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1. INTRODUCTION 

This paper considers the following ten recurrence type Smarandache sequences. 
(l) Smarandache Odd Sequence : The Smarandache odd sequence, denoted by {OS(n)} <Xl n=l, 

is defined by (Ashbacher [1]) 

OS(n)=135 ... (2n-l), n?J. (1.1) 
A first few terms of the sequence are 

1,13 135,1357,13579,1357911,135791113,13579111315, .... 
(2) Smarandache Even Sequence: The Smarandache even sequence, denoted by {ES(n)} 00 n""\' 

is defined by (Ashbacher [1]) 

ES(n)=24 ... (2n), n2:: 1. 
A first few terms of the sequence are 

2,24,246,2468,246810,24681012,2468101214, ... , 
of which only the first is a prime number. 

(1.2) 

(3) Smarandache Prime Product Sequence: Let {Pn}<Xln=l be the (infinite) sequence of primes 
in their natural order, so that Pl=2, P2=3, Pi=5, P4=7, P5=11, P6=13, .... 
The Smarandache prime product sequence, denoted by {PPS(n)} <Xln",,\, is defined by 
(Smarandache [2]) 

, PPS(n)=PIP2 ... Pn+1, U2::1. (1.3) 
(4) Smarandache Square Product Sequences: The Smarandache square product sequence of 

the first kind, denoted by {SPSl(n)} oon=l, and the Smarandache square product sequence of 
the second kind, denoted by {SPS2(n)} oon'" I, are defined by (Russo [3]) 

SPS 1(n)=(12)(22) ... (n2)+ 1 =(n!)2+ 1, n~l, 
SPS2(n)=(J2) (22) ... (n2)-1=(n!)2-1, n2::1. 

A first few terms of the sequence {SSPI(n)}oon=1 are 
SPSl(1)=2, SPSI(2)=5, SPS\(3)=37, SPSl(4)=577, SPSl(5)=14401, 
SPSl(6)=518401 =13x39877, SPSl(7)=25401601 01 x251501, 
SPSl(8)=1625702401 =17x95629553, SPSl(9)=131681894401, 

of which the first five terms are each prime. 

A first few terms of the sequence {SPS2(n)}oon=1 are 
SPS2(l)=O, SPS2(2)=3, SPS2(3)=35, SPS2(4)=575, SPS2(5)=14399, 

(l.4a) 
(l.4b) 

SPS2(6)=518399, SPS2(7)=25401599, SPS2(8)=1625702399, SPS2(9)=131681894399, 
of which, disregarding the first term, the second term is prime, and the remaining terms of 
the sequence are all composite numbers (see Theorem 6.3). 
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(5) Smarandache Higher Power Product Sequences : Let m (>3) be a fixed integer. The 
Smarandache higher power product sequence of the first kind, denoted by, 
{HPPS l(n)} co n=\. and the Smarandache higher power product sequence of the second kind, 
denoted by, HPPS2(n)} 00 n=1. are defined by 

HPPS I (n)=(1 m)(2m) ... (nm)+ 1 =(n!)m+ 1, n2:1, (l.5a) 
HPPS2(n)=(1 m)(2m) ... (nm)-1 :::::(n!)m-l, n2::1. (l.5b) 

(6) Smarandache Permutation Sequence: The S marandache permutation sequence, denoted 
by {PS(n)}COn=I' is defined by (Dumitrescu and Seleacu [4]) 

PS(n)=135 ... (2n-l)(2n)(2n-2) ... 42, n:2:1. (1.6) 
A first few terms of the sequence are 

12, 1342, 135642, 13578642, 13579108642, .. ,. 
(7) Smarandache Consecutive Sequence: The Smarandache consecutive sequence, denoted 

by {CS(n)}COn=l, is defined by (Dumitrescu and Seleacu [4]) 

CS(n)=123 ... (n-l)n, n;?:1. (1.7) 
A first few terms of the sequence are 

1,12,123,1234,12345,123456, .... 
(8) Smarandache Reverse Sequence : The Smarandache reverse sequence, denoted by, 

{RS(n)} con=l, is defined by (Ashbacher [1]) 

RS(n)=n(n-l) ... 21, n~1. (1.8) 
A first few terms of the sequence are 

1,21,321,4321,54321,654321, .... 
(9) Smarandache Symmetric Sequence: The Smarandache symmetric sequence, denoted by 

{SS(n)}COn=l' is defined by (Ashbacher [1]) 
1,11,121,12321,1234321,123454321,12345654321, .... 

Thus, 
SS(n)=12 ... (n-2)(n-l)(n-2) ... 21, n~3; SS(1)=I, SS(2)=11. (1.9) 

(10) Smarandache Pi~rced Chain Sequence : The Smarandache pierced chain sequence, 
denoted by {PCS(n)}n~lCO, is defined by (Ashbacher [1]) \ 

101,1010101,10101010101,101010101010101, ... , (1.10) 
which is obtained by successively concatenating the string 0101 to the right of the 
preceding terms of the sequence, starting with PCS( 1)= 1 0 1. 
As has been pointed out by Ashbacher, all the terms of the sequence {PCS(n) }n=l co is 
divisible by 101. We thus get from the sequence {PCS(n)}n=loo, on dividing by 101, the 
sequence {PCS(n)/l 01 }n~l co. The elements of the sequence {PCS(n)/l 01 }n~l 00 are 

1, 10001, 100010001, 1000100010001, .... 
Smarandache [5] raised the question How 
sequence{PCS(n)/lOI}n=loo are prime? 

many terms 
(1.11) 

of the 

In this paper, we consider some of the properties satisfied by these ten Smarandache 
sequences in the next ten sections where we derive the recurrence relations as well. 

For the Smarandache odd, even, consecutive and symmetric sequences, Ashbacher [1] 
raised the question: Are there any Fibonacci or Lucas numbers in these sequences? 

We recall that the sequence of Fibonacci numbers, {F(n)} n=1 00, and the sequence of 
Lucas numbers {L(n)}n=IC(), are defined by (Ashbacher [1]) 

F(O)=O, F(1)=I; F(n+2)=F(n+ l)+F(n), n;?:O, 
L(0)=2, L(1)=I; L(n+2)=L(n+ l)+L(n), n2::0, 
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Based on computer search for Fibonacci and Lucas numbers, Ashbacher conjectures 
that there are no Fibonacci or Lucas numbers in any of the Smarandache odd, even, 
consecutive and symmetric sequences (except for the trivial cases). This paper confirms the 
conjectures of Ashbacher. We prove further that none of the Smarandache prime product and 
reverse sequences contain Fibonacci or Lucas numbers (except for the trivial cases). 

For the Smarandache even, prime product, permutation and square product sequences, 
the question is : Are there any perfect powers in each of these sequences? We have a partial 
answer for the first of these sequences, while for each of the remaining sequences, we prove 
that no number can be expressed as a perfect power. We also prove that no number of the 
Smarandache higher power product sequences is square of a natural number. 

For the Smarandache odd, prime product, consecutive, reverse and symmetric 
sequences, the question is : How many primes are there in each of these sequences? For the 
Smarandache even sequence, the question is : How many elements of the sequence are twice 
a prime? These questions still remain open. 

In the subsequent analysis, we would need the following result. 
Lemma 1.1 : 31(10m+lOn+l) for all integers m,n~O. 
Proof: We consider the following three possible cases separately: 
(1) m=n=O. In this case, the result is clearly true. 
(2) m=O, n~ 1. Here, 

1 Om+ 1 On+ 1 =1 On+2=(1 On -1 )+3, 
and so the result is true, since 311 On-l =9(1 + 10+ 102+ ... + lOn-I). 
(3) m~ 1, n~ 1. In this case, writing 

1 Om+ 1 On+ 1 =(1 Om-1)+(1 On -1)+3, 

we see the validity of the result. 0 

2. SMARANDACHE ODD SEQUENCE {OS(n)} (X) no: I 

The Smarandache odd sequence is the sequence of numbers fanned by repeatedly 
concatenating the odd positive integers, and the n-th term of the sequence is given by (1.1). 

For any n~l, OS(n+l) can be expressed in terms ofOS(n) as follows: Forn~l, 

OS(n+1)=135 ... (2n-1)(2n+l) 
OSOS(n)+(2n+ 1) for some integer s~ 1. (2.1) 

More precisely, 
s=number of digits in (2n+ 1). 

