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Abstract: In a recent study of the PrimaIity oj the Smarandache Symmetric 
Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of the 
prime factor 333667 in the factorization of the terms of the second order 
sequence. The question if this prime factor occurs peridically was raised. The odd 
behaviour of this and a few other primefadors of this sequence will be explained 
and details of the periodic occurence of this and of several other prime factors 
will be given. 

Definition: The nth term of the Smarandache symmetric sequence of the second order 
is defined by S(n)=123 ... n_n ... 321 which is to be understood as a concatenation I of 
the first n natural numbers concatenated with a concatenation in reverse order of the n 
f~tnahrralnumbers. 

Factorization and Patterns of DivisIoility 

The first five terms of the sequence are: 11, 1221, 123321, 12344321, 1234554321. 
The number of digits D(n) of Sen) is growing rapidly. It can be found from the 
formula: 

D(n) = 2k(n +1)- 2(lO
t 

-I) for n in the intervall0k-I~<Hf-1 (1) 
9 

In order to study the repeated occurrance of certain prime factors the table of Sen) for 
XC:;100 produced in [1] has been extended to~. Tabirca's aim was to factorize the 
terms S(n) as far as possible which is more ambitious then the aim of the present 
calculation which is to find prime factors which are less than 108

• The result is shown 
in table 1. 

The computer file containing table 1 is analysed in various ways. Of the 664579 
primes which are smaller than 107 only 192 occur in the prime factoriztions of Sen) 
for 1~. Of these 192 primes 37 ocCur more than once. The record holder is 
333667. the 28693th prime, which occurs 45 times for l~OO while its neighbours 
333647 and 333673 do not even occur once. Obviously there is something to be 
explained here. The frequency of the most frequently occurring primes is shown 
below .. 

Table 2. Most frequently occurring primes . 

1 In this article the concatenation of a and b is written a_b. Multiplication ab is often made explicit by 
writing a.b. When there is no reason for misunderstanding the signs "_" and "." are omitted. Several 
tables contain prime factorizations. Prime factors are given in ascending order, multiplication is 
expressed by"." and the last factor is followed by .... " if the factorization is incomplete or by Fxxx 
indicating the number of digits of the last factor. To avoid typing errors all tables are electronically 
transferred from the calculation program, which is DOS-based, to the wordprocessor. All editing has 
been done either with a spreadsheet program or directly with the text editor. Full page tables have been 
placed at the end of the article. A non-proportional font has been used to illustrate the placement of 
digits when this has been found useful. 
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The distribution of the primes 11,37,41,43,271,9091 and 333667 is shown in table 
3. It is seen that the occurance patterns are different in the intervals 1~, 1O~99 
and lOO~Qoo. Indeed the last interval is part of the intervalloo~~99. It would 
have been very interesting to include part of the interval 1000<0<9999 but as we can 
see from (1) already S(looo) has 5786 digits. Partition lines are drawn in the table to 
highlight the different intervals. The less frequent primes are listed in table 4 where 
primes occurring more than once are partitioned. 

From the patterns in table 3 we can formulate the occurance of these primes in the 
intervals 1~9, 1~9 and l00<-IlQoo, where the formulas for the last interval are 
indicative. We note, for example, that 11 is not a factor of any term in the interval 
l00<~999. This indicates that the divisibility patterns for the interva11~9999 
and further intervals is a completely open question. 

Table 5 shows an analysis of the patterns of occurance of the primes in table 1 by 
interval. Note that we only have observations up to n=2oo. Nevertheless the interval 
l00<~99 is used. This will be justified in the further analysis. 

Table 5. Divisibility patterns 

Interval p n Range for j 

1~ 3 2+3j j=O.l._ 

1~ 3j j .. l.2._ 

~9 11 A1.1 values of n 
10~99 12+11j j=O,l. - .7 

20+11j j=O.l. - .7 
100~999 None 

1~9 37 2+3j j .. 0.l,2 
3+3j j=0.1.2 

10~99 12+3j j .. O,l._.28.29 

100~999 n2+37j j=0.1._.23 
l.36+37j j=O,l._.23 

1~9 41 4+Sj j=O.l 
5 

10~999 14+5j j=O,l._.197 

~ 43 None 
l.0~99 1l+2l.j j=O.1.3.4 

24+2l.j j=0.1.2.3 
100~999 100 

107+7j j=O,l.._,127 
~9 271 4+Sj j=O.l. 

