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Abstract In this study, we present (i) a proof of the Menelaus theorem for quadrilaterals in

hyperbolic geometry, (ii) and a proof for the transversal theorem for triangles, and (iii) the

Menelaus’s theorem for n-gons.
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§1. Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an attempt to un-
derstand Euclid’s axiomatic basis of Geometry. It is also known as a type of non-Euclidean
Geometry, being in many respects similar to Euclidean Geometry. Hyperbolic Geometry in-
cludes similar concepts as distance and angle. Both these geometries have many results in
common but many are different. There are known many models for Hyperbolic Geometry, such
as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model,
etc. Menelaus of Alexandria was a Greek mathematician and astronomer, the first to recognize
geodesics on a curved surface as natural analogs of straight lines. Here, in this study, we present
a proof of Menelaus’s theorem for quadrilaterals, a proof for the transversal theorem, and a
proof of Menelaus’s theorem for n-gons in the Einstein relativistic velocity model of hyperbolic
geometry. The well-known Menelaus theorem states that if l is a line not through any vertex of
a triangle ABC such that l meets BC in D, CA in E, and AB in F , then DB

DC · EC
EA · FA

FB = 1 [1].
F. Smarandache (1983) has generalized the Theorem of Menelaus for any polygon with n ≥ 4
sides as follows: If a line l intersects the n-gon A1A2 . . . An sides A1A2, A2A3, . . . , and AnA1

respectively in the points M1,M2, · · · , and Mn, then M1A1
M1A2

· M2A2
M2A3

· . . . · MnAn

MnA1
= 1 [2].

Let D denote the complex unit disc in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),
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which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of the disc to
be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex conjugate
of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) that obeys the fol-
lowing axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For all real
numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1⊗ a = a.
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a.
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a).
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖ .

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a.
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1 .
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of onedimensional ”vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖.
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖.
Definition 1. Let ABC be a gyrotriangle with sides a, b, c in an Einstein gyrovector

space (Vs,⊕,⊗), and let ha, hb, hc be three altitudes of ABC drawn from vertices A,B, C

perpendicular to their opposite sides a, b, c or their extension, respectively. The number

SABC = γaaγha
ha = γbbγhb

hb = γccγhc
hc

is called the gyrotriangle constant of gyrotriangle ABC (here γv = 1√
1− ‖v‖2

s2

is the gamma

factor). (see [3, pp558])
Theorem 1. (The Gyrotriangle Constant Principle) Let A1BC and A2BC be two

gyrotriangles in a Einstein gyrovector plane (R2
s,⊕,⊗), A1 6= A2 such that the two gyrosegments

A1A2 and BC, or their extensions, intersect at a point P ∈ R2
s, as shown in Figs 1-2. Then,

γ|A1P | |A1P |
γ|A2P | |A2P | =

SA1BC

SA2BC
.
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([3, pp 563])
Theorem 2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector

Space) Let a1,a2, and a3 be three non-gyrocollinear points in an Einstein gyrovector space
(Vs,⊕,⊗). If a gyroline meets the sides of gyrotriangle a1a2a3 at points a12,a13,a23, as in
Figure 3, then

γªa1⊕a12 ‖ªa1 ⊕ a12‖
γªa2⊕a12 ‖ªa2 ⊕ a12‖

γªa2⊕a23 ‖ªa2 ⊕ a23‖
γªa3⊕a23 ‖ªa3 ⊕ a23‖

γªa3⊕a13 ‖ªa3 ⊕ a13‖
γªa1⊕a13 ‖ªa1 ⊕ a13‖ = 1.

(see [3, pp 463])
For further details we refer to the recent book of A.Ungar [3].

