MORE RESULTS AND APPLICATIONS OF THE GENERALIZED SMARANDACHE STAR FUNCTION

(Amarnath Murthy, S.E. (E & T), Well Logging Services, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows:

Let \(\alpha_1, \alpha_2, \alpha_3, \ldots \alpha_r \) be a set of \(r \) natural numbers and \(p_1, p_2, p_3, \ldots p_r \) be arbitrarily chosen distinct primes then \(F(\alpha_1, \alpha_2, \alpha_3, \ldots \alpha_r) \) called the Smarandache Factor Partition of \((\alpha_1, \alpha_2, \alpha_3, \ldots \alpha_r)\) is defined as the number of ways in which the number

\[
N = \frac{\alpha_1 \alpha_2 \alpha_3 \ldots \alpha_r}{p_1 p_2 p_3 \ldots p_r}
\]

could be expressed as the product of its divisors. For simplicity, we denote \(F(\alpha_1, \alpha_2, \alpha_3, \ldots \alpha_r) = F'(N), \) where

\[
N = \frac{\alpha_1 \alpha_2 \alpha_3 \ldots \alpha_r \alpha_{n}}{p_1 p_2 p_3 \ldots p_r \ldots p_n}
\]

and \(p_r \) is the \(r^{th} \) prime. \(p_1 = 2, p_2 = 3 \) etc.

Also for the case

\[
\alpha_1 = \alpha_2 = \alpha_3 = \ldots = \alpha_r = \ldots = \alpha_n = 1
\]

Let us denote

\[
F(1, 1, 1, 1, 1, \ldots) = F(1\#n)
\]

\[
\leftarrow n \text{- ones} \rightarrow
\]

Function as follows:

Smarandache Star Function

(1) \(F'(N) = \sum_{d|r, d|N} F'(d) \) where \(d_r | N \)

(2) \(F^{**}(N) = \sum_{d_r/N} F^{**}(d) \)

d_r ranges over all the divisors of \(N \).

If \(N \) is a square free number with \(n \) prime factors, let us denote

\[
F^{**}(N) = F^{**}(1#n)
\]

Smarandache Generalised Star Function

(3) \(F^{n*}(N) = \sum_{d_r/N} F^{(n-1)*}(d) \)

\(n > 1 \)

and \(d_r \) ranges over all the divisors of \(N \).

For simplicity we denote

\[
F'(Np_1p_2...p_n) = F'(N@1#n), \text{ where} \quad (N,p_i) = 1 \text{ for } i = 1 \text{ to } n \text{ and each } p_i \text{ is a prime.}
\]

\(F'(N@1#n) \) is nothing but the Smarandache factor partition of (a number \(N \) multiplied by \(n \) primes which are coprime to \(N \)).

In [3] I had derived a general result on the Smarandache Generalised Star Function. In the present note some more results and applications of Smarandache Generalised Star Function are explored and derived.
DISCUSSION:

THEOREM (4.1):

\[F'_{r*}(p^\alpha) = \sum_{k=0}^{\alpha} r^{k-1} C_{r-1} P(\alpha-k) \quad -----(4.1) \]

Following proposition shall be applied in the proof of this

\[\sum_{k=0}^{\alpha} r^{k-1} C_{r-1} = \alpha^r C_r \quad -----(4.2) \]

Let the proposition (4.1) be true for \(n = r \) to \(n = 1 \).

\[F'_{r*}(p^\alpha) = \sum_{k=0}^{\alpha} r^{k-1} C_{r-1} P(\alpha-k) \quad -----(4.3) \]

\[F'_{r*(r+1)*}(p^\alpha) = \sum_{t=0}^{\alpha} F'_{r*}(p^t) \]

(\(p \) ranges over all the divisors of \(p^\alpha \) for \(t = 0 \) to \(\alpha \))

RHS = \(F'_{r*}(p^\alpha) + F'_{r*}(p^{\alpha-1}) + F'_{r*}(p^{\alpha-2}) + \ldots + F'_{r*}(p^1) + F'_{r*}(1) \)

from the proposition (4.3) we have

\[F'_{r*}(p^\alpha) = \sum_{k=0}^{\alpha} r^{k-1} C_{r-1} P(\alpha-k) \]

expanding RHS from \(k = 0 \) to \(\alpha \)

\[F'_{r*}(p^\alpha) = r^{\alpha-1} C_{r-1} P(0) + r^{\alpha-2} C_{r-1} P(1) + \ldots + r^{-1} C_{r-1} P(\alpha) \]

similarly

\[F'_{r*}(p^{\alpha-1}) = r^{\alpha-2} C_{r-1} P(0) + r^{\alpha-3} C_{r-1} P(1) + \ldots + r^{-1} C_{r-1} P(\alpha-1) \]

\[F'_{r*}(p^{\alpha-2}) = r^{\alpha-3} C_{r-1} P(0) + r^{\alpha-4} C_{r-1} P(1) + \ldots + r^{-1} C_{r-1} P(\alpha-2) \]

\[\ldots \]

