On an inequality for the Smarandache function

J. Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1. In paper [2] the author proved among others the inequality $S(ab) \leq aS(b)$ for all a, b positive integers. This was refined to

$$S(ab) \le S(a) + S(b) \tag{1}$$

in [1]. Our aim is to show that certain results from our recent paper [3] can be obtained in a simpler way from a generalization of relation (1). On the other hand, by the method of Le [1] we can deduce similar, more complicated inequalities of type (1).

2. By mathematical induction we have from (1) immediately:

$$S(a_1 a_2 \dots a_n) \le S(a_1) + S(a_2) + \dots + S(a_n)$$
 (2)

for all integers $a_i \geq 1$ (i = 1, ..., n). When $a_1 = ... = a_n = n$ we obtain

$$S(a^n) \le nS(a). \tag{3}$$

For three applications of this inequality, remark that

$$S((m!)^n) \le nS(m!) = nm \tag{4}$$

since S(m!) = m. This is inequality 3) part 1. from [3]. By the same way, $S((n!)^{(n-1)!}) \le (n-1)!S(n!) = (n-1)!n = n!$, i.e.

$$S((n!)^{(n-1)!}) \le n! \tag{5}$$

Inequality (5) has been obtained in [3] by other arguments (see 4) part 1.).

Finally, by $S(n^2) \leq 2S(n) \leq n$ for n even (see [3], inequality 1), n > 4, we have obtained a refinement of $S(n^2) \leq n$:

$$S(n^2) \le 2S(n) \le n \tag{6}$$

for n > 4, even.

3. Let m be a divisor of n, i.e. n = km. Then (1) gives $S(n) = S(km) \le S(m) + S(k)$, so we obtain:

If m|n, then

$$S(n) - S(m) \le S\left(\frac{n}{m}\right). \tag{7}$$

As an application of (7), let d(n) be the number of divisors of n. Since $\prod_{k|n} k = n^{d(n)/2}$,

and $\prod_{k \le n} k = n!$ (see [3]), and by $\prod_{k \mid n} k \mid \prod_{k \le n} k$, from (7) we can deduce that

$$S(n^{d(n)/2}) + S(n!/n^{d(n)/2}) \ge n.$$
(8)

This improves our relation (10) from [3].

4. Let S(a)=u, S(b)=v. Then b|v! and $u!|x(x-1)\dots(x-u+1)$ for all integers $x\geq u$. But from a|u! we have $a|x(x-1)\dots(x-u+1)$ for all $x\geq u$. Let x=u+v+k $(k\geq 1)$. Then, clearly $ab(v+1)\dots(v+k)|(u+v+k)!$, so we have $S[ab(v+1)\dots(v+k)]\leq u+v+k$. Here v=S(b), so we have obtained that

$$S[ab(S(b) + 1) \dots (S(b) + k)] \le S(a) + S(b) + k.$$
(9)

For example, for k = 1 one has

$$S[ab(S(b) + 1)] \le S(a) + S(b) + 1. \tag{10}$$

This is not a consequence of (2) for n = 3, since S[S(b) + 1] may be much larger than 1.

References

- [1] M. Le, An inequality concerning the Smarandache function, Smarandache Notions J., vol. 9(1998), 124-125.
- [2] J. Sándor, On certain inequalities involving the Smarandache function, Smarandache Notions J., vol. 7(1996), 3-6.
- [3] J. Sándor, On certain new inequalities and limits for the Smarandache function, Smarandache Notions J., vol. 9(1998), 63-69.