5 
10~999 14+5j j=O,l.._.197 

l.~999 909l. 9+Sj j=0.1._,98 

l.~9 333667 8,9 

10~99 18+9j j=O.1._.9 

100~999 102+3j j=O,l._.299 

We note that no terms are divisible by 11 for n>100 in the intervall~QOO and 
that no term is divisible by 43 in the intervall~9. Another remarkable observation 
is that the sequence shows exactly the same behaviour for the primes 41 and 271 in 
the intervals included in the study. Will they show the same behaviour when ~1000? 
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Consider 
S(n)=12 ... n_n ... 21. 

Let P be a divisor of Sen). We will construct a number 
N=12 ... n_O .. O_n ... 21 (2) 

so that p also divides N. What will be the number of zeros? Before discussing this 
let's consider the case p=3. 

Case 1. p=3. 

In the case p=3 we use the familiar rule that a number is divisible by 3 if and only if 
its digit sum is divisible by 3. In this case we can insert as many zeros as we like in 
(2) since this does not change the sum of digits. We also note that any integer fonned 
by concatenation of three consecutive integers is divisible by 3, cf a_a+Ca+2, digit 
sum 3a+3. It follows that also a_a+ l_a+2_a+2_a+ Ca is divisible by 3. For a=n+ 1 we 
insert this instead of the appropriate number of zeros in (2). This means that if S(n)=O 
(mod 3) then S(n+3)=O (mod 3). We have seen that S(2)=O (mod 3) and S(3)=O (mod 
3). By induction it follows that S(2+3j)=O (mod 3) for j=1,2, ... and S(3jF-O (mod 3) 

. for j=1,2, .... 

We now return to the general case. Sen) is deconcatenated into two numbers l2 ... n 
and n ... 21 from which we form the numbers 

A=12 .. .n·l01+[log,o B] andB=n ... 21 
We note that this is a different way of writing Sen) since indeed A+B=S(n) and that 
A+B=O (mod p). We now form M=A·lOs+B where we want to determine s so that 
M=O (mod p). We write M in the fonn M=A(IO'-I)+A+B where A+B can be ignored 
mod p. We exclude the possibility A=O (mod p) which is not interesting. This leaves 
us with the congruence 

M=A(lO'-I)=O (mod p) 
or 

10'-1=0 (mod p) 
We are particularly interested in solutions for which 

pE {11,37,41,43,271,9091.333667} 
By the nature of the problem these solutions are periodic. Only the two fIrst values of 
s are given for each prime. 

Table 6. 10'-1~O (mod p) 

We note that the result is independent of n. This means that we can use n as a 
parameter when searching for a sequence C=n+l_n+2_ ... n+k_n+k_ ... n+2_n+1 such 
that this is also divisible by p and hence can be inserted in place of the zeros to form 
S(n+k) which then fIlls the condition S(n+kF-O (mod p). Here k is a multiple of s or 
sfl in case s is even. This explains the results which we have already obtained in a 
different way as part of the factorization of Sen) for ~OO, see tables 3 and 5. It 
remains to explain the periodicity which as we have seen is different in different 
intervals lOu~lOu_1. 
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This may be best done by using concrete examples. Let us use the sequences starting 
with n=12 for p=37, n=12 and n=20 for p=I1 and n=102 for p=333667. At the same 
time we will illustrate what we have done above. 

Case 2: n=12, p=37. Period=3. Interval: 1O~~99. 

S(n)= 123456789101112 .121110987654321 
N= 123456789101112000000000000121110987654321 
c= 131415151413 
S(n+k) =123456789101112131415151413121110987654321 

Let's look at C which carries the explanation to the periodicity. We write C in the 
form 

C=101010101010+30405050403 

We know that C=O (mod 37). What about 101O10101O1O? Let's write 
101010101010=10+103+105+_+10 11= (1012_1) /9=0 (mod 37) 

This congruence mod 37 has already been established io table 6. It follows that also 
30405050403=0 (mod 37) 

and that 
x·(101010101010)=0 (mod 37) for x = any integer 

Combining these observations we se that 
232425252423, 333435353433, _ 939495959493=0 (mod 37) 

Hence the periodicity is explained. 

Case 3a: n=12, p=Il. Period=Il. Interval: l~. 