255
\[F^{(r+1)}(p) = C_{r-1} P(0) + C_{r-1} P(1) \]
\[F^{(r+1)}(1) = C_{r-1} P(0) \]

Summing up left and right sides separately we find that the
\[\text{LHS} = F^{(r+1)}(p^a) \]

The RHS contains \(\alpha + 1 \) terms in which \(P(0) \) occurs, \(\alpha \) terms in which \(P(1) \) occurs etc.

\[\text{RHS} = \sum_{k=0}^{\alpha} C_{r-1} P(0) + \sum_{k=0}^{\alpha-1} C_{r-1} P(1) + \ldots + \sum_{k=0}^{1} C_{r-1} P(\alpha-1) \]

\[+ \sum_{k=0}^{\alpha} C_{r-1} P(\alpha) \]

Applying proposition (4.2) to each of the \(\sum \) we get
\[\text{RHS} = C_r P(0) + C_r P(1) + C_r P(2) + \ldots + C_r P(\alpha) \]
\[= \sum_{k=0}^{\alpha} r^k C_r P(\alpha-k) \]

Or
\[F^{(r+1)}(p^a) = \sum_{k=0}^{\alpha} r^k C_r P(\alpha-k) \]

The proposition is true for \(n = r+1 \), as we have
\[F^{(r)}(p^a) = \sum_{k=0}^{\alpha} P(\alpha-k) = \sum_{k=0}^{\alpha} C_0 P(\alpha-k) = \sum_{k=0}^{\alpha} C_{k-1} P(\alpha-k) \]

The proposition is true for \(n = 1 \)

Hence by induction the proposition is true for all \(n \).

This completes the proof of theorem (4.1).

Following theorem shall be applied in the proof of theorem (4.3)

THEOREM (4.2)

\[\frac{n-r}{256} \]
\[\sum_{k=0}^{n-r} \binom{n}{r+k} r^k \binom{r}{k} m^k = \binom{n}{r} (1+m)^{(n-r)} \]

PROOF:

LHS = \[\sum_{k=0}^{n-r} \binom{n}{r+k} r^k \binom{r}{k} m^k \]

\[= \sum_{k=0}^{n-r} \frac{(n)!}{((r+k)!(n-r-k)!)} \cdot \frac{(r+k)!}{(k)!(r)!} \cdot m^k \]

\[= \sum_{k=0}^{n-r} \frac{(n)!}{((r)!(n-r)!)} \cdot \frac{(n-r)!}{((k)!(n-r-k)!)} \cdot m^k \]

\[= \binom{n}{r} \sum_{k=0}^{n-r} \binom{n-r}{k} m^k \]

\[= \binom{n}{r} (1+m)^{(n-r)} \]

This completes the proof of theorem (4.2)

THEOREM (4.3):

\[F^{m\ast}(1\#n) = \sum_{r=0}^{n} \frac{n}{r} \binom{n}{r} m^{n-r} F(1\#r) \]

Proof:

From theorem (2.4) (ref.[1]) we have

\[F\ast(1\#n) = F(1\#(n+1)) = \sum_{r=0}^{n} \frac{n}{r} \binom{n}{r} F(1\#r) = \sum_{r=0}^{n} \frac{n}{r} \binom{n}{r} (1)^{n-r} F(1\#r) \]

hence the proposition is true for \(m = 1 \).

