International J.Math. Combin. Vol.1 (2007), No.1, 59-66

Minimum Cycle Base of Graphs Identified by Two Planar Graphs

Dengju Ma

(School of Science, Nantong University, Jiangsu 226007, P.R.China) E-mail:jdm8691@yahoo.com.cn

Han Ren

(Department of Mathematics, East China Normal University, Shanghai 200062, P.R.China) E-mail:hren@math.ecnu.edu.cn

Abstract: In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds. Also, we give a formula for calculating the length of minimum cycle base of a planar graph $N(d, \lambda)$ defined in paper [11].

Key Words: graph, planar graph, cycle space, minimum cycle base. AMS(2000) : O5C10

§1. Introduction

Throughout this paper we consider simple and undirected graphs. The cardinality of a set A is |A|. Let's begin with some terminologies and some facts about cycle bases of graphs. Let G(V, E) be a 2-connected graph with vertex set V and edge set E. The set \mathcal{E} of all subsets of E forms an |E|-dimensional vector space over GF(2) with vector addition $X \oplus Y = (X \cup Y) \setminus (X \cap Y)$ and scalar multiplication $1 \bullet X = X, 0 \bullet X = \emptyset$ for all $X, Y \in \mathcal{E}$. A cycle is a connected graph whose any vertex degree is 2. The set \mathcal{C} of all cycles of G forms a subspace of $(\mathcal{E}, \oplus, \bullet)$ which is called the cycle space of G. The dimension of the cycle space \mathcal{C} is the Betti number of G, say $\beta(G)$, which is equal to |E(G)| - |V(G)| + 1. A base \mathcal{B} of the cycle space of G is called a cycle base of G.

The length |C| of a cycle C is the number of its edges. The length $l(\mathcal{B})$ of a cycle base \mathcal{B} is the sum of lengths of all its cycles. A *minimum cycle base* (or MCB in short) is a cycle base with minimal length. A graph may has many minimum cycle bases, but every two minimum cycle bases have the same length.

Let G be a 2-connected planar graph embedded in the plane. G has |E(G)| - |V(G)| + 2faces by Euler formula. There is exactly one face of G being unbounded which is called the

¹Received July 8, 2007. Accepted August 18, 2007

 $^{^2 \}rm Supported$ by NNSF of China under the granted NO.10671073 and NSF of Jiangsu's universities under the granted NO.07KJB110090

exterior of G. All faces but the exterior of G are called interior faces of G. Each interior face of G has a cycle as its boundary which is called an *interior facial cycle*. Also, the cycle of Gbeing incident with the exterior of G is called *the exterior facial cycle*.

We know that if G is a 2-connected planar graph embedded in the plane, then any set of |E(G)| - |V(G)| + 1 facial cycles forms a cycle base of G. For a 2-connected planar graph, we ask whether there is a minimum cycle base such that each cycle is a facial cycle. The answer isn't confirmed. The counterexample is easy to be constructed by Lemma 1.1. Need to say that Lemma 1.1 is a special case of Theorem A in the reference [10] which is deduced by Hall Theorem.

Lemma 1.1 Let \mathcal{B} be a cycle base of a 2-connected graph G. Then \mathcal{B} is a minimum cycle base of G if and only if for any cycle C of G and cycle B in \mathcal{B} , if $B \in Int(C)$, then $|C| \geq |B|$, where Int (C) denotes the set of cycles in \mathcal{B} which generate C.

For some special 2-connected planar graph, there exist a minimum cycle base such that each cycle is a facial cycle. For example, Halin graph and outerplanar graph are such graphs. A *Halin graph* H(T) consists of a tree T embedded in the plane without subdivision of an edge together with the additional edges joining the 1-valent vertices consecutively in their order in the planar embedding. It is clear that a Halin graphs is a 3-connected planar graph. The exterior facial cycle is called *leaf-cycle*.

Lemma 1.2[9,12] Let H(T) be a Halin graph embedded in the plane such that the leaf-cycle is the exterior facial cycle. Let \mathcal{F} denote the set of interior facial cycles of H(T). Then \mathcal{F} is a minimum cycle base of H(T).