Thus, for example, OS( 5)=( 1 O)OS( 4)+7, while, OS( 6)=( 1 02)OS( 5)+ 11. 
By repeated application of (2.1), we get 

OS(n+3)=10s OS(n+2)+(2n+5) for some integer s~l 
1 Os[ 1 ot OS(n+ 1 )+(2n+ 3)]+(2n+5) for some integer t21 (2.2a) 

=10s+t[10U OS(n)+(2n+ 1)]+(2n+3)10s+(2n+5) for some integer u~l, (2.2b) 
so that 

OS(n+ 3)=1 Os+t+uOS(n)+(2n+ 1) 1 Os+t+(2n+ 3) lOs +(2n+5), 

where s~t2u21. 
Lemma 2.1 : 31 OS(n) if and only if31 OS(n+3). 
Proof: For any s, t with s~t21, by Lemma 1.1, 

31 [(2n+ 1) 1 Os+t+(2n+ 3) 1 OS +(2n+5)]=(2n+ 1)( 1 Os+t+ 1 Os+ 1)+(1 OS+2). 

The result is now evident from (2.3). 0 
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From the expression ofOS(n+3) given in (2.2), we see that, for all n2::1, 

OS(n+3)=10s+t OS(n+l)+ (2n+3)(2n+5) 

=10s
+

t
+

u OS(n)+ (2n+l)(2n+3)(2n+5). 
The following result has been proved by Ashbacher [1]. 

Lemma 2.2: 31 OS(n) if and only if 31 n. In particular, 3 I OS(3n) for all n2::1. 
In fact, it can be proved that 9jOS(3n) for all n:2::1. 

We now prove the following result. 
Lemma 2.3: 5 I OS( 5 n+ 3) for all n2::0. 
Proof: From (2.1), for any arbitrary but fixed n2::0, 

OS(Sn+3)=10s OS(5n+2)+(lOn+5) for some integer s2::1. 
The r.h.s. is clearly divisible by 5, and hence 51 OS(5n+3). 
Since n is arbitrary, the lemma is established. 0 

Ashbacher [1] devised a. computer program which was then run for all numbers from 
135 up through OS(2999)=135 ... 29972999, and based on the findings, he conjectures that 
(except for the trivial case ofn=l, for which OS(l)=l=F(l)=L(1» there are no numbers in the 
Smarandache odd sequence that are also Fibonacci (or, Lucas) numbers. In Theorem 2.1 and 
Theorem 2.2, we prove the conjectures of Ashbacher in the affirmative. The proof of the 
theorems relies on the following results. 
Lemma 2.4: For any n2::1, OS(n +1»10 OS(n). 
Proof: From (2.1), for any n2:: 1, 

OS(n+ 1)= 1 OS OS( n)+(2n+ 1» 1 OS OS(n» 1 0 OS(n), 
where 52::1 is an integer. We thus get the desired inequality. 0 
CoroLLary 2.1 : For any n2::1, OS(n+2)-OS(n»9[OS(n+ l)+OS(n)]. 
Proof: From Lemma 2.4, 

OS(n+ 1)-OS(n»9 OS(n) for all n2::1. (2.4) 
Now, using the inequality (2.4), we get 

OS(n+2)-;OS(n)=[OS(n+2)-OS(n+ l)]+[OS(n+ 1)-OS(n)]>9[OS(n+ l)+OS(n)], 
which establishes the lemma. 0 
Theorem 2.1 : (Except for n=1,2 for which OS(1)=1=F(1)=F(2), OS(2)=13=F(7» there are 
no numbers in the Smarandache odd sequence that are also Fibonacci numbers. 
Proof: Using Corollary 2.1, we see that, for all n~1, 

OS(n+2)-OS(n»9[OS(n+ l)+OS(n)]>OS(n+ 1). (2.5) 
Thus, no numbers of the Smarandache odd sequence satisfy the recurrence relation (2.10) 
satisfied by the Fibonacci numbers. 0 

By similar reasoning, we have the following result. 
Theorem 2.2 : (Except for n=l for which OS(1)=1 =L(2» there are no numbers in the 
Smarandache odd sequence that are Lucas numbers. 

Searching, for primes in the Smarandache odd sequence (using UBASIC program), 
Ashbacher [1] found that among the first 21 elements of the sequence, only OS(2), OS(lO) 
and OS(16) are primes. Marimutha [6] conjectures that there are infinitely many primes in the 
Smarandache odd sequence, but the conjecture still remains to be resolved. 

In order to search for primes in the Smarandache odd sequence, by virtue of 
Lemma 2.2 and Lemma 2.3, it is sufficient to check the terms of the forms OS(3n±1), n~l, 
where neither 3n+ 1 nor 3n-1 is of the form Sk+ 3 for some integer k2::1, 
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3. SMARANDACHE EVEN SEQUENCE {ES(n)}ctJn~1 

The Smarandache even sequence, whose n-th term is given by (1.2), is the sequence of 
numbers formed by repeatedly concatenating the even positive integers. 

We note that, for any n;;::: 1, 

ES(n+ 1 )=24 ... (2n)(2n+2) 

OS ES(n)+(2n+2) for some integer s~l. (3.1) 
More precisely, 

s=number of digits in (2n+2). 
Thus, for example, ES(4)=2468=10 ES(3)+8, while, ES(5)=246810=102 ES(4)+10. 

From (3.1), the following result follows readily. 
Lemma 3.1: For any n~l, ES(n+1»10 ES(n). 

U sing Lemma 3.1, we can prove that 
ES(n+2)-ES(n»9[ES(n+ l)+ES(n)] for all n2:1. (3.2) 

The po of is similar to that given in establishing the inequality (2.1) and is omitted here. 

so that 

By repeated application of (3.1), we see that, for any n~ 1, 
ES(n+2)=10t ES(n+l)+(2n+4) for some integer t21 

=1 ot[ IOu ES(n)+(2n+2)]+(2n+4) for some integer u2:1 
Ou+t ES(n)+(2n+2) 1 d+(2n+4), 

ES(n+ 3)=1 OS ES(n+2)+(2n+6) for some integer s~l 
=10$[1 ot ES(n+ 1)+(2n+4)]+(2n+6) 

=1 Os+t+uES(n)+(2n+2)1 Os+t+(2n+2) 1 OS+(2n+6), 

for some integers s, t and u with s~t~u21. 
From (3.3), we see that 

ES( n+ 3)= 1 05+t ES(n+ 1 )+(2n+4 )(2ri+6) 

=1 Os+t+u ES(n)+(2n+2)(2n+4)(2n+6). 
Using (3.3), we can prove the following result. 

Lemma 3.2: If31 ES(n) for some n2:1, then 31 ES(n+3), and conversely. 
Lemma 3.3 : For all rEI, 31 ES(3n). 

(3.3) 

Proof: The proof is by inductiori on n. Since ES(3)=246 is divisible by 3, the lemma is true 
for n= 1. We now assume that the result is true for some n, that is, 3 1 ES(3n) for some n. 

Now, by Lemma 3.2, together with the induction hypothesis, we see that 
ES(3n+3)=ES(3(n+I» is divisible by 3. Thus the result is true for n+l. 0 
Corollary 3.1 : For all n21, 31 ES(3n-l). 
Proof: Let t;l (2:1) be any arbitrary but fixed integer. From (3.1), 

ES(3n)=10s ES(3n-l)+(6n) for some integer S21. 
Now, by Lemma 3.2, 3\ ES(3n). Therefore, 3 must also divide ES(3n-1). 