Let the proposition be true for \(m = s \). Then we have

\[F^{s\ast}(1\#n) = \sum_{r=0}^{n} \frac{n}{r} \binom{n}{r} s^{n-r} F(1\#r) \]

or

\[F^{s\ast}(1\#0) = \sum_{r=0}^{0} \frac{n}{r} \binom{n}{r} s^{0-r} F(1\#0) \]

\[F^{s\ast}(1\#1) = \sum_{r=0}^{1} \frac{n}{r} \binom{n}{r} s^{1-r} F(1\#1) \]

\[F^{s\ast}(1\#2) = \sum_{r=0}^{2} \frac{n}{r} \binom{n}{r} s^{2-r} F(1\#1) \]

\[F^{s\ast}(1\#3) = \sum_{r=0}^{3} \frac{n}{r} \binom{n}{r} s^{3-r} F(1\#3) \]

257
\[
F^s(1#0) = 0^C_0 F(1#0) \quad -----(0)
\]

\[
F^s(1#1) = 1^C_0 F^1(1#0) + 1^C_1 F^0(1#1) \quad -----(1)
\]

\[
F^s(1#2) = 2^C_0 F^2(1#0) + 2^C_1 F^1(1#1) + 2^C_2 F^0(1#2) \quad -----(2)
\]

\[
F^s(1#r) = r^C_0 F^r(1#0) + r^C_1 F^1(1#1) + \ldots + r^C_r F^0(1#r) \quad -----(r)
\]

\[
F^s(1#n) = n^C_0 F^0(1#0) + n^C_1 F^1(1#1) + \ldots + n^C_n F^0(1#n) \quad -----(n)
\]

Multiplying the \(r\)th equation with \(n^C_r\) and then summing up we get

the RHS as

\[
= [n^C_0^0 C_0 s^0 + n^C_1^1 C_0 s^1 + n^C_2^2 C_0 s^2 + \ldots + n^C_k^k C_0 s^k + \ldots + n^C_n^n C_0 s^n]F(1#0)
\]

\[
[n^C_1^1 C_1 s^0 + n^C_2^2 C_1 s^1 + n^C_3^3 C_1 s^2 + \ldots + n^C_k^k C_1 s^k + \ldots + n^C_n^n C_1 s^n]F(1#1)
\]

\[
[n^C_r^r C_r s^0 + n^C_{r+1}^{r+1} C_r s^1 + \ldots + n^C_{r+k}^{r+k} C_r s^k + \ldots + n^C_n^n C_r s^n]F(1#r)
\]

\[
+ n^C_n^n C_n s^n]F(1#n)
\]

\[
= \sum_{r=0}^{n} \left\{ \sum_{k=0}^{n-r} n^C_{r+k} r^k C_r s^k \right\} F(1#r)
\]

\[
= \sum_{r=0}^{n} n^C_r (1+s)^{n-r} F(1#n) \quad , \text{by theorem (4.2)}
\]

LHS \(= \sum_{r=0}^{n} n^C_r F^s(1#r)\)

Let \(N = p_1 p_2 p_3 \ldots p_n\). Then there are \(n^C_r\) divisors of \(N\) containing

exactly \(r\) primes. Then LHS = the sum of the \(s^{th}\) Smarandache

star functions of all the divisors of \(N\). \(= F'(s+1)^*(N) = F'(s+1)^*(1#n)\).

Hence we have

\[
F'(s+1)^*(1#n) = \sum_{r=0}^{n} n^C_r (1+s)^{n-r} F(1#n)
\]
\(F^{s\ast}(1\#0) = 0^\circ C \times F(1\#0) \) \hspace{1cm} (0) \\
\(F^{s\ast}(1\#1) = 1^\circ C \times s^1 \times F(1\#0) + 1^\circ C \times s^0 \times F(1\#1) \) \hspace{1cm} (1) \\
\(F^{s\ast}(1\#2) = 2^\circ C \times s^2 \times F(1\#0) + 2^\circ C \times s^1 \times F(1\#1) + 2^\circ C \times s^0 \times F(1\#2) \) \hspace{1cm} (2) \\
\[
\vdots
\] \\
\(F^{s\ast}(1\#r) = r^\circ C \times s^r \times F(1\#0) + r^\circ C \times s^1 \times F(1\#1) + \ldots + r^\circ C \times s^0 \times F(1\#r) \) \hspace{1cm} (r) \\
\[
\vdots
\] \\
\(F^{s\ast}(1\#n) = n^\circ C \times s^n \times F(1\#0) + n^\circ C \times s^1 \times F(1\#1) + \ldots + n^\circ C \times s^0 \times F(1\#n) \) \hspace{1cm} (n) \\

multiplied the \(r \)th equation with \(n^\circ C \times s^r \) and then summing up we get the RHS as

\[
= [n^\circ C \times s^0 \times F(1\#0) + n^\circ C \times s^1 \times F(1\#1) + \ldots + n^\circ C \times s^n \times F(1\#n)] \\
\]

\[
\sum_{r=0}^{n} \sum_{k=0}^{n-r} n^\circ C \times s^r \times F(1\#r) \\
= \sum_{r=0}^{n} n^\circ C \times (1+s)^{n-r} \times F(1\#n) \\
\]

by theorem (4.2)

