A Note On Line Graphs

P. Siva Kota Reddy, Kavita. S. Permi and B. Prashanth

Department of Mathematics, Acharya Institute of Technology Soladevanahalli, Bangalore-560 090, India

E-mail: pskreddy@acharya.ac.in

Abstract: In this note we define two generalizations of the line graph and obtain some results. Also, we mark some open problems.

Key Words: Smarandachely (k, r) line graph, (k, r)-graphs, line graphs

AMS(2010): 05C75, 05C45

For standard terminology and notion in graph theory we refer the reader to Harary [2]; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates.

The line graph L(G) of a graph G is defined to have as its vertices the edges of G, with two being adjacent if the corresponding edges share a vertex in G. Line graphs have a rich history. The name line graph was first used by Harary and Norman [3] in 1960. But line graphs were the subject of investigation as far back as 1932 in Whitney s paper [7], where he studied edge isomorphism and showed that for connected graphs, edge-isomorphism implies isomorphism except for K_3 and $K_{1,3}$. The first characterization (partition into complete subgraphs) was given by Krausz [5]. Instead, we refer the interested reader to a somewhat older but still an excellent survey on line graphs and line digraphs by Hemminger and Beineke [4]. An excellent book by Prisner [6] describes many interesting generalizations of line graphs. In this note we generalize the line graph L(G) of G as follows:

Let G = (V, E) be a graph of order $p \ge 3$, k and r be integers with $1 \le r < k \le p$. Let $U = \{S_1, S_2, ..., S_n\}$ be the set of all distinct connected acyclic subgraphs of G of order k and $U' = \{T_1, T_2, ..., T_m\}$ be the set of all distinct connected subgraphs of G with size k.

The vertex (k, r)-graph $L^{v}_{(k,r)}(G)$, where $1 \leq r < k \leq p$ is the graph has the vertex set U where two vertices S_i and S_j , $i \neq j$ are adjacent if, and only if, $S_i \cap S_j$ has a connected subgraph of order r.

The edge (k, r)-graph $L^{e}_{(k,r)}(G)$, where $0 \leq r < k \leq q$ is the graph has the vertex set U' where two vertices T_i and T_j , $i \neq j$ are adjacent if, and only if, $T_i \cap T_j$ has a connected subgraph of size r.

The Smarandachely (k,r) line graph $L_{(k,r)}^{S}(G)$ of a graph G is such a graph with vertex set U' and two vertices T_i and T_j , $i \neq j$ are adjacent if and only if, $T_i \cap T_j$ has a connected subgraph with order or size r. Clearly, $L_{(k,r)}^{v}(G) \leq L_{(k,r)}^{S}(G)$ and $L_{(k,r)}^{e}(G) \leq L_{(k,r)}^{S}(G)$. In

¹Received December 22, 2010. Accepted March 3, 2011.

Figure 1, we depicted L(G), $L_{(k,r)}^{v}(G)$ and $L_{(k,r)}^{e}(G)$ for the graph G.

Figure.1

One can easily verify that: $L_3(K_{1,3}) = K_3$, $L_3(C_n) = C_n$, for $n \ge 3$, $L_3(P_n) = P_{n-1}$ and $L_3(K_4) = L(K_4 - e) = K_4$.

For any positive integer k, the k^{th} iterated line graph L(G) of G is defined as follows: $L^0(G) = G, L^k(G) = L(L^{k-1}(G)).$

A graph G is a (3,2)-graph if there exists a graph H such that $L_{(3,2)}(H) \cong G$. First we prove the following result:

Proposition 1 For any graph G, $L_{(3,2)} \cong L^2(G)$.

Proof First we show that $L_{(3,2)(G)}$ and $L^2(G)$ have the same number of vertices. Let S be a vertex in $L_{(3,2)}(G)$. Then S corresponds to a subgraph of order 3 in G. Say, S consists of two adjacent edges ab and bc. Then corresponding to S we have an edge in L(G) with end vertices ab and bc, and corresponding this edge, we have a vertex say abc in $L^2(G)$. Similarly, we can show that very vertex in $L^2(G)$ corresponds to a connected subgraph of order 3. This proves that $L_{(3,2)}(G)$ and $L^2(G)$ have the same number of vertices. Now, let S_1 and S_2 be two adjacent edges in $L_{(3,2)}(G)$. Then S_1 and S_2 correspond to two connected subgraphs of order 3 each, having a common edge. These in turn will give two adjacent edges, say $e(S_1)$ and $e(S_2)$ in L(G) and this will give an edge in $L^2(G)$ with end vertices $e(S_1)$ and $e(S_2)$. This proves the result.