Since n is arbitrary, the lemma is proved. 0 
Corollary 3.2 : For any n;;:::l, 31 ES(3n + 1). 
Proof: Let n (2:1) be any arbitrary but fixed integer. From (3.1), 

ES(3n+1)=10sES(3n)+(6n+2) for some integer 82:1. 
Since 31 ES(3n), but 3 does not divide (6n+2), the result follows. 0 
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Lemma 3.4: 41 ES(2n) for all n~l. 
Proof: Since 41 ES(2)==24 and 41 ES(4)=2468, we see that the result is true for n=I,2. Now, 
from (3.1), for n~l, 

ES(2n)= lOs ES(2n-1 )+(4 n), 
where s is the number of digits in (4n). Clearly, s~2 for all n~3. Thus, 4110s ifn~3, and we get 
the desired result. 0 

Corollary 3.3 : For any n~O, 41 ES(2n+ 1). 
Proof: Clearly the result is true for n=O, since ES(l is not divisible by 4. For n~l, from (3.1 ), 

ES(2n+ 1)= 1 OS ES(2n)+( 4n+ 2) for some integer s?:: 1. 
By Lemma 3.4, 41 ES(2n). Since 41 (4n+2), the result follows. 0 
Lemma 3.5: For all n~l, 10 I ES(Sn). 
Proof: For any arbitrary but fixed n?::l, from (3.1), 

ES(Sn)=10s ES(Sn-1)+(10n) for some integer s~l. 
The result is now evident from the above expression ofES(Sn). 0 
Corollary 3.4 : 20IES(lOn) for all n~ 1. 
Proof: follows by virtue of Lemma 3.4 and Lemma 3.5.0 

Based on the computer findings with numbers up through ES(1499)=2468 ... 29962998, Ashbacher [1] conjectures that (except for the case of ES(1 )=2=F(3)=L(0» there are no nun1bers in the Smarandache even sequence that are also Fibonacci (or, Lucas) numbers. The following two theorems establish the validity of Ashbacher's conjectures. The proofs of the theorems make use of the inequality (3.2) and are similar to those used in proving Theorem 2.1. We thus omit the proof here. 
Theorem 3.1 : (Except for ES(1)=2=F(3» there are no numbers in the Smarandache even sequence that are Fibonacci numbers. 
Theorem 3.2 : (Except for ES(1)=2=L(O» there are no numbers in the Smarandache even sequence that are Lucas numbers. 

Ashbacher [1] raised the question: Are there any perfect powers in ES(n)? The following theorem gives a partial answer to the question. 
Theorem 3.3 : None of the terms of the subsequence {ES(2n-l)}oon=1 is a perfect square or 
higher power of an integer (> 1). 
Proof: Let, for some n~ 1, 

, ES(n)=24 ... (2n) for some integer x> 1. 
Now, since ES(n) is even for all n~l, x must be even. Let x==2y for some integer y~l. Then, 

ES(n)=(2y)2=4y2, 
which shows that 41 ES(n). 

Now, ifn is odd of the form 2k-l, ~l, by Corollary 3.3, ES(2k-l) is not divisible by 
4, and hence numbers of the form ES(2k-I), k?::l, can not be perfect squares. By same 
reasoning, none of t~e tenus ES(2n-l), n~ 1, can be expressed as a cube or higher powers of 
an integer. 0 
Remark 3.1 : It can be seen that, if n is of the form kx 10s+4 or kx 10s+6, where k (l~k:::;9) 
and s (;?:1) are integers, then ES(n) cannot be a perfect square (and hence, cannot be any even power of a natural number). The proof is as follows: If 

ES(n)=x2 for some integer x> 1, (*) then x must be an even integer. The following table gives the possible trailing digits of x and the corresponding trailing digits of x2 
: . 
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Trailing digit ofx Trailing digit of x2 

2 
4 
6 
8 

4 
6 
6 
4 

Since the trailing digit of ES(kx 105+4) is 8 for all admissible values of k and s, it follows that the representation of ES(kx 105+4) in the fonn (*) is not possible. By similar reasoning, if n is of the form n=kx 105+6, then ES(n)=ES(kx 105+6) with the trailing digit of 2, cannot be expressed as a perfect square (and hence, any even power of a natural number). Thus, it remains to consider the cases when n is one of the forms (1) n=kxlOs
, (2) n=kx10s+2, 

(3) n=kxlOs+8 (where, in all the three cases, k (1:s;k:S;9) and s (~1) are integers). Smith [7] 
conjectures that none of the terms of the sequence {ES(n)} oon;1 is a perfect power. 

4. SMARANDACHE PRlME PRODUCT SEQUENCE {PPS(n)}OOn=l 

The n-th term, PPS(n), of the Smarandache prime product sequence is given by (1.3). 
The following lemma gives a recurrence relation in connection with the sequence. 
Lemma 4.1: PPS(n+l)=Pn+1 PPS(n)-(Pn+!-l) for all n~1. 
Proof: By definition, 

PPS(n+ 1)=PIP2 ., 'PnPn+l+ 1 =(PIP2. ··Pn+ l)Pn+I-Pn+l+ 1, 
which now gives the desired relationship. 0 

From Lemma 4.1, we get 
Corollary 4.1: PPS(n+ l)-PPS(n)=[PPS(n)-l](Pn+l-l) for all n~1. 
Lemma 4.2 : (1) PPS(n)«Pnt-1 for all n24, (2) PPS(n)<(Pn)"-2 for all n~7, 

(3) PPS(n)<(Pn)"-3 for all n~l 0, (4) PPS(n)<(Pn+l)n-1 for all n~3, 
(5) PPS(n)<(Pn+I)"-2 for all n~6, (6) PPS(n)<(Pn+lt-3 for all n~9. 

Proof: We prove parts (3) and (6) only, the proof ofllie other parts is similar. 
To prove part (3) of the lemma, we note that the result is true for n=lO, since 

PPS(lO)=646969323 1 «PI07=29 7=17249876309. 
Now, assuming the validity of the result for some integer k (~lO), and using Lemma 4.1, we see that, 

PPS(k+l)=Pk+1 PPS(k}-(Pk+l- l ) <Pk+I PPS(k) 
<Pk+l(Pk)n-3 (by the induction hypothesis) 
«Pk+ I )(Pk+ ! )"-3 =(Pk+ I )"-2, 

where the last inequality follows from the fact that the sequence of primes, {Pn} con=t, is 
strictly increasing in n (21). Thus, the result is true for k+ 1 as well. 

To prove part (6) of the lemma, we note that the result is true for n=9, since 
PPS(9)=223092871 <(P1O)6=296=594823321. 

Now to appeal to the ,principle of induction, we assume that the result is true for some integer 
k (~9). Then using Lemma 4.1, together with the induction hypothesis, we get 

PPS(k+ l)=Pk+1 PPS(k)-(Pk+l-l)<Pk+l PPS(k)<Pk+J(Pk+l)k-3=(Pk+l)k-2. 
Thus the result is true for k+ 1. 

All these complete the proof by induction. 0 
Lemma 4.3 : Each of PPS(1), PPS(2), PPS(3), PPS(4) and PPS(5) is prime, and for n~6, 
PPS(n) has at most n-4 prime factors, counting mUltiplicities. 
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Proof: Clearly PPS(l)=3, PPS(2)=7, PPS(3)=31, PPS(4)=211, PPS(S)=231 1 are all primes. Also, since 
PPS(6)=30031 =S9x509, PPS(7)=Sl 051 9x97x277, PPS(8)=9699691 =34 7x27953, 

we see that the lemma is true for 6.$n.$8. 
Now, if p is a prime factor of PPS(n), then p2Pn+l. Therefore, if for some n2::9, PPS(n) 

has n-3 (or more) prime factors (counted with multiplicity), then PPS(n)~(pn+lt-3, contradicting part (6) of Lemma 4.2. 
Hence the lemma is established. 0 
Lemma 4.3 above improves the earlier results (Prakash [8], and Majumdar [9]). 
The following lemma improves a previous result (Majumdar [10]). 

Lemma 4.4 : For any n~l and k21, PPS(n) and PPS(n+k) can have at most k-l number of prime factors (counting multiplicities) in common. 
Proof: For any n~l and k~l, 

PPS (n+k )-P P S( n)=p IP2· .. Pn(Pn+ I Pn+2 ... Pn+k-1). ( 4.1 ) 
If P is a common prime factor of PPS(n) and PPS(n+k), since p2Pn+k, it follows from (4.1) 
that pI (Pn+IPn+2···Pn+k-l). Now ifPPS(n) and PPS(n+k) have k(or more) prime factors in common, then the product of these common prime factors is greater than (Pn+k)k, which can 
not divide Pn+lPn+2.·· Pn+k-I «Pn+k)k. 

This contradiction proves the lemma. 0 
Corollary 4.2 : For any integers n (21) and k (21), if all the prime factors ofpn+lPn+2"'Pn+k-I are less than pn+k, then PPS(n) and PPS(n+k) are relatively prime. 
Proof: If p is any common prime factor of PPS(n) and PPS(n+k), then pl( pn+lPn+2·. 'Pn+k-l). Also, such P>Pn+k, contradicting the hypothesis of the corollary. Thus, if all the common 
prime factors ofPPS(n) and PPS(n+k) are less than pn+k, then (PPS(n),PPS(n+k)=l. 0 

The following result has been proved by others (Prakash [8] and Majumdar [10]). Here we give a simpler proof. 
Theorem 4.1: For any n2I, PPS(n) is never a square or higher power of an integer (> 1). Proof: Clearly, none of PPS(1), PPS(2), PPS(3), PPS( 4) and PPS(S) can be expressed as 
powers of integers (by Lemma 4.3). 