A planar graph G is outerplanar if it can be embedded in the plane such that all vertices lie on the exterior facial cycle C.

Lemma 1.3[6,9] Let G(V, E) be a 2-connected outerplanar graph embedded in the plane with C as its exterior facial cycle. Let \mathcal{F} be the set of interior facial cycles. Then \mathcal{F} is the minimum cycle base of G, and $l(\mathcal{F}) = 2|E| - |V|$.

Apart from the above mentioned minimum cycle bases of a Halin graph and an outerplanar graph, many peoples researched minimum cycle bases of graphs. H. Ren et al. [9] not only gave a sufficient and necessary condition for minimum cycle base of a 2-connected planar graph, but also studied minimum cycle bases of graphs embedded in non-spherical surfaces and presented formulae for length of minimum cycle bases of some graphs such as the generalized Petersen graphs, the circulant graphs, etc. W.Imrich et al. [4] studied the minimum cycle bases for the cartesian and strong product of two graphs. P.Vismara [13] discussed the union of all the minimum cycle bases of a graph. What about the minimum cycle base of the graph obtained from two 2-connected planar graphs by identifying some corresponding edges? This problem is related with map geometries, i.e., Smarandache 2-dimensional manifolds (see [8] for details). We will consider it in this paper.

§2. MCB of graphs obtained by identifying an edge of planar graphs

Let G_1 and G_2 be two graphs and P_i be a path (or a cycle) in G_i for i = 1, 2. Suppose the length of P_1 is same as that of P_2 . By identifying P_1 with P_2 , we mean that the vertices of P_1 are identified with the corresponding vertices of P_2 and the multiedges are deleted.

Theorem 2.1 Let G_1 and G_2 be two 2-connected planar graphs embedded in the plane. Let e_i be an edge in $E(G_i)$ such that e_i is in the exterior facial cycle of G_i for i = 1, 2. Let G be the graph obtained from G_1 and G_2 by identifying e_1 and e_2 such that G_2 is in the exterior of G_1 . If the set of interior facial cycles of G_i , say \mathcal{F}_i , is a minimum cycle base of G_i for i = 1, 2, then $\mathcal{F}_1 \cup \mathcal{F}_2$ is a minimum cycle base of G.

 $\begin{array}{l} Proof \quad \text{Obviously, the graph } G \text{ is a 2-connected planar graph and each cycle of } \mathcal{F}_1 \cup \mathcal{F}_2 \text{ is a facial cycle of } G. \text{ Since } |E(G)| = |E(G_1)| + |E(G_2)| - 1 \text{ and } |V(G)| = |V(G_1)| + |V(G_2)| - 2, G \text{ has } |E(G)| - |V(G)| + 2 = (|E(G_1)| - |V(G_1)| + 1) + (|E(G_2)| - |V(G_2)| + 1) + 1 = |\mathcal{F}_1| + |\mathcal{F}_2| + 1 \text{ faces. So } |\mathcal{F}| = |\mathcal{F}_1| + |\mathcal{F}_2| = |E(G)| - |V(G)| + 1, \text{ and } \mathcal{F} \text{ is a cycle base of } G. \end{array}$

Now we prove that \mathcal{F} is a minimum cycle base of G. Suppose F is a cycle of G and $F = f_1 \oplus f_2 \oplus \cdots \oplus f_q$, where $f_j \in \mathcal{F}$ for $j = 1, 2, \cdots, q$. By Lemma 1.1, We need to prove $|F| \ge |f_j|$ for $j = 1, 2, \cdots, q$.

If $E(F) \subset E(G_1)$ (or $E(G_2)$), then f_j is in \mathcal{F}_1 (or \mathcal{F}_2) for $j = 1, 2, \cdots, q$. By the fact that \mathcal{F}_i is a minimum cycle base of G_i for i = 1, 2 and Lemma 1.1, $|F| \ge |f_j|$ for $j = 1, 2, \cdots, q$.