S(12)=12_ .. _12 12_ .• _21 
S(23)=12_ .. _121314151617181920212223232221201918171615141312_ .. _21 
C= 13141516171819202122232322212019181716151413= 
C1= 10101010101010101010101010101010101010101010+ 
C2= 3040506070809101112131312111009080706050403 

From this we form 
2·C1+C2= 23242526272829303132333332313029282726252423 

which is NOT what we wanted, but CI=O (modi 1) and also CIIlO=O (mod 11). 
Hence we form 

2·C1+C1/10+C2=24252627282930313233343433323130292827262524 
which is exactly the C-term required to form the next term S(34) of the sequence. For 
the next term S(45) the C-term is formed by 3·C1+2·CIII0+C2 The process is 
repeated adding Cl+C11l0 to proceed from a C-term to the next until the last term 
<100, i.e. S(89) is reached. 

Case 3b: n=20, p=ll. Period=ll. Interval: 1~n$9. 

This case does not differ much from the case 0=12. We have 
S (20) =12_ .. _20 20_ .. _21 
S(31)=12_ .. _202122232425262728293031313029282726252423 222120_ .. _21 
C= 21222324252627282930313130292827262524232221= 
C1= 10101010101010101010101010101010101010101010+ 
C2= 1020304050607080910111110090807060504030201 
The C-term for S(42) is 
3·C1+C1/10+C2=32333435363738394041424241403938373635343332 

In general C=x·Cl+{x-l}CIIIO+C2 for x=3,4,5, .. ,8. For x=8 the last term S(97) of 
this sequence is reached. 
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Case 4: n=102, p=333667. period=3. Interval: 1oo:5;n$999. 

S(102)=12_ .. _101102 102101_ .. _21 
S(105)=12_ .. _101102103104105105104103102101_ .. _21 
C= 103104105105104103 
C1= 100100100100100100 

=0 (mod 333667) 
=0 (mod 333667) 

C2= 3004005005004003 =0 (mod 333667) 

Removing 1 or 2 zeros at the end of C1 does not affect the congruence modulus 
333667, we have: 
C1'= 10010010010010010 
C1"= 1001001001001001 
We now form the combinations: 

x·C1+y·C1' +z·C1' , +C2=0 (mod. 333667) 

=0 (mod 333667) 
=0 (mod 333667) 

'This, in my mind, is quite remarkable: All 18-digit integers formed by the 
concatenation of three consecutive 3-digit integers followed by a concatenation of the 
same integers in descending order are divisible by 333667, example 
376377378378377376=0 (mod 333667). As far as the C-terms are concerned all Sen) 
in the range 100:5;n<999 could be divisible by 333667, but they are not Why? It is 
because S(1OO) and S(101) are not divisible by 333667. Consequently n=I00+3k and 
101+3k can not be used for insertion of an appropriate C-value as we did in the case 
of S(102). 'This completes the explanation of the remarkable fact that every third term 
S(I02+3j) in the range l00<-I1$99 is divisible by 333667. 

1bese three cases have shown what causes the periodicity of the divisibility of the 
Smarandache symmetric sequence of the second order by primes. The mechanism is 
the same for the other periodic sequences. 

Beyond 1000 

We have seen that numbers of the type: 
10101010_10, 100100100-100, 10001000_1000, etc 

play an important role. Such numbers have been factorized and the occurrence of our 
favorite primes 11, 37, ... ,333667 have been listed in table 7. In this table a number 
like 100100100100 has been abbreviated 4(100) or q(E), where q and E are listed in 
separate columns. 

Question 1. Does the sequence of terms Sen) divisible by 333667 continue beyond 
WOO? 

Although Sen) was partially factorized only up n=2oo we have been able to draw 
conclusions on divisibility up n=1ooo. The last term that we have found divisible by 
333667 is S(999). Two conditions must be met for there to be a sequence of terms 
divisible by p=333667 in the interval1~999. 

Condition 1. There must exist a number 10001000 ... 1000 divisible by 333667 to 
ensure the periodicity as we have seen in our case studies. 
In table 7 we find q=9, E=looo. This means that the periodicity will be 9 - if it exists, 
i.e. condition 1 is met 
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Condition 2. There must exist a term S(n) with ~1000 divisible by 333667 which 
will constitute the first term of the sequence. 
The last term for n<1000 which is divisible by 333667 is S(999) from which we build 

S(108)=12_999_1000 ___ 1008_1008 __ 1000_999--21 

where we deconcatenate 100010011002 ... 10081008 ... 10011000 which is divisible by 
333667 and provides the C-term (as introduced in the case studies) needed to generate 
the sequence, i.e. condition 2 is met. 