Now, if possibl~, let for some n26, 
PPS(n)=x E for some integers x (>3), i (22). (*) Without loss of generality, we may assume that e is a prime (if ,£ is a composite number, 

lettinge=pr where p is prime, we have PPS(n)=(xrl=NP, where N=xr). By Lemma 4.3, t~n-4 
and soe cannot be greater than Pn-5 (i2Pn-4 => i>n-4, since Pn>n for all n2:::1). Hence,e must 
be one of the primes PI, P2, ... , Pn-5.A1so, since PPS(n) is odd, x must be odd. Let x=2y+lfor 
some integer y>O. Then, from (*), 

PIP2'''Pn=(2y+ l)c-I 
i i 

=(2y)E+( )(2y)t-I+ ... +( ) (2y). (**) 
1 ,e-l 

If i=2, we see from (**), 41 PIP2 ... Pn, which is absurd. On the other hand, for f2:::3, since 
f 1 PIP2"'Pn, it follows from (**) that fly, and consequently, f 2

1 PIP2"'Pn, which is impossible. 
Hence, the representation of PPS(n) in the form (*) is not possible. 0 
Using Corollary 4.1 and the fact that PPS(n+ l)-PPS(n»O, we get 

PPS( n+2)-PPS(n)=[PPS(n+ 2)-PPS(n+ 1 )]+[PPS(n+ 1 )-PPS(n)] 
>[PPS(n+ 1)-1 ](Pn+2-I) 
>2[PPS(n+ I)-I] for all n21. 
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Hence, 

PPS(n+2)-PPS(n»PPS(n+ 1) for all n~1. (4.2) 
The inequality (4.2) shows that no elements of the Smarandache prime product 

sequence satisfy the recurrence relation for Fibonacci (or, Lucas) numbers. This leads to the 
following theorem. 
Theorem 4.2 : There are no numbers in the Smarandache prime product sequence that are 
Fibonacci (or Lucas) numbers (except for the trivial cases of PPS(l)=3=F(4)=L(2), 
PPS(2)=7=L( 4 )). 

5. SMARANDACHE SQUARE PRODUCT SEQUENCES {SPSI(n)}COn=t, {SPS2(n)f"n;1 

The n-th terms, SPS, (n) and SPSz(n), are given in (1.4a) and (lAb) respectively. 
In Theorem 5.1, we prove that, for any n2:I, neither OfSPSl(n) and SPS2(n) is a square of an 
integer (> 1). To prove the theorem, we need the following results. 
Lemma 5.1: The only non-negative integer solution of the Diophantine equation x2-y2=1 is 
x=l, y=0. 
Proof: The given Diophantine equation is equivalent to (x-y)(x+Y)=I' where both x-y and 
x+y are integers. Therefore, the only two possibilities are 
(1) x-Y=I=x+y, (2) -l=x+y, 
the first of which gives the desired non-negative solution. 0 
Corollary 5.1: Let N (> 1) be a fixed number. Then, 
(1) The Diphantine equation x2-N=1 has no (positive) integer solution x, 
(2) The Diophantine equation N-y2=1 has no (positive) integer solution y. 
Theorem 5.1: For any n~I, none of SPS I(n) and SPS2(n) is a square of an integer (> I). 
Proof: If possible, let 

SPS I (n )=( n !)2+ 1 =x2 for some integers n~ 1, x> 1. 
But, by Corollary 5.1(1), this Diophantine equation has no integer solution x. 

Again, if 
SPS2(n)=(n !)2-1=y2 for some integers n~l, y>l, 

then, by Corollary 5.1 (2), this Diophantine equation has no integer solution y. 
All these complete the proof of the theorem. 0 
In Theorem 5.2, we prove a stronger result, for which we need the results below. 

Lemma 5.2 : Let m (~2) be a fixed integer. Then, the only non-negative integer solution of 
the Diophantine equation x2+ 1 =ym is x=O, y=l. 
Proof: For m=2, the result follows from Lemma 5.1. So, it is sufficient to consider the case 
when m>2. However, we note that it is sufficient to consider the case when m is odd; if m is 
even, say, m=2q for some integer q> I, then rewriting the given Diophantine equation as 

(yQ)2_x2=1, we see that, by Lemma 5.1, the only non-negative integer solution is yq:::::l, x=O, 
that is x=O, :y=l, as required. 

So, let m be odd, say, m=2q+ 1 for some integer q~ 1. Then, the given Diophantine 
equation can be written as 

x2==y2Q+I_l =(y_l)(y2Q+y2Q-'+ ... + 1). (***) 

From (***), we see that x=O if and only ify=l, since y2q+y2
q-I+ ... + 1>0. 

Now, ifx:;t:O, from (***), the only two possibilities are 
(1) y-l=x, y2q+y2q-l+ ... + 1=x. 

But then y=x+l, and we are led to the equation (x+l/Q+(x+liQ
-

I+ ... +(x+li+2=O, which is 
impossible. 
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(2) y-1 =1, y2Q+y2q-I+ ... + 1 

Then, y=2 together "vith the equation 
x 2=2 2q+ 1-1. ( 5 .1 ) 

But the equation (5.1) has no integer solution x (> 1). To prove this, we first note that any 
integer x satisfying (5.1) must be odd. Now rewriting (5.1) in the following equivalent form 

(x-1 )(x+ 1 )=2(2q-1 )(2q+ 1), 
we see that the l.h.s. is divisible by 4, while the r.h.s. is not divisible by 4 since both 2q:-1 and 
2

q
+ 1 are odd. 

Thus, if x:;t:O, then we reach to a contradiction in either of the above cases. This 
contradiction establishes the lemma. 0 
Corollary 5.2 : Let m (~2) and N (>0) be two fixed integers. Then, the Diophantine equation 
N2+ 1 =ym has no integer solution y. 

Corollary 5.3 : Let m (;:::2) and N (> 1) be two fixed integers. Then, the Diophantine equation 
x2+ I =Nm has no (positive) integer solution x. . 

Lemma 5.3 : Let m (~2) be a fixed integer. Then, the only non-negative integer solutions of 
the Diophantine equation x2_ym=1 are ( 1) x=l, y=0; (2) x=3, y=2, m=3. 
Proof: For m=2, the lemma reduces to Lemma 5.1. So we consider the case when m~3. 

From the given Diophantine equation, we see that, y=O if and only if x=±l, giving the 
only non-negative integer solution x=l, y=O. To see if the given Diophantine equation has 
any non-zero integer solution, we assume that x:;t:l. 

If m is even, say, m=2q for some integer q?!l, then x2_ym=;x2_(yQ)2=1, which has no 
integer solution y for any x> 1 (by Corollary 5.1(2». 

Next, let m be odd, say, m=2q+ 1 for some integer q~l. Then, x2_y2Q+I=1, that is, 
(x-1)(x+ 1)=y2Q+l. 

We now consider the following cases that may arise : 
( 1) x-1=1, x+l=y2Q+1. 
Here, x=2 together with the equation y2q+l=3, which has no integer solution y. 
(2) x-I =y, x+ 1 =y2q. 
Rewriting the second ~quation in the equivalent form (yq-l )(yQ+ 1 )=x, we see that (yq+ 1) Ix. 

But this contradicts the first equation x=y+ 1 if q> 1, since for q> 1, yq+ l>y+ 1 =x. 
If q=l, then 

(y-l )(y+ 1 )=x => y-l = 1, y+ 1 =x, 
so that y=2, x=3, m=3, which is a solution of the given Diophantine equation. 
(3) x-I =yt for some integer t with 2::::;t:S;q, q?!2 (so that x+ 1 =y2q-t+l). 
In this case, we have 

2x=yt[ 1 +y2(Q-t)+ 1]. 

Since x does not divide y, it follqws that 
1 +y2(Q-t)+ I =Cx for some integer C;?: 1. 

Thus, 

2x=y\Cx) => C/=2. 
If C=2, then y= 1, and the resulting equation x2=2 has no integer solution. On the other hand, 
if C:;t::2, the equation Cyt=2 has no integer solution. Thus, case (3) cannot occur. 