Let e be the edge of G obtained by e_1 identified with e_2 . Suppose $e = \{uv\}$. If edges of F aren't in G_1 entirely, then F must pass through u and v. So $e \cup F$ can be partitioned into two cycles, say F_1 and F_2 . Suppose $E(F_i) \subset E(G_i)$ for i = 1, 2. Then $|F| > |F_i|$ for i = 1, 2. Suppose $F_1 = f_1 \oplus f_2 \oplus \cdots \oplus f_p$ and $F_2 = f_{p+1} \oplus f_{p+2} \oplus \cdots \oplus f_q$. By the fact that \mathcal{F}_i is a minimum cycle base of G_i for i = 1, 2 and Lemma 1.1, $|F| > |F_1| \ge |f_i|$ for $i = 1, 2, \cdots, p$ and $|F| > |F_2| \ge |f_i|$ for $i = p + 1, p + 2, \cdots, q$.

Thus we complete the proof.

Applying Theorem 2.1 and the induction principle, it is easy to prove the following conclusion.

Corollary 2.1 Let G_1, G_2, \dots, G_k be $k(k \ge 3)$ 2-connected planar graphs embedded in the plane. Let e_i be an edge in $E(G_i)$ such that e_i is in the exterior facial cycle of G_i for $i = 1, 2, \dots, k$. Let G'_1 be the graph obtained from G_1 and G_2 by identifying e_1 with e_2 such that G_2 is in the exterior of G_1 , Let G'_2 be the graph obtained from G'_1 and G_3 by identifying e_3 with some edge in the exterior face of G'_1 such that G_3 is in the exterior of G'_1 , and so on. Let G be the last obtained graph in the above process. If the set of interior facial cycles of G_i , say \mathcal{F}_i , is a minimum cycle base of G_i for $i = 1, 2, \dots, k$, then $\bigcup_{i=1}^k \mathcal{F}_i$ is a minimum cycle base of G.

Remark: In Theorem 2.1, if e_1 is replaced by a path with length at least two and e_2 by the corresponding path, then the conclusion of the theorem doesn't hold. We consider the graph H shown in Fig.2.1, where H is obtained from H_1 and H_2 by identified $P_1 = u_1 u_2 u_3 u_4$ with $P_2 = v_1 v_2 v_3 v_4$. For the graph H, let $C = x_1 x_2 x_3 x_4 x_1$ and $D = x_1 y x_4 x_1$. Since |C| > |D|, the set of interior facial cycle of H isn't its minimum cycle base by Lemma 1.1.

Furthermore, if e_1 is replaced by a cycle and e_2 by the corresponding cycle in Theorem 2.1, then the conclusion of Theorem isn't true. The counterexample is easy to construct, which is left to readers. But if G_1 is a special planar graph, similar results to Theorem 2.1 will be shown in the next section.

§3. MCB of graphs obtained by identifying a cycle of planar graphs

An $r \times s$ cylinder is the graph with r radial lines and s cycles, where $r \ge 0, s > 0$. A 4×3 cylinder is shown in Fig.3.1. The innermost cycle is called the *central cycle*. $r \times s$ cylinder take an important role in discussion of the minor of planar graph with sufficiently large tree-width in paper[10].

Theorem 3.1 Let G_1 be an $r \times s(r \ge 4)$ cylinder embedded in the plane such that C is its central cycle. Let G_2 be a planar graph embedded in the plane such that the exterior facial cycle D has the same vertices as that of C. Let G be the graph obtained from G_1 and G_2 by identifying C and D such that G_2 is in the interior of G_1 . If the set of interior facial cycles of G_2 , say \mathcal{F}_2 , is its a minimum cycle base, then the set of interior facial cycles of G, say \mathcal{F} , is a minimum cycle base of G.

Proof At first, \mathcal{F} is a cycle base of G. We need prove \mathcal{F} is minimal.

Let $\mathcal{F}_1 = \mathcal{F} \setminus \mathcal{F}_2$. Obviously, each element of \mathcal{F}_1 has length 4. Suppose F is a cycle of G and $F = f_1 \oplus f_2 \oplus \cdots \oplus f_q$, where $f_j \in \mathcal{F}$ for $j = 1, 2, \cdots, q$. If we prove $|F| \ge |f_j|$ for $j = 1, 2, \cdots, q$, then \mathcal{F} is a minimum cycle base of G by Lemma 1.1.