§2. Menelaus’s theorem for hyperbolic quadrilaterals

In this section, we prove Menelaus’s theorem for hyperbolic quadrilateral.
Theorem 3. If l is a gyroline not through any vertex of a gyroquadrilateral ABCD such

that l meets AB in X, BC in Y , CD in Z, and DA in W , then
γ|AX||AX|
γ|BX||BX|

· γ|BY ||BY |
γ|CY ||CY |

· γ|CZ||CZ|
γ|DZ||DZ|

· γ|DW ||DW |
γ|AW ||AW |

= 1. (1)

Proof of Theorem 3. Let T be the intersection point of the gyroline DB and the gyroline
XY Z (See Figure 4). If we use a Theorem 2 in the triangles ABD and BCD respectively, then
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γ|AX||AX|
γ|BX||BX|

· γ|BT ||BT |
γ|DT ||DT |

· γ|DW ||DW |
γ|AW ||AW |

= 1, (2)

and
γ|DT ||DT |
γ|BT ||BT |

· γ|CZ||CZ|
γ|DZ||DZ|

· γ|BY ||BY |
γ|CY ||CY |

= 1. (3)

Multiplying relations (2) and (3) member with member, we obtain the conclusion.

§3. The hyperbolic transversal theorem for triangles

In this section, we prove the hyperbolic transversal theorem for triangles.

Theorem 4. Let D be on gyroside BC, and l is a gyroline not through any vertex of a
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gyrotriangle ABC such that l meets AB in M, AC in N , and AD in P , then

γ|AM||AM |
γ|AB||AB|

· γ|AC||AC|
γ|AN||AN |

· γ|P N||PN |
γ|P M||PM |

· γ|DB||DB|
γ|DC||DC|

= 1.

Proof of Theorem 3. If we use a theorem 3 for gyroquadrilateral BCNM and gyro-
collinear points D, A, P , and A (See Figure 5) then the conclusion follows.

§4. Menelaus’s Theorem for n - gons

In this section, we prove Menelaus’s theorem for hyperbolic n− gons.
Theorem 5. If l is a gyroline not through any vertex of a n − gyrogon A1A2...An such

that l meets A1A2 in M1, A2A3 in M2, ..., and AnA1 in Mn, then

γ|M1A1||M1A1|
γ|M1A2||M1A2|

·
γ|M2A2||M2A2|
γ|M2A3||M2A3|

· ... · γ|MnAn||MnAn|
γ|MnA1||MnA1|

= 1. (4)

Proof of Theorem 5. We use mathematical induction. For n = 3 the theorem is true
(see Theorem 2). Let’s suppose by induction upon k ≥ 3 that the theorem is true for any
k− gyrogon with 3 ≤ k ≤ n−1, and we need to prove it is also true for k = n. Suppose a line l

intersect the gyroline A2An into the point M . We consider the n− gyrogon A1A2...An and we
split in a 3− gyrogon A1A2An and (n− 1)− gyrogon AnA2A3...An−1 and we can respectively
apply the theorem 2 according to our previously hypothesis of induction in each of them, and
we respectively get:

γ|M1A1||M1A1|
γ|M1A2||M1A2|

·
γ|MA2||MA2|
γ|MAn||MAn|

· γ|MnAn||MnAn|
γ|MnA1||MnA1|

= 1,

and

γ|MAn||MAn|
γ|MA2||MA2|

·
γ|M2A2||M2A2|
γ|M2A3||M2A3|

· ... ·
γ|Mn−2An−2||Mn−2An−2|

γ|Mn−2An−1||Mn−2An−1|
·
γ|Mn−1An−1||Mn−1An−1|

γ|Mn−1An||Mn−1An|
= 1.
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whence, by multiplying the last two equalities, we get

γ|M1A1||M1A1|
γ|M1A2||M1A2|

·
γ|M2A2||M2A2|
γ|M2A3||M2A3|

· ... · γ|MnAn||MnAn|
γ|MnA1||MnA1|

= 1.

Acknowledgement

The author would like to thank to Florentin Smarandache for helpful suggestions.

References

[1] R. Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry,
Washington, DC: Math. Assoc. Amer., 147-154, 1995.
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