All these complete the proof of the lemma. 0 
Corollary 5.4 : The only non-negative integer solution of the Diophantine equation x2

_ y3=1 
is x=3, y=2. -
Corollary 5.5 : Let m (>3) be a fixed integer. Then, the Diophantine equation x2_ym=1 has 
x= 1, y=0 as its only non-negative integer solution. 
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Corollary 5.6 : Let ill (>3) and N (>0) be two fixed integers. Then, the Diophantine equation 
x2-Nm=1 has no integer solution x. 
Corollary 5.7: Let m (~3) and N (> 1) be two fixed integers withN:;t:3. Then, the Diophantine 
equation N2_ym=1 has no integer solution. 

We are now in a position to prove the following theorem. 
Theorem 5.2 : For any n~I, none of the SPSt(n) and SPS2(n) is a cube or higher power of an 
integer (> 1). 
Proof: is by contradiction. Let, for some integer n21 , 

SPS 1(n):=;(n!)2+1=ym for some integers y>I, m2:3. 
By Corollary 5.2, the above equation has no integer solution y. 

Again, if for some integer n21 , 
SPS2(n)==(n!)2 -1 =zs for some integer z21, s23, 

we have contradiction to Corollary 5.7. D 
The following result gives the recurrence relations satisfied by SPSI(n) and SPS2(n). 

Lemma 5.4 : For all n;;:::l, 
(1) SPSt(n+ l)=(n+ 1iSPS1(n)-n(n+2), 
(2) SPS2(n+ 1 )=(n+ 1 /SPS2(n)+n(n+ 2). 
Proof: The proof is for part (1) only. Since 

SPS1(n+ 1 )=[(n+ 1 )!]2+ 1 =(n+ li[(n!)2+ I]-(n+ 1 )2+ 1, 
the result follows. D 
Lemma 5.5 : For all n21, 
(1) SPS 1(n+2)-SPSI(n» SPS t(n+ 1), 
(2) SPS2(n+2)-SPS2(n»SPS2(n+ 1). 
Proof: Using Lemma 5.4, it is straightforward to prove that 

SPS 1 (n+2)-SPS 1 (n)=SPS2(n+2)-SPS2(n)=(n!)2 [(n+ 1 )\n+2/-1]. 
Some algebraic manipulations give the desired inequalities. D 

Lemma 5.5 can be used to prove the following results. 
Theorem 5.3 : (Except for the trivial cases, SPSl(l)=2=F(3)=L(0), SPSJ(2)=5=F(5» there are 
no numbers of the Smarandache square product sequence of the first kind that are Fibonacci 
(or Lucas) numbers. 
Theorem 5.4 : (Except for the trivial cases, SPS2(l)=0=F(0), SPS2(2)=3=F(4)=L(2» there are 
no numbers of the Smarandache square product sequence of the . second kind that are 
Fibonacci ( or Lucas) numbers. 

The question raised by )acobescu [11] is : How many terms of the sequence 
{SPS1(n)}oon=1 are prime? 

The following theorem, due to Le [12], gives a partial answer to the above question. 
Theorem 5.5 : If n (>2) is an even integer such that 2n+ 1 is prime, then SPSI(n) is not a 
prime. 

Russo [3] gives tables of values of SPSJ(n) and SPS2(n) for 1:$;n:$;20. Based on 
computer results, Russo [3] conjectures that each of the sequences {SPSI(n)} oon=l and 
{SPS2(n)} 00 n"'-l cont~ins only a finite number of primes. 

6. SMARANDACHE HIGHER POWER PRODUCT SEQUENCES 
{HPPS I(n)} 00 n=l, {HPPS2(n)} oon=1 

The n-th terms of the Smarandache higher power product sequences are given in (1.5). The 
following lemma gives the recurrence relation satisfied by HPPS I (n) and HPPS2(n). 
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Lemma 6.1 : For all n;?:l, 
(1) HPPS I(n+ l)=(n+ 1 )mHPPS \ (n)-[(n+ l)m+ 1], 
(2) HPPS2(n+ l)=(n+ 1)mHPPS2(n)+[(n+ l)m+ 1]. 
Theorem 6.1: For any integer n;?:l, none ofHPPPS1(n) and HPPS2(n) is a square of an integer 
(> 1). 
Proof: If possible, let 

HPPS [Cn):=Cn!)m+ 1 =x2 for some integer x> 1. 
This leads to the Diophantine equation x2-Cn!)m=1, which has no integer solution x, by virtue 
of Corollary 5.6 (for m>3). Thus, if m>3, HPPS1(n) cannot be a square of a natural number 
(> 1) for any n;?: 1. 

Next, let, for some integer n;?:2 (HPPS2(1)=O) 
HPPS2(n)=(n!)m -1 =y2 for some integer y;?:l. 

Then, we have the Diophantine equation y2+ 1 =(n!)m, and by Corollary 5.3, it has no integer 
solution y. Thus, HPPS2(n) cannot be a square of an integer (> 1) for any n;?:l. 0 
The following two theorems are due to Le [13,14]. 
Theorem 6.2: If m is not a number of the fonn 2c for some f;;:::l, then the sequence 
{HPPS1(n)}COn=1 contains only one prime, namely, HPPPS 1(1)=2. 
Theorem 6.3: If both m and 2m -1 are primes, then the sequence {HPPS2(n)} co n~l contains 
only one prime, HPPS2(2)= 2m ; otherwise, the sequence does not contain any prime. 
Remark 6.1 : We have defined the Smarandache higher power product sequences under the 
restriction that m> 3, and under such restriction, as has been proved in Theorem 6.1, none of 
HPPS1(n) and HPPS2(n) is a square of an integer (>1) for any n;?:l. However, ifm=3, the 
situation is a little bit different : For any n;?:l, HPPS2(n)=(n!)3 -1 still cannot be a perfect 
square of an integer (?1), by virtue of Corollary 5.3, but since HPPS,(n)=(n!i+1, we see that 
HPPSl(2)=(2!)3+1=3 ,that is, HPPS 1(2) is a perfect square. However, this is the only term of 
the sequence {SPPS1(n)}COn=1 that can be express'ed as a perfect square. 

7. SMARANDACHE PERMUTATION SEQUENCE {PS(n)}COn=1 

For the Smarandache permutation sequence, given in (1.6), the question raised (Dumitrescu 
and Seleacu [4]) is : Is there any perfect power among these numbers? 

Smarandache conjectures that there are none. In Theorem 7.1, we prove the 
conjecture in the affirmative. To prove the theorem, we need the follqwing results. 
Lemma 7.1 : For n;?:2, PS(n) is of the form 2(2k+ 1) for some integer k> 1. 
Proof: Since for n;?:2, 

PS(n)= 135 ... (2n-1 )(2n)(2n-2) ... 42, (7.1) 
we see that PS(n) is even and after division by 2, the last digit of the quotient is 1. 0 

An immediate consequence of the above lemma is the following. 
Corollary 7~1 : For n~2, 2c I PS(n) if and only if f=1. 
Theorem 7.1: For ~;?:1, PS(n) is not a perfect power. 
Proof: The result is clearly true for n=l, since PS(1)=3x22 is not a perfect power. The proof 
for the case n;?:2 is by contradiction. 

Let, for some integer n~2, 
PS(n)=xc fOLsome integers x> 1, i;?:2. 

Since PS(n) is even, so is x. Let x=2y for some integer y> 1. Then, 
PS(n)=(2y)=2c yE, 

which shows that 2c I PS(n), contradicting Corollary 7.1. 0 
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To get more insight into the numbers of the Smaradache permutation sequence, we 
define a new sequence, called the reverse even sequence, and denoted by {RES(n)} oon=l, as 
follows: 

RES(n)=(2n)(2n-2) .. .42, n;;:: 1. (7.2) 
A first few terms of the sequence are 

2, 42, 642, 8642, 108642, 12108642, .... 
We note that, for all n;;:: 1 , 

RES(n+ 1)=(2n+2)(2n)(2n-2) ... 42 

=(2n+2)10
s
+RES(n) for some integer s;;::n, (7.3) 

where, more precisely, 
s=number of digits in RES(n). 

Thus, for example, 
RES( 4)=8x 103+RES(3), RES(5)=1 Ox 104+RES(4), RES(6)=12x 106+RES(5). 