Let R be the open region bounded by F, and R' be the open region bounded by C (or D) of G_1 (or G_2). We consider the following four cases.

Case 1 $R' \cap R = \emptyset$.

Then F is a cycle of G_1 and F is generated by \mathcal{F}_1 . Since the girth of G_1 is 4, $|F| \ge |f_j| = 4$ for $j = 1, 2, \cdots, q$.

Case 2 $R' \subset R$.

Then $|F| \ge |C| \ge 4$, because the number of radial lines which F crosses can't be less than the number of vertices of C. For a fixed f_j , if it is in the interior of C then $|f_j| \le |C| \le |F|$ by Lemma 1.1, because \mathcal{F}_2 is a minimum cycle base of G_2 . If f_j is in the exterior of C, then $|f_j| = 4$. So $|f_i| \le |F|$ for $j = 1, 2, \cdots, q$.

Case 3 $R \subset R'$.

Then F is a cycle of G_2 . By Lemma 1.1, $|F| \ge |f_j|$ for $j = 1, 2, \cdots, q$.

Case 4 $R' \cap R \neq \emptyset$ and R' is not in the interior of R.

Then F must has at least one edge in $E(G_2) \setminus E(C)$ and at least three edges in $E(G_1)$. So $|F| \ge 4$. No loss of generality, suppose f_1, f_2, \dots, f_p are cycles of $\{f_1, f_2, \dots, f_q\}$ that are in the exterior of C. Since $|f_j| = 4$, $|F| \ge |f_j|$ for $j = 1, 2, \dots, p$.

Next we prove $|F| \ge |f_j|$ for $j = p + 1, p + 2, \dots, q$, where f_j is in the interior of C.

Fig. 3.2

Let $R^{"} = R \setminus (R' \cap R)$. $R^{"}$ may be the union of several regions. Let $R^{"} = R_1 \cup R_2 \cup \cdots \cup R_l$ satisfying the condition that $R_i \cap R_j$ is empty or a point for $i \neq j, 1 \leq i, j \leq l$. Let B_i be the boundary of R_i for $i = 1, 2, \cdots, l$. Then B_i is a cycle in the exterior of C. For a fixed B_i , there may be many vertices of B_i in $V(F) \cap V(C)$, which can be found in Fig.3.2. We select two vertices u_i and v_i of B_i satisfying the following conditions: (1) u_i and v_i are in C;

(2) there is a path of B_i , say P_i , such that its endvertices are u_i and v_i and P_i is in the exterior of C;

(3) if M_i is the path of B_i deleted $E(P_i)$, and if M'_i is the path of C such that its endvertices are u_i and v_i and M'_i is internally disjoint from B_i , then M_i is in the interior of the cycle which is the union of M'_i and P_i .

Note that M_i may contains many disjoint paths of C, suppose they are $Q_1^i, Q_2^i, \dots, Q_t^i$. Let x, y be two vertices in P_i , which are adjacent to u_i, v_i respectively.

Obviously, x, y are in G_1 . Let P'_i be the subpath of P_i between x and y. Considering the number of radial lines (including radial line x, y lie on) which P'_i crosses is not less than the number of vertices of $\cup_{j=1}^t Q_j^i$, $|P_i| > |P'_i| \ge \sum_{j=1}^t |Q_j^i|$.

Since $R' \cap R$ may be the union of some regions, we suppose $R' \cap R = D_1 \cup D_2 \cup \cdots \cup D_s$. Let A_1, A_2, \cdots, A_s be boundaries of D_1, D_2, \cdots, D_s respectively. For a fixed A_i , its edges may be partitioned into two groups, one containing edges of F, denoted as A_i^F , another containing edges of C, denoted as A_i^C . Then

$$\begin{split} \sum_{i=1}^{s} |A_{i}| &= \sum_{i=1}^{s} |A_{i}^{F}| + \sum_{i=1}^{s} |A_{i}^{C}| \\ &= \sum_{i=1}^{s} |A_{i}^{F}| + \sum_{i=1}^{l} \sum_{j=1}^{t} |Q_{j}^{i}| \\ &< \sum_{i=1}^{s} |A_{i}^{F}| + \sum_{i=1}^{s} |P_{i}| \\ &< |F| \end{split}$$

Hence $|F| > |A_i|$ for $i = 1, 2, \dots, s$. Since any A_i is a cycle of G_2 and \mathcal{F}_1 is a minimum cycle base of G_2 , $|A_i| \ge |f_j|$ for $j = i_1, i_2, \dots, i_n$, by lemma 2.1, where $\{i_1, i_2, \dots, i_n\} \subset \{p+1, p+2, \dots, q\}$. Hence, $|F| > |f_{p+j}|$ for $i = 1, 2, \dots, q-p$.

