
CALCULATING THE SMARANOACHE FUNCTION WITHOUT FACTORISING

J. R. SUTTON
(16A Overland Road, Mumbles, SWANSEA SA3 4LP, UK)

Introduction

The usual way of calculating the Smarandache function Sen) is to
factorise n, calculate S for each of the prime powers in the
factorisation and use the equation

(S
f;, Pi))

S(n) = Max 1m

This paper presents an alternative algorithm for use when S is to be
calculated for all integers up to n. The integers are synthesised by
combining all the prime powers in the range up to n.

The Algorithm

The Pascal program at the end of this paper contains a procedure
tabsmarand which fills a globally declared array, Smaran, with the
values of S for the integers from 2 to the limit specified by a
parameter. The calculation is carried out in four stages.

Powers of 2

The first stage calculates S for those powers of 2 that fall within
the limit and stores them in the array Smaran at the subscript which
corresponds to the value of that power of 2. At the end of this stage
the array contains S for:-

2,4,8,16,32

interspersed with zeros for all the other entries.

General case

The next stage uses succesive primes from 3 upwards. For each prime
the S values of the relevant powers of the prime. and also the values
of the prime powers are calculated, and stored in the arrays Smarpp
and Prpwr, by the procedure tabsmarpp. This procedure is essentially
the same as that in a previous paper except that:

a) the calculation stops when the last prime power exceeds
the limit

and b) the prime powers are also calculated and stored.

27

Then for each non-zero entry in Smarand that entry is multiplied by
successive powers of the prime and the S values calculated and stored
in Smarand. Both of these loops terminate on reaching the limit value.
Finally the S values for the prime powers are copied into Smarand.
After the prime 3 the array contains:-

2,3,4,0,3,0,4,6,0,0,4

This process is followed for each prime up to the square root of the
limit. This general case could be continued up to the limit but it is
more efficient to stop at the square root and treat the larger primes
as seperate cases.

Largest primes

The largest primes, those greater than half the limit, contribute only
themselves, S(prime)=prime, to the array of Smarandache values.

Multiples of prime only

The intermediate case between the last two is for primes larger than
the square root but smaller than half the limit. In this case no
powers of the prime are needed, only multiples of those entries
already in Smarand by the prime itself. The prime is then copied into
the array.

The Pascal program

The main program calls tabsmarand to calculate S values then enters a
loop in which two integers are input from the keyboard which specify a
range of values for which the contents of the array are displayed for
checking.

The program was developed and tested with Acornsoft ISO-Pascal on a
BBC Master computer. The function 'time' delivers the time lapse (in
centiseconds) since last reset. On a computer with a 65C12 processor
running at 2MHz the following timings were obtained:-

limit seconds
1000 6.56
2000 12.87
3000 19.19
4000 25.64
5000 31.80

In this range the times appear almost linear. It would be useful to
have this confirmed or disproved on a larger, faster computer.

28

program Testsmarand(input.outPut)i
const limit=5000i
var count.st.fin:integer;
Smaran:array[l .. 5001] of integer;

procedure tabsmarand(limit:integer)i
var count.t.i.s.is.pp.prlme.pwcount.mcount,multiple: integer;
exit: boolean;
Prpwr:array[l .. 12] of integer;
Smarpp:array[l .. 12] of integer;

function max(x,y: integer):integeri
begin
if x>y then max:=x else max:=y;
end; {max}

function invSpp(prime,smar:integer):integer;
var n,x:integer;
begin
n:=O;
x:=smar;
repeat
x:=x div prime;
n:=n+Xi
until x<prime;
invSpp:=n;
end; {invSpp}

procedure tabsmarpp(prime,limit:integer)i
var i,s.is,pp:integer;
exit:boolean;
begin
exit:=false;
pp: =li
i: = 1 ;
is:=l;
s:=primei
r-epea t
repeat
Smarpp[i]:=s;
pp:=pp*primei
Prpwr[i]:=pp;
1:=i+1;
If pp>llmit then exit:=truei
untIl (l>is) or exiti
s:=s+primei
is:=invSpp(prlme,s)i
until exiti
end; {tabsmarpp}

29

begin writeln('Calculate Smarandache function for all integers up to
, ,limit);
for count:=1 to limit do Smaran[count):=O;
Smaran(limit+1]:=limit+1;
t:=time;

{powers of 2}
5:=2;
i:=1;
is:=1;
pp:=1;
exit:=false;
repeat
repeat
pp:=pp*2;
Smaran[pp):=Si
i:=i+1;
if 2*pp>limit then exit:=true;
until (1)15) or exit;
s:=s+2;
is:=invSpp(2,s);
until exit;

{general case}
prime:=3;
repeat
tabsmarpp(prime,limit);
mcount:=1;
repeat
pwcount:=l;
multiple:=mcount*p~ime;

repeat
if multiple<=limit then

if Smaran[multiple]=O then
Smaran(multiple]:=max(Smaran[mcount),Smarpp(pwcount]);

pwcount:=pwcount+1;
multiple:=mcount*Prpwr[pwcount]:
until multiple>limit;
repeat
mcount:=mcount+l;
until Smaran[mcount)<>O;
until mcount*prime>limlt;
pwcount:=l;
repeat
Smaran(Prpwr(pwcount)):=Smarpp(pwcount];
pwcount:=pwcount+l;
until Prpwr[pwcount]>limit;
repeat
prime:=prime+l:
until Smaran[prime]=O;
until prime*prime>limit;

30

{multiple case}
repeat mcount:=l;
multiple:=prime;
repeat
if multiple<=limlt then

if Smaran[multiple]=O then
Smaran[multiple]:=max(Smaran[mcount].prime);

repeat
mcount:=mcount+l;
until Smaran[mcountJ<>O;
multiple:=mcount*prime;
until multlple>limit;
Smaran[prlme]:=prime;
repeat
prime:=prime+l;
until Smaran[prime]=O;
until prime>limit/Z;

{largest primes}
count:=l;
repeat
if Smaran[count]=O then Smaran[count]:=count;
count:=count+l;
until count>limiti
writelnCCtlme/t)/100.'seconds');
end; {tabsmarand}

begin
tabsmarandClimlt);
repeat
writelnC'Enter start and finish integers for display of results');
read(st.fln);
if (st>l) and (st<=llmit) and (fin<=limit) then

for count :=st to fin do writeln(count,Smaran[count]);
until fin=l;
end. {Testsmarand}

31