Lemma 7.2 : For all n;;::l, 41 [RES(n+1)-RES(n)]. 
Proof: Since from (7.3), 

RES(n+l}-RES(n)=(2n+2)lOs for some integer s (~n;;::l), 
. the result follows. 0 
Lemma 7.3 : The numbers of the reverse even sequence are of the fonn 2(2k+ 1) for some 
integer k2:0. 
Proof: The proof is by induction on n. The result is true for . So, we assume that the 
result is true for some n, that is, 

RES(n)=2(2k+ 1) for some integer k;;::O. 
But, by virtue of Lemma 7.2, 

RES(n+ 1}-RES(n)=4k' for some integer k'>O, 
which, together with the induction hypothesis, gives, 

RES(n+ 1)=4k'+RES(n)=4(k+k')+2. 
Thus, the result is true for n+ 1 as well,· completing the proof. 0 

Lemma 7.4: 31 RES(3n) if and only if31 RES(3n-1). 
Proof: Since, 

RES(3n)=(6n)1 OS+RES(3n-l) for some integer s;;:::n, 
the result, follows. 0 

By repeated application of (7.3), we get successively 

RES(n+3)=(2n+6)lOs+RES(n+2) for some integer s;;::n+2 

=(2n+6)10s+(2n+4)10t+RES(n+l) for some integer t;;:::n+l 

=(2n+6) 1 OS+(2n+4) 1 Ot+(2n+2) 1 OU+RES(n) for some integer u~, (7.4) 
so that, 

RES( ri+ 3 }-RES( n)=(2n+6) 1 OS +(2n+4) 1 Ot+(2n+ 2) IOu, 

where s>t>~n;;:: 1. 

Lemma 7.5: 3 1 [RES(n+ 3}--RES(n)] for all n2:: 1. 
Proof: is evident from (7.5), since 

31 (2n+6) 1 OS+(2n+4) 1 Ot+(2n+2) 1 OU 
OU[(2n+6)( 1 Os~u+ 1 ot~u+ 1 )-2( 1 Os~u+2)]. 0 
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Corollary 7.2 : 3 1 RES(3n) for all n21. 
Proof: The result is true for n==1, since RES(3)=642 is divisible by 3. Now, assuming the 
validity of the result for n, so that 31 RES(3n), we get, from Lemma 7.5, 
31 RES(3n+3)=RES(3(n+1», so that the result is true for n+1 as well. 

This completes the proof by induction. D 
Corollary 7.3 : 31 RES(3n-l) for all n21. 
Proof: follows from Lemma 7.4, together with Corollary 7.2.0 

Corollary 7.4: For any n2::0, 31 RES(3n+l). 
Proof: Clearly, the result is true for n=O. For n21, from (7.3), 

RES(3n+ 1 )=( 6n+ 2) 1 as +RES(3n) for some integer s23n. 

Now, 31 RES(3n) (by Corollary 7.2) but 31 (6n+2). Hence the result. D 
Using (7.4), we that, for all n2::1, 

RES (n+2)-RES(n) 
=[RES (n+2)-RES (n+ 1 )]+[RES(n+ 1 )-RES(n)] 

=[(2n+4)1 Ot-1JRES(n+ 1)+[(2n+2)1 OU -1]RES(n), (7.6) 

where t and u are integers with t>U2o+ 1. 
From (7.6), we get the following result. 

Lemma 7.6 : RES (n+2)-RES (n»RES(n+ 1) for all n2::1. 
PS(n), given by (7.1), can now be expressed in terms of OS(n) and RES(n) as 

follows: For any n21, 

PS(n)=10
s 

OS(n)+RES(n) for some integer (7.7) 
where, more precisely, 

s=number of digits in RES(n). 

From (7.7), we observe that, for n22, (since 41 10s for s2n2::2), PS(n) is of the form 
4k+2 for some integer k>l, since by Lemma 7.3, RES(n) is of the same form. This provides 
an alternative proof of Lemma 7.1. 
Lemma 7.7: 31 PS(3n) for all n21. 
Proof: follows by virt)le of Lemma 2.2 and Corollary 7.2, since 

PS(3n)=10
s 

OS(3n)+RES(3n) for some integer s23n. D 

Lemma 7.8: 31 PS(n) if and only if 31 PS(n+3). 
Proof: follows by virtue of Lemma 1 and Lemma 7.5. 0 
Lemma 7.9 : 31 PS(3n-2) for all n2::1. ' 
Proof: Since 31 PS(l)=12, the result is true for n=1. To prove by induction, we assume that 
the result is true for some n, that is, 31 PS(3n-2). But, then, by Lemma 7.8, 31 PS(3n-l), 
showing that the result is true for n+ 1 as well. 
Lemma 7.10: For all n21, PS(n+2)-PS(n»PS(n+l). 
Proof: Since 

,PS(n+2)=10
s 

OS(n+2)+RES(n+2) for some integer 820+2, 

PS(n+ 1)=10
t 

OS(n+ l)+RES(n+ 1) for some integer t2::n+ 1, 

PS(n)='10
u 

OS(n)+RES(n) for some integer u2n, 
where s>t>u, we see that 

PS(n+2)-PS(n)=[ 1 OS OS(n+2)-10
u 

OS(n)]+[RES(n+2)-RES(n)] 

> 1 OS[OS(n+ 2 )-OS( n)]+ [RES (n+ 2)-RES( n)] 

> 1 ot OS(n+ 1 )+RES(n+ 1 )=PS(n+ 1), 

where the last inequality follows by virtue of (2.4), Lemma 7.6 and the fact that 10s>10
t
. 0 
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Lemma 7.10 can be used to prove the following result. 
Theorem 7.1 : There are no numbers in the Smarandache permutation sequence that are 
Fibonacci (or, Lucas) numbers. 
Remark 7.1 : The result given in Theorem 7.l has also been proved by Le [15]. Note that 

PS(2)=1342=11x122, PS(3)=135642=111x1222, PS(4)=1357S642=1111x12222, 
as has been pointed out by Zhang [16]. However, such a representation of PS(n) is not valid 
for n~5. Thus, the theorem of Zhang [16] holds true only for 1::::;n~4 (and not for 1:::;n:::;9). 

S. SMARANDACHE CONSECUTIVE SEQUENCE {CS(n)}UJn=! 

The Smarandache consecutive sequence is obtained by repeatedly concatenating the positive 
integers, and the n-th tern of the sequence is given by (1.7). 
Since 

CS(n+1)=123 ... (n-1)n(n+l), n~l, 
we see that, for all n21, 

CS(n+ 1 lOs CS(n)+(n+ 1) for some integer s~l, CS(l)=l. 
More precisely, 

s==number of digits in (n+ 1). 
Thus, for example, CS(9)=10 CS(S)+9, CS(l0)=102 CS(9)+10. 

From (S.l), we get the following result : 
Lemma 8.1 : For all n~l, CS(n+ 1)-CS(n»9 CS(n). 

Thus, 

Using Lemma 8.l, we get, following the proof of (2.1), 
CS(n+2)-CS(n»9[CS(n+ l)+CS(n)] for all n2:1. 

CS(n+2)-CS(n»CS(n+ 1), n~l. 

(8.1) 

(8.2) 

(8.3) 

Based on computer search for Fibonacci (and Lucas) numbers from 12 up through 
CS(2999)=123 ... 29982999, Asbacher [1] conjectures that (except for the trivial case, 
CS(1)=l=F(l)=L(l» there are no Fibonacci (and Lucas) numbers in the Smarandache 
consecutive sequence. The following theorem confirms the conjectures of Ashbacher. 
Theorem 8.1 : There are no Fibonacci (and Lucas) numbers in the Smarandache consecutive 
sequence (except for the trivial cases ofCS(l)=1=F(1)=F(2)=L(l), CS(3)=123=L(lO». 
Proof: is evident from (8.3). 0 
Remark 8.1 : As has been pointed out by Ashbacher [1], CS(3) is a Lucas number. However, 
CS(3 ):;t:CS(2)+CS( 1). 
Lemma 8.2: Let 31 n. Then, 31 CS(n) if and only if31 CS(n-I). 
Proof: follows readily from (8.1). 0 

By repeated application of (S.I), we get, 

'CS(n+3)=10s CS(n+2)+(n+3) for some integer s~I 
'=10s[IOt CS(n+1)+(n+2)]+(n+3) for some integer t2:1 

=1 Os+t[ 1 Ou CS(n)+(n+ 1 )]+(n+ 2) 1 OS +(n+ 3) for some integer u~l 
Os+t+u CS(n)+(n+ 1)1 Os+t+(n+2) 1 OS+(n+3), (S.4) 

where s:?:t:?:u2: 1. 
Lemma 8.3 : 31 CS(n) if and only if 31 CS(n+ 3) . 