In general one can establish the following result.

Proposition 2 Let G be a graph of order p and $2 \ge r < k \le p$. If $\triangle(G) \le 2$ then $L_{(k,k-1)}(G) \cong L^{k-1}(G)$.

Note that this is true only when $\triangle(G) \leq 2$. For example, we find $L_{(n,n-1)}^{n-1}(K_{1,n}) = K_n = L(K_{1,n})$.

Proposition 3 The star $K_{1,3}$ is not a 3-line graph.

Proof Let $K_{1,3}$ be a 3-line graph. Then there exists a graph G such that $L(K_{1,3}) = G$. Since $K_{1,3}$ has four vertices, G should have exactly four connected subgraphs each of order three. All connected graphs having exactly four induced subgraphs are as follows: i) C_4 , ii) K_4 , iii) $K_4 - e$ and iv) P_6 . None of these graphs have $K_{1,3}$ as its 3-line graph.

Clearly, any graph having $K_{1,3}$ as an induced subgraph is not a 3-line graph. Hence, we have

Corollary 4 $K_{1,n}$, $n \ge 3$ is not a 3-line graph.

It is not true in general that the line graph L(G) of a graph G is a subgraph of $L_3(G)$. For example, $L_3(K_{1,4})$ does not contain K_4 , the line graph of $K_{1,4}$ as a subgraph.

Problem 5 Characterize 3-line graphs.

A graph G is a *self 3-line graph*, if it is isomorphic to its 3-line graph.

Problem 6 Characterize self 3-line graphs.

Proposition 7 Let $L_3(G)$ be the 3-line graph of a graph G of order $p \ge 3$. The degree of a vertex s in $L_3(G)$ is denoted by degs and is defined as follows:

Let S be the subgraph of G corresponding to the vertex s in $L_3(G)$. For an edge x = uv in S, let $d(x) = (deg_G u + deg_G v) - (deg_S u + deg_S v)$, where $deg_G u$ and $deg_S u$ are the degrees of u in G and S respectively. Then $d(s) = \sum_{x \in S} d(x)$.

Proof Consider an edge uv in S. Suppose y = uz is an edge of G at u which is not in S. Then y belongs to a connected subgraph S_1 of cardinality three containing the edge uv which is distinct form S. Since S and S_1 have common edge, ss_1 is an edge in $L_3(G)$, where s_1 is the vertex in $L_3(G)$ corresponding to the subgraph S_1 in G. Similarly, for any edge $y_1 = vz_1$ at vin G which is not in S, we have an edge ss_2 in $L_3(G)$. This implies that corresponding to the edge x = uv in S, we have $(deg_Gu - deg_Su) + (deg_Gv - deg_Sv)$ edges in $L_3(G)$, and hence the result follows.

Acknowledgement

The authors are grateful to Sri. B. Premnath Reddy, Chairman, Acharya Institutes, for his constant support and encouragement for research and development.

References

- F.Barahona, M.Grotschel, M.Junger, and G.Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design, *Operations Research*, 36 (3) (1988), 493-513.
- [2] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.

- [3] F.Harary and R. Z. Norman, Some properties of line digraphs, *Rend. Circ. Mat. Palermo*, (2) 9 (1960), 161-168.
- [4] R. L.Hemminger and L. W. Beineke, Line graphs and line digraphs, Selected Topics in Graph Theory (W. B. Lowell and R. J. Wilson, eds.), Academic Press, New York, 1978, pp. 271-305.
- [5] J.Krausz, Démonstration nouvelle d u ne théorème de Whitney sur les réseaux, Mat. Fiz. Lapok, 50 (1943), 75-85 (Hungarian).
- [6] E. Prisner, *Graph Dynamics*, Pitman Research Notes in Mathematics Series, vol. 338, Longman, Harlow, 1995.
- [7] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math., 54 (1932), 150-168.