By the previous discussion and Lemma 1.1, \mathcal{F} is a minimum cycle base of G.

Since the minimum cycle base of a cycle is itself, a minimum cycle base of an $r \times s(r \ge 4)$ cylinder embedded in the plane is the set of its interior facial cycles by Theorem 3.1, and the length of its MCB is r + 4r(s - 1) = r(4s - 3).

By Lemmas 1.2, 1.3 and Theorem 3.1. we get two corollaries following.

Corollary 3.1 Assume an $r \times s(r \ge 4)$ cylinder, a Halin graph H(T) are embedded in the plane with C the central cycle and C' the leaf-cycle of H(T) containing the same vertices as C, respectively. Let G be the graph obtained from the $r \times s$ cylinder and H(T) by identifying C and C' such that H(T) is in the interior of the $r \times s$ cylinder. Then a minimum cycle base of G is the set of interior facial cycles of G.

Corollary 3.2 Assume an $r \times s$ ($r \ge 4$) cylinder, a 2-connected outplanar graph H be embedded in the plane with C the central cycle and C' the exterior facial cycle containing same vertices as C of H containing the same vertices as C, respectively. Let G be the graph obtained from the $r \times s$ cylinder and H by identifying C and C' such that H is in the interior of the $r \times s$ cylinder. Then a minimum cycle base of G is the set of interior facial cycles of G. Furthermore, the length of a MCB of G is r(4s - 5) + 2|E(H)|. *Proof* Let \mathcal{F} be the set of interior facial cycles of G. By Theorem 3.1, \mathcal{F} is a minimum cycle base of G. \mathcal{F} can be partitioned into two groups \mathcal{F}_1 and \mathcal{F}_2 , where \mathcal{F}_1 is the set of interior facial cycles of H and \mathcal{F}_2 the set of 4-cycles. Then the length of a MCB of G is $l(\mathcal{F}) = l(\mathcal{F}_1) + l(\mathcal{F}_2) = 4r(s-1) + 2|E(H)| - |V(H)| = (4s-5)r + 2|E(H)|.$

As application of Corollary 3.1, we find a formula for the length of minimum cycle base of a planar graph $N(d, \lambda)$, which can be found in paper[10].

When $\lambda \geq 1$ is an integer, the graph Y_{λ} is tree as shown in Fig.3.3. Thus Y_{λ} has $3 \times 2^{\lambda-1}$ 1-valent vertices and Y_{λ} has $3 \times 2^{\lambda} - 2$ vertices. If 1-valent vertices of Y_{λ} are connected in their order in the planar embedding, we obtain a special Halin graph, denoted by $H(\lambda)$.

Suppose a $(3 \times 2^{\lambda-1}) \times d$ cylinder is embedded in the plane such that its central cycle C has $3 \times 2^{\lambda-1}$ vertices. The graph obtained from $(3 \times 2^{\lambda-1}) \times d$ cylinder and $H(\lambda)$ with leaf-cycle C' containing $3 \times 2^{\lambda-1}$ vertices by identifying C and C' such that $H(\lambda)$ is in the interior of $(3 \times 2^{\lambda-1}) \times d$ cylinder is denoted as $N(d, \lambda)$. N. Roberterson and P.D. Seymour[10] proved that for all $d \ge 1, \lambda \ge 1$ the graph $N(d, \lambda)$ has tree-width $\le 3d + 1$.

Fig.3.3

Theorem 3.2 The length of minimum cycle base of $N(d, \lambda)$ ($\lambda \ge 2$) is $3(d-1) \times 2^{\lambda+1} + 9 \times 2^{\lambda} - 3 \times 2^{\lambda-1} - 6$.