. Proof: follows from (S.4), since 
31[(n+ 1) 1 Os+t+(n+2)1 OS+(n+ 3)]=[(n+ 1)(1 Os+t+ 1 Os+ 1 )+(1 OS+2)]. 0 
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Lemma 8.4: 31 CS(3n) for all n;;:::l. 
Proof: The proof is by induction on n. The result is clearly true for n=l, since 31 CS(3)=123. 
So, we assume that the result is true for some n, that is, we assume that 3 1 CS(3n) for some n. 
But then, by Lemma 8.4, 31 CS(3n+ 3)=CS(3(n+ 1»), showing that the result is true for n+ 1 as 
well, completing induction. 0 
Corollary 8.1 : 3 I CS(3n-l) for all n;;::: 1. 
Proof: From (8.1), for n2::1, 

CS(3n)=10s CS(3n-1)+(3n) for some integer s;;:::l. 
Since, by Lemma 8.4, 3ICS(3n), the result follows. 0 
Corollary 8.2 : 31 CS(3n+ 1) for all n;;:::O. 
Proof: For n=O, CS(l)=I is not divisible by 3. For n2::1, from (8.1), 

CS(3n+ 1)=1 OS CS(3n)+(3n+ 1), 

where, by Lemma 8.4, 31 CS(3n). Since 31 (3n+ 1), we get desired the result. 0 
Lemma 8.5: For any n;;:::I, 51 CS(5n). 
Proof: Forn2::I, from (8.1), 

CS(5n)=10
s 

CS(5n-1)+(5n) for some integer 
Clearly, the r.h.s. is divisible by 5. Hence, 51 CS(5n). 0 

F or the Smarandache consecutive sequence, the question is : How many tenns of the 
sequence are prime? Fleuren [17J gives a table of prime factors of CS(n) for n=I(1)200, 
which shows that none of these numbers is prime. In the Editorial Note following the paper 
of Stephan [18], it is mentioned that, using a supercomputer, no prime has been found in the 
first 3,072 terms of the Smarandache consecutive sequence. This gives rise to the conjecture 
that there is no prime in the Smarandache consecutive sequence. This conjecture still remains 
to be resolved. We note that, in order to check for prime numbers in the Smarandache 
consecutive sequence, it is sufficient to check the terms of the form CS(3n+ 1), n2::1, where 
3n+ 1 is odd and is not divisible by 5. 

9. SMARANDACHE REVERSE SEQUENCE {RS(n)}CXln=l 

The Smarandache reverse sequence is the sequence of numbers fanned by concatenating the 
increasing integers on the left side, starting with RS( 1)= 1. The n-th term of the sequence is 
given by-(1.8). 
Since, 

RS(n+ 1 )=(n+ l)n(n-l) ... 21, n2::1, 
we see that, for all, n;;::: 1, 

RS(n+I)=(n+1)10s+RS(n) for some integer sm (with RS(1)=l) (9.1) 
More precisely, 

s=number of digits in RS(n). 
Thus, for example, 

RS(9)=9x 10
8 + RS(8), RS( 1 0)= lOx 10

9
+ RS(9), RS( 11)= 11 x 10

11 
+ RS( 10). 

Lemma 9.1 : For all n2::1, 41 [RS(n+l)-RS(n)], 10 I [RS(n+l)-RS(n)]. 
Proof: For all n;;:::l, from (9.1), 

RS(n+I)-RS(n)=(n+l)lOs (with s2::n), 

where the r.h.s. is divisible by both 4 and 10.0 
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Corollary 9.1 : For all n2:2, the terms of {RS(n)} C() n=l are of the fonn 4k+ l. 
Proof: The proof is by induction of n. For n=2, the result is clearly true (RS(2)=21 =4x5+ 1). 
So, we assume the validity of the result for n, that is, we assume that 

RS(n)=4k+ 1 for integer k2:l. 
Now, by Lemma 9.1 and the induction hypothesis, 

RS(n+ 1)=RS(n)+4k'=4(k+k')+ 1 for some integer k'2:1 , 
showing that the result is true for n+ 1 as well. 0 
Lemma 9.2 : Let 3 1 n for some n (2:2). Then, 31 RS(n) if and only if 31 RS(n-l). 
Proof: follows immediately from (9.1). 0 

By repeated application of (9.1), we get, for all n2:1, 
RS(n+3)=(n+3)10s+RS(n+2) for some integer s2:n+2 

=:(n+3)1 OS+(n+2)1 Ot+RS(n+ 1) for some integer tzn+ 1 

=(n+3)10s+(n+2)10t+(n+1)10u+RS(n) for some integer u2:n, (9.2) 
where s>t>u. Thus, 

RS(n+3)=1 OU[(n+3)10S
-
u+(n+2)1 Ot-u+(n+ l)]+RS(n). (9.3) 

Lemma 9.3: 31 [RS(n+3)-RS(n)] for all n2:l. 
Proof: is immediate from (9.3). 0 

A consequence of Lemma 9.3 is the following. 
Corollary 9.2 : 3 I RS(3n) if and only if 3 1 RS(n+ 3). 

Using Corollary 9.2, the following result can be established by.induction on n. 
Corollary 9.3 : 3 / RS(3n) for all n2:1. 
Corollary 9.4 : 31 RS(3n-l) for all n2: 1. 
Proof: follows from Corollary 9.3, together with Lemma 9.2.0 
Lemma 9.4: 31 RS(3n+ 1) for all n2:0. 
Proof: The result is true for n=O. For 021, by (9.1), 

RS(3n+ 1)=(3n+ 1)10s+RS(3n). 
This gives the desired result, since 3/ RS(3n) but 31 (3n+ 1). 0 

The following ,result, due to Alexander [19], gives an explicit expression for RS(n) : 
i-I 
L (l +tlog jJ) 

n j=l 
Lemma 9.5: For all n2:1, RS(n)=1+I i*10 

In Theorem 9.1, we prove that (except for the trivial cases of 
RS(1)=1=F(1)=F(2)=L(l), RS(2)=21=F(8», the Smarandache reverse sequence contains no 
Fibonacci and Lucas numbers. For the proof of the theorem, we need the following results. 
Lemma 9.6 : For all n2:1, RS(n+ 1»2RS(n). 
Proof: Using (9.1), we see that 

, RS(n+l)=(n+l)10s+RS(n»2RS(n) if and only if RS(n)«n+l) 1 Os, 
which is true since,RS(n) is an s-digit number while lOS is an (s+l)-digit number. 0 
Corollary 9.5 : For all n2:1, RS(n+2)-RS(n»RS(n+ 1). 
Proof: Using (9.2), we have 

RS(n+2)-RS(n)=[RS(n+2)-RS(n+ 1)]+[RS(n+ l)-RS(n)] 
=[(n+2)1 ot_(n+ 1)10u]+2[RS(n+ I)-RS(n)] 
>2[RS(n+ 1)-RS(n)] 
>RS(n+ 1), by Lemma 9.6. 

This gives the desired inequality. 0 
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Theorem 9.1: There are no numbers in the Smarandache reverse sequence that are Fibonacci 
or Lucas numbers (except for the cases of n= 1,2). 
Proof: follows from Corollary 9.5. D 
For the Smarandache reverse sequence, the question is : How many terms of the sequence are 
prime? By Corollary 9.2 and Corollary 9.3, in searching for primes, it is sufficient to consider 
the terms of the sequence of the fonn RS(3n+ 1), where n> 1. In the Editorial Note following 
the paper of Stephan [18], it is mentioned that searching for prime in the first 2,739 terms of 
the Smarandache reverse sequence revealed that only RS(82) is prime. This led to the 
conjecture that RS(82) is the only prime in the Smarandache reverse sequence. However, the 
conjecture still remains to be resolved. Fleuren [17] presents a table giving prime factors of 
RS(n) for n=I(1)200, except for the cases n=82,136, 139,169. 

10. SMARANDACHE SYMMETRIC SEQUENCE {SS(n)}aJn=l 

The n-th term, SS(n), of the Smarandache symmetric sequence is given by (1.9). 
The numbers in the Smarandache symmetric sequence can be expressed in tenns of the 
numbers of the Smarandache consecutive sequence and the Smarandache reverse sequence as 
follows: For all n~3, 

SS(n)=10s CS(n-l)+RS(n-2) for some integer s~l, (10.1) 
with SS(1)=l, SS(2)=11, where more precisely, 

s=number of digits in RS(n-2). 
Thus, for example, SS(3)=10 CS(2)+RS(1), SS(4)=102 CS(3)+RS(2). 

