On Certain Arithmetic Functions

József Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

In the recent book [1] there appear certain arithmetic functions which are similar to the Smarandache function. In a recent paper [2] we have considered certain generalization or duals of the Smarandache function S(n). In this note we wish to point out that the arithmetic functions introduced in [1] all are particular cases of our function F_f , defined in the following manner (see [2] or [3]).

Let $f: \mathbb{N}^* \to \mathbb{N}^*$ be an arithmetical function which satisfies the following property:

 (P_1) For each $n \in \mathbb{N}^*$ there exists at least a $k \in \mathbb{N}^*$ such that n|f(k).

Let $F_f : \mathbb{N}^* \to \mathbb{N}^*$ defined by

$$F_f(n) = \min\{k \in \mathbb{N}^* : n | f(k)\}$$
(1)

In Problem 6 of [1] it is defined the "ceil function of t-th order" by $S_t(n) = \min\{k : n|k^t\}$. Clearly here one can select $f(m) = m^t$ (m = 1, 2, ...), where $t \ge 1$ is fixed. Property (P_1) is satisfied with $k = n^t$. For $f(m) = \frac{m(m+1)}{2}$, one obtains the "Pseudo-Smarandache" function of Problem 7. The Smarandache "double-factorial" function

$$SDF(n) = \min\{k : n|k!!\}$$

where

$$k!! = \begin{cases} 1 \cdot 3 \cdot 5 \dots k & \text{if } k \text{ is odd} \\ 2 \cdot 2 \cdot 6 \dots k & \text{if } k \text{ is even} \end{cases}$$

of Problem 9 [1] is the particular case f(m) = m!!. The "power function" of Definition 24,

i.e. $SP(n) = \min\{k : n | k^k\}$ is the case of $f(k) = k^k$. We note that the Definitions 39 and 40 give the particular case of S_t for t = 2 and t = 3.

In our paper we have introduced also the following "dual" of F_f . Let $g: \mathbb{N}^* \to \mathbb{N}^*$ be a given arithmetical function, which satisfies the following assumption:

 (P_3) For each $n \ge 1$ there exists $k \ge 1$ such that g(k)|n.

Let $G_g: \mathbb{N}^* \to \mathbb{N}^*$ defined by

$$G_g(n) = \max\{k \in \mathbb{N}^* : g(k)|n\}.$$
(2)

Since $k^t|n, k!!|n, k^k|n, \frac{k(k+1)}{2}|n$ all are verified for k = 1, property (P_3) is satisfied, so we can define the following duals of the above considered functions:

$$S_{t}^{*}(n) = \max\{k : k^{t}|n\};$$

$$SDF^{*}(n) = \max\{k : k!!|n\};$$

$$SP^{*}(n) = \max\{k : k^{k}|n\};$$

$$Z^{*}(n) = \max\left\{k : \frac{k(k+1)}{2}|n\right\}.$$

These functions are particular cases of (2), and they could deserve a further study, as well.

References

- F. Smarandache, Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, edited by M.L. Perez, Xiquan Publ. House (USA), 2000.
- [2] J. Sándor, On certain generalization of the Smarandache function, Notes Number Theory Discrete Mathematics, 5(1999), No.2, 41-51.
- [3] J. Sándor, On certain generalizations of the Smarandache function. Smarandache Notions Journal. 11(2000). No.1-2-3, 202-212.