n)} \right\}_{n \geq 2} \) is unbounded.

Remark 5. Using the same idea, the Proposition 5 is true in a more general form:

For \(n \in \mathbb{Z} \), the sequence \(\left\{ \frac{r_n - a}{r(r_n - a)} \right\}_{r_n - a \geq 2} \) is unbounded, where \((r_n)_{n \geq 2} \) is the prime numbers sequence.

References