Lemma 10.1 : 31 SS(3n+ 1) for all n~1. 
Proof: Let n (~1) be any arbitrary but fixed number. Then, from (l0.1), 

SS(3n+1)=10s CS(3n)+RS(3n-1). 
Now, by Lemma 8.4,31 CS(3n), and by Corollary 9.4, 31 RS(3n-1). Therefore, 31 SS(3n+1). 

Since n is arbi~rary, the lemma is proved. D 

Lemma 10.2: For any n~l, (1) 3 {SS(3n), (2) 3 {SS(3n+2). 
Proof : Using (10.1), we see that 

SS(3n)= l Os CS(3n-l)+RS(3n-2), n~1. 
By Corollary 8.1, 31 CS(3n-1), and by Lemma 9.4, 3 {RS(3n-2). Hence, CS(3n) cannot be 
divisible. by 3. 

Again, since 
SS(3n+2)=10s CS(3n+ 1 )+RS(3n), n~ 1, 

and since 3 {CS(3n+ 1) (by Corollary 8.2) and 31 RS(3n) (by Corollary 9.3), it follows that 
SS(3n+2) is not divisible by 3. D 

Using (8.3) and Corollary 9.5, we can prove the following lemma. The proof is 
similar to that used in proving Lemma 7.10, and is omitted here. 
Lemma 10.3 : For all n~l, SS(n+2)-SS(n»SS(n+l). 

By virtue of the inequality in Lemma 10.3 1 we have the following. 
Theoreltl10.1 : (Except for the trivial cases, SS(1)=l=F(I)=L(l), SS(2)=II=L(5», there are 
no members of the Smarandache symmetric sequence that are Fibonacci (or, Lucas) numbers. 

The following lemma gives the expressionofSS(n+l)-SS(n) in terms ofCS(n)-CS(n-1). 
Lemma 10.4: SS(n+1)-SS(n)=10s+t[CS(n)-CS(n-2)] for all n;::::3, where 

s=number of digits in RS(n-2), s+t=number of digits in RS(n-I). 
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Proof: By (10.1), for n~3, 

so that 

But, 

SS(n)=10s CS(n-l)+RS(n-2), SS(n+ 1)=1 Os+t CS(n)+RS(n-I), 

SS(n+ 1)-SS(n)=lOS[l ot CS(n)-CS(n-1)J+[RS(n-1)-RS(n-2)] 
OS[ 1 OtCS(n)-CS(n-1 )+(n-l)] (by(9.1 ). (****) 

{

I, if2:::;n-1~9 

t= =number of digits in (n-1). 
m+l, if 10m:::;n-l~10m+l-1 (for all m~l) 

Therefore, by (8.1) 
CS(n-1)=10t CS(n-2)+(n-1), 

and finally, plugging this expression in (****), we get the desired result. 0 
We observe that SS(2)= 11 is prime; the next eight terms of the Smarandache 

symmetric sequence are composite numbers and squares : 
SS(3)=121 =112, SSe 4)=12321 =(3x37i=111 2

, 

SS(5)=1234321=(llxlO1)2=1111 2, SS(6)=123454321=(41 x271/=11111 2
, 

SS(7)=12345654321 =(3x7x 11 x 13x37/=111111 2, 
SS(8)=1234567654321=(239x4649/=1111111 2

, 

SS(9)=123456787654321=(11xl010101i=11111111 2
, 

SS(1 0)=12345678987654321 =(9x37x333667)2=(l11 x 1001001/=111111111 2
. 

For the Smarandache symmetric sequence, the question is : How many terms of the 
sequence are prime? The question still remains to be answered. 

11. SMARANDACHE PIERCED CHAIN SEQUENCE {PCS(n)} n=1 co 

In this section, we give answer to the question posed by Smarandache [5] by showing that, 
starting from the second term, all the successive terms of the sequence {PCS(n)/1 01 }n=lco, 
given by (1.11), are composite numbers. This is done in Theorem 11.1 below. 

We first observe that the elements of the Smarandache pierced chain sequence, {PCS(n)}n=loo, 
satisfy the following recurrence relation : 

PCS(n+l)=104 PCS(n)+101, n~2; PCS(l)=101. (11.1) 
Lemma 11.1 : The elements of the seguence {PCS(n)}n=loo are 

101,101(104+1),101(108+104+1),101(1012+108+104+1), ... , 
and in general, 

PCS(n)=101[104(n-l)+104(n-2)+ ... +104+1], n~l. (11.2) 
Proof: The proof of (11.2) is by induction on n. The result is clearly true for n=l. So, we 
assume that the result is true for some n. 

Now, from (11.1) together with the induction hypothesis, we see that 
PCS(ri+l)=104 PCS(n)+101 

= 1 04[ 1 0 1 (1 04(n-1)+ 1 04(n-2)+ ... + 104+ 1 )]+ 101 
01 (1 04°+ 1 04(n-I)+ ... + 104+ 1), 

which shows that the result is true for n+ 1. 0 
It has been mentioned in Ashbacher [1] that PCS(n) is divisible by 101 for all n~l, and 

Lemma 11.1 shows that this is indeed the case. Another consequence of Lemma 11.1 is the 
following corollary. 
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Corollary 11.1 : The elements of the sequence {PCS(n)/lOl }n=lco are 
1, x+l, x2+x+l, x3+x2+x+l, "', 

and in general, 
PCS(n)1101=xn

-
1+xn

-
2+ ... +I, n~l, (11.3) 

where X= 104
. . 

Theorem 11.1 : For all n~2, PCS(n)1101 is a composite number. 
Proof: The result is true for n=2. In fact, the result is true if n is even as shown below: If n 
(~4) is even, let n=2m for some integer m (~2). Then, from (11.3), 

PCS(2m)/l 01 =x2m-l+x2m-2+ ... +x+ 1 

=x2m-\x+ 1)+ ... +(x+ 1) 
=(x+ 1 )(x2m-2+x2m-4+ ... + 1) 

that is, PCS(2m)/l 0 1 =(1 04+ 1)[ 1 08(m-I)+ 1 08(m-2)+ ... + 1], (11.4) 

which shows that PCS(2m)/1 0 1 is a composite number for alLm (~2). 
Next, we consider the case when n is prime, say n=p, where p (~3) is a prime. In this case, 

from (11.3), 
PCS(p)/1 0 1 =xp

-
1+xp

-
2+ ... + 1 =(xP -1 )!(x-l). 

Let y=I02 (so that X=y2). Then, 

PCS(p) xP -1 y2p -1 (yP -1 )(yP+ 1) 

101 x-I (y+ l)(y-l) 

{(y_l)(yP-'+yP-2+ ... + I)} {(y+ 1 )(yp-l_yp-2+ ... + I)} 

=----------------------------------
(y+ 1 )(y-l) 

=(yP-l_yP-2+yp-3_ ... + 1)(yp-l+yP-2+yp-3+ ... + 1) 
that is, PCS(p)/1 0 1 =[ 1 02(p-1)_1 02(p-2)+ 1 02(p-3)+ ... + 1][ 1 02(p-l)+ 1 02(p - 2) + ... + 1], (11.5) 

so that SPC(p)/1 0 1 is 'l composite number for each prime p (23). 
Finally, we consider the case when n is odd but composite. Then, letting n=pr where p is 

the largest prime factor of nand r (22) is an integer, we see that 
PCS(n)!IOl =PCS(pr)11 01 

=xpr-l+xpr-2+ ... + 1 
=xp(r-I)(xp-l+xp-2+ ... + I)+xp(r-2\xp-l+xp-2+ ... + 1)+ ... 

+(xp- 1+Xp-2+ ... + 1) 
=(xP- 1+Xp- 2+ ... + 1 )[xP(r-I)+xp(r-2)+ ... + I) 

that is, PCS(n)110I=[I04(P-I)+104(P-2)+ ... +I][I04p(r-J)+10 p(r-2)+ ... +1], (11.6) 

and hence, PCS(n)/l01=PCS(pr)/l01 is also a composite number. 
All these complete the proof of the theorem. 0 

Remark 1i.1 : The Smarandache pierced chain sequence has been studied by Le [20] and 
Kashihara [21] as-well. Following different approaches, they have proved by contradiction 
that for n~2, PCS(n)!I 0 1 is not prime. In Theorem 11.1, we have proved the same result by 
actually finding out the factors of PCS(n)11 0 1 for all n22. Kashihara [21] raises the question: 
Is the sequence PCS(n)1l01 square-free for n~2? From (11.4), (11.5) and (11.6), we see that 
the answer to the question of Kashihara is yes. 
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