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For standard terminology and notion in graph theory we refer the reader to Harary [2]; the

non-standard will be given in this paper as and when required. We treat only finite simple

graphs without self loops and isolates.

The line graph L(G) of a graph G is defined to have as its vertices the edges of G, with two

being adjacent if the corresponding edges share a vertex in G. Line graphs have a rich history.

The name line graph was first used by Harary and Norman [3] in 1960. But line graphs were

the subject of investigation as far back as 1932 in Whitney s paper [7], where he studied edge

isomorphism and showed that for connected graphs, edge-isomorphism implies isomorphism

except for K3 and K1,3. The first characterization (partition into complete subgraphs) was

given by Krausz [5]. Instead, we refer the interested reader to a somewhat older but still an

excellent survey on line graphs and line digraphs by Hemminger and Beineke [4]. An excellent

book by Prisner [6] describes many interesting generalizations of line graphs. In this note we

generalize the line graph L(G) of G as follows:

Let G = (V, E) be a graph of order p ≥ 3, k and r be integers with 1 ≤ r < k ≤ p. Let

U = {S1, S2, ..., Sn} be the set of all distinct connected acyclic subgraphs of G of order k and

U ′ = {T1, T2, ..., Tm} be the set of all distinct connected subgraphs of G with size k.

The vertex (k, r)-graph Lv
(k,r)(G), where 1 ≤ r < k ≤ p is the graph has the vertex set

U where two vertices Si and Sj , i 6= j are adjacent if, and only if, Si ∩ Sj has a connected

subgraph of order r.

The edge (k, r)-graph Le
(k,r)(G), where 0 ≤ r < k ≤ q is the graph has the vertex set U ′

where two vertices Ti and Tj , i 6= j are adjacent if, and only if, Ti∩Tj has a connected subgraph

of size r.

The Smarandachely (k, r) line graph LS
(k,r)(G) of a graph G is such a graph with vertex

set U ′ and two vertices Ti and Tj , i 6= j are adjacent if and only if, Ti ∩ Tj has a connected

subgraph with order or size r. Clearly, Lv
(k,r)(G) ≤ LS

(k,r)(G) and Le
(k,r)(G) ≤ LS

(k,r)(G). In
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Figure 1, we depicted L(G), Lv
(k,r)(G) and Le

(k,r)(G) for the graph G.

Figure.1

One can easily verify that: L3(K1,3) = K3, L3(Cn) = Cn, for n ≥ 3, L3(Pn) = Pn−1 and

L3(K4) = L(K4 − e) = K4.

For any positive integer k, the kth iterated line graph L(G) of G is defined as follows:

L0(G) = G, Lk(G) = L(Lk−1(G)).

A graph G is a (3, 2)-graph if there exists a graph H such that L(3,2)(H) ∼= G. First we

prove the following result:

Proposition 1 For any graph G, L(3,2)
∼= L2(G).

Proof First we show that L(3,2)(G) and L2(G) have the same number of vertices. Let S

be a vertex in L(3,2)(G). Then S corresponds to a subgraph of order 3 in G. Say, S consists

of two adjacent edges ab and bc. Then corresponding to S we have an edge in L(G) with end

vertices ab and bc, and corresponding this edge, we have a vertex say abc in L2(G). Similarly,

we can show that very vertex in L2(G) corresponds to a connected subgraph of order 3. This

proves that L(3,2)(G) and L2(G) have the same number of vertices. Now, let S1 and S2 be two

adjacent edges in L(3,2)(G). Then S1 and S2 correspond to two connected subgraphs of order

3 each, having a common edge. These in turn will give two adjacent edges, say e(S1) and e(S2)

in L(G) and this will give an edge in L2(G) with end vertices e(S1) and e(S2). This proves the

result. �

In general one can establish the following result.

Proposition 2 Let G be a graph of order p and 2 ≥ r < k ≤ p. If △(G) ≤ 2 then L(k,k−1)(G) ∼=
Lk−1(G).

Note that this is true only when △(G) ≤ 2. For example, we find Ln−1
(n,n−1)(K1,n) = Kn =

L(K1,n).

Proposition 3 The star K1,3 is not a 3-line graph.
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Proof Let K1,3 be a 3-line graph. Then there exists a graph G such that L(K1,3) = G.

Since K1,3 has four vertices, G should have exactly four connected subgraphs each of order

three. All connected graphs having exactly four induced subgraphs are as follows: i) C4, ii) K4,

iii) K4 − e and iv) P6. None of these graphs have K1,3 as its 3-line graph. �

Clearly, any graph having K1,3 as an induced subgraph is not a 3-line graph. Hence, we

have

Corollary 4 K1,n, n ≥ 3 is not a 3-line graph.

It is not true in general that the line graph L(G) of a graph G is a subgraph of L3(G). For

example, L3(K1,4) does not contain K4, the line graph of K1,4 as a subgraph.

Problem 5 Characterize 3-line graphs.

A graph G is a self 3-line graph, if it is isomorphic to its 3-line graph.

Problem 6 Characterize self 3-line graphs.

Proposition 7 Let L3(G) be the 3-line graph of a graph G of order p ≥ 3. The degree of a

vertex s in L3(G) is denoted by degs and is defined as follows:

Let S be the subgraph of G corresponding to the vertex s in L3(G). For an edge x = uv in

S, let d(x) = (degGu + degGv)− (degSu + degSv), where degGu and degSu are the degrees of u

in G and S respectively. Then d(s) =
∑

x∈S

d(x).

Proof Consider an edge uv in S. Suppose y = uz is an edge of G at u which is not in S.

Then y belongs to a connected subgraph S1 of cardinality three containing the edge uv which

is distinct form S. Since S and S1 have common edge, ss1 is an edge in L3(G), where s1 is the

vertex in L3(G) corresponding to the subgraph S1 in G. Similarly, for any edge y1 = vz1 at v

in G which is not in S, we have an edge ss2 in L3(G). This implies that corresponding to the

edge x = uv in S, we have (degGu − degSu) + (degGv − degSv) edges in L3(G), and hence the

result follows. �
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