Proof Let \mathcal{F} be the set of interior facial cycles of $N(d, \lambda)$. Then \mathcal{F} is a minimum cycle base of $N(d, \lambda)$ by Corollary 3.1.

Let \mathcal{F}_1 be a subset of \mathcal{F} which is the set of interior facial cycles of $N(1, \lambda)$ (a Halin graph). Then \mathcal{F}_1 consists of 3 $(2\lambda+1)$ -cycles and 3×2^j $(2\lambda-2j-1)$ -cycles for $j = 0, 1, 2, \cdots, \lambda-2$.

Let $\mathcal{F}_2 = \mathcal{F} \setminus \mathcal{F}_1$. Then each cycle of \mathcal{F}_2 has length 4. Since the leaf-cycle of $N(1, \lambda)$ has $3 \times 2^{\lambda-1}$ vertices, there are $3(d-1) \times 2^{\lambda-1}$ 4-cycles in \mathcal{F}_2 all together. The length of \mathcal{F} is

$$\begin{split} l(\mathcal{F}) &= \sum_{j=0}^{\lambda-2} 3 \times 2^{j-1} (2\lambda - 2j - 1) + 3(2\lambda + 1) + 4 \times 3(d - 1) \times 2^{\lambda-1} \\ &= 3[\sum_{j=0}^{\lambda-2} \lambda 2^{j+1} - 2\sum_{j=0}^{\lambda-2} j 2^j - \sum_{j=0}^{\lambda-2} 2^j] + (6\lambda + 3) + 3(d - 1) \times 2^{\lambda+1} \\ &= 3[(\lambda 2^{\lambda} - 2\lambda) - 2(\lambda - 3)2^{\lambda-1} - 4 - 2^{\lambda-1} + 1] \\ &+ (6\lambda + 3) + 3(d - 1) \times 2^{\lambda+1} \\ &= 3(d - 1) \times 2^{\lambda+1} + 9 \times 2^{\lambda} - 3 \times 2^{\lambda-1} - 6 \end{split}$$

Hence, the length of minimum cycle base of $N(d, \lambda)$ is $3(d-1) \times 2^{\lambda+1} + 9 \times 2^{\lambda} - 3 \times 2^{\lambda-1} - 6.\square$

Reference

- Bondy J.A. and Murty U.S.R., *Graph Theory with Application*, Macmillan, London, Elsevier, New York, 1976.
- [2] Downs G.M., Gillet V.J., Holliday J.D. and Lynch M.F., Review of ring perception algorithms for chemical graph, J. Chem. Inf. Comput. Sci., 29: 172-187, 1989.
- [3] Horton J.D., A polynomial-time algorithm to find the shortest cycle base of a graph, SIAM.J.Comput., 1987, 16: 359-366.
- [4] Imrich W. and Stadler P.F., Minimum Cycle Bases of Product Graphs, Australasian J. Comb., 26:233-244(2002).
- [5] Mohar B. and Thomassen C., Graphs on Surfaces, Johns Hopkins University Press, 2001.
- [6] Leydold J. and Stadler P.F., Minimum cycle bases of outerplanar graphs, *Electronic J. Combin.*, 5 # R16 (1998):1-14.
- [7] Liu G.Z., On the connectivities of tree graphs, J. Graph Theory, 1988, 12: 453-459.
- [8] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73.
- [9] Ren H., Liu Y.P., Ma D.J. and Lu J.J., Generating cycle spaces for graphs on surfaces with small genera, J. European of Combin., 2004, 25: 1087-1105.
- [10] Ren H. and Deng M., Short cycle structures for graphs on surfaces and an open problem of Mohar and Thomassen, *Science in China: Series A math.*, 2006 Vol.49 No.2:212-224.
- [11] Robertson N. and Seymour P.D., Graph minor. III. Planar tree-width, J. Combinatorial Theory, Series B 36 (1984): 49-64.
- [12] Stadler P.F., Minimum cycle bases of Halin graphs, J. Graph Theory, 2003, 43:150-155
- [13] Vismara P., Union of all the minimum cycle bases of a graph, *Electronic J. Combin.*, 4 #R9 (1997):1-15.