LHS = \(\sum_{r=0}^{n} n^\circ C \times F^{s\ast}(1\#r) \)

Let \(N = p_1 p_2 p_3 \ldots p_n \). Then there are \(n^\circ C \times s^r \) divisors of \(N \) containing exactly \(r \) primes. Then LHS = the sum of the \(s^\ast \) Smarandache star functions of all the divisors of \(N \). = \(F'(s^\ast+1)\ast(N) = F(s^\ast+1)\ast(1\#n) \).

Hence we have

\[
F(s^\ast+1)\ast(1\#n) = \sum_{r=0}^{n} n^\circ C \times (1+s)^{n-r} \times F(1\#n) \\
\]
which takes the same format
\[P(s) \Rightarrow P(s+1) \]

and it has been verified that the proposition is true for \(m = 1 \)
hence by induction the proposition is true for all \(m \).
\[
F^{m*}(1\#n) = \sum_{r=0}^{n} \binom{n}{r} m^{n-r} F(1\#r)
\]

This completes the proof of theorem (4.3)

NOTE:
From theorem (3.1) we have
\[
F'(N@1\#n) = F'(Np_1p_2 \ldots p_n) = \sum_{m=0}^{n} a_{(n,m)} F^{m*}(N)
\]
where
\[
a_{(n,m)} = \frac{1}{m!} \sum_{k=1}^{m} (-1)^{m-k} \cdot \binom{m}{k} \cdot k^n
\]

If \(N = p_1p_2 \ldots p_k \) Then we get
\[
F(1\#(k+n)) = \sum_{m=0}^{n} \left[a_{(n,m)} \sum_{t=0}^{k} \binom{k}{t} \cdot m^{k-t} \cdot F(1\#t) \right]_{m=0, t=0}^{k} \quad -------(4.4)
\]
The above result provides us with a formula to express \(B_n \) in terms of smaller Bell numbers. It is in a way generalisation of theorem (2.4) in Ref [5].

THEOREM(4.4):
\[
F(\alpha,1\#(n+1)) = \sum_{k=0}^{\alpha} \sum_{r=0}^{n} \binom{n}{r} F(k,1\#r)
\]

PROOF: LHS = \(F(\alpha,1\#(n+1)) = F'(p^{\alpha} p_1p_2p_3 \ldots p_{n+1}) = F'*(p^{\alpha} p_1p_2p_3 \ldots p_n) + \sum F' (\text{all the divisors containing only } p^0) + \sum F' (\text{all the
divisors containing only $p^1) + \sum F'$ (all the divisors containing only
$p^2) + \ldots + \sum F'$ (all the divisors containing only $p^r)
= \sum_{r=0}^{n} \binom{n}{r} F(0, 1#r) + \sum_{r=0}^{n} \binom{n}{r} F(1, 1#r) + \sum_{r=0}^{n} \binom{n}{r} F(2, 1#r) + \sum_{r=0}^{n} \binom{n}{r} F(3, 1#r)
+ \ldots + \sum_{r=0}^{n} \binom{n}{r} F(k, 1#r) + \ldots + \sum_{r=0}^{n} \binom{n}{r} F(\alpha, 1#r)

= \sum_{k=0}^{\alpha} \sum_{r=0}^{n} \binom{n}{r} F(k, 1#r)

This is a reduction formula for $F(\alpha, 1#(n+1))$

A Result of significance

From theorem (3.1) of Ref.: [2], we have

$$F'(p^a@1#(n+1)) = F(\alpha, 1#(n+1)) = \sum_{m=0}^{n} a_{(n+1,m)} F^{m*}(N)$$

where

$$a_{(n+1,m)} = \frac{1}{m!} \sum_{k=1}^{m} (-1)^{m-k} \cdot m^k \cdot \binom{m}{k} \cdot k^{n+1}$$

and

$$F^{m*}(p^a) = \sum_{k=0}^{\alpha} \binom{m+k-1}{m-1} P(\alpha-k)$$

This is the first result of some substance, giving a formula for
evaluating the number of Smarandache Factor Partitions of
numbers representable in a (one of the most simple) particular
canonical form. The complexity is evident. The challenging task
ahead for the readers is to derive similar expressions for other
canonical forms.
REFERENCE

[3] " The Florentine Smarandache " Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.