We conclude that S(I008+9j)=O (mod 333667) for j=O,1,2, ... 999. The last term in 
this sequence is S(9999). From table 7 we see that there could be a sequence with the 
period 9 in the interval l0000<.-n=s;99999 and a sequence with period 3 in the interval 
l00000<~99999. It is not difficult to verify that the above conditions are fIlled also 
in these intervals. This means that we have: 

S(1oo8+9j)=O (mod 333667) 
S(IOOO8+9j)=O (mod 333667) 
S(I00002+3j)=O (mod 333667) 

forj=OI,2, ... ,999, i.e. 103~1O4_1 
for j=OI,2, .•. ,9999, i.e. 104:5n::;lOS-1 
forj=OI,2, ... ,99999, i.e. IOs~106_1 

It is one of the fascinations with large numbers to find such properties. This 
extraordinary property of the prime 333667 in relation to the Smarandache symmetric 
sequence probably holds for n>106. It easy to loose contact with reality when plying 
with numbers like this. We have S(999999)=O (mod 333667). What does this number 
S(999999) look like? Applying (1) we find that the number of digits D(999999) of 
S(999999) is 

D(999999)=2·6.106-2·(l06-)19=11777778 
Let's write this number with 80 digits per line, 60 lines per page, using both sides of 
the paper. We will need 1226 sheets of paper - more that 2 reams! 

Question 2. Why is there no sequence of S(n) divisible by II in the interval 
I ()()<-D:5999? 

Condition!' We must have a sequence of the form 100100.: divisible by 11 to ensure 
the periodicity. As we can see from table 7 the sequence 100100 fills the condition 
and we would have a periodicity equal to 2 if the next condition is met. 

Condition 2. There must exist a term S(n) with ~100 divisible by II which would 
constitute the first term of the sequence. This time let's use a nice property of the 
prime 11: 

Hf=(-lt (mod 11) 
Let's deconcatenate the number a_b corresponding to the concatenation of the 
numbers a and b: We have: 

( -a+b if l+[loglob] is odd 
a_b=a . 1 OI+[Iog'Db] + b=~ 

l a+b if 1+[Iog1ob] is even 

Let's first consider a deconcatenated middle part of S(n) where the concatenation is 
done with tbree-digit integers. For convienience I have chosen a concrete example -
the generalization should pose no problem 
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27327427527527427352-7+3-2+7-4+2-7+5-2+7-5+2-7+4-2+7-350 (mod 11) 
+-+-+-+-+-+-+-+-+-

It is easy to see that this property holds independent of the length of the sequence 
above and whether it start on + or -. It is also easy to understand that equivalent 
results are obtained for other primes although factors other than +1 and -1 will enter 
into the picture. 

We now return to the question of finding the first term of the sequence. We must start 
from n=97 since S(97) it the last term for which we know that S(nF-O (mod 11). We 
form: 

9899100101-n_D-101100999852 (mod III independent of nc1000. 
+-+-+-+-+-- --+-+-+-+-+-

This means that S(n)=:2 (mod 11) for 1~99 and explains why there is no 
sequence divisible by 11 in this interval. 

Question 3. Will there be a sequence divisible by 11 in the interval 1000<-11$9991 

Condition 1. A sequence 10001000 ... 1000 divisible by 11 exists and would provide a 
period of 11, se table 7. 

Condition 2. We need to find one value n ~1000 for which S(n)=O (mod 11). We 
have seen that S(999)=2 (mod 11). We now look at the sequences following S(999). 
Since S(999)=2 (mod 9) we need to insert a sequence l0001001..m_m ... l0011()()()=9 
(mod 11) so that S(m)=O (mod H).Unfortunately m does not exist as we will see 
below 

1000100052 (mod 11) 
+-+-+-+-
1 1 
100010011001100052. (mod 11) 
+-+-+-+-+-+-+-+-
111 1 

1 1 
100010011002100210011000=0 (mod l1l 
+-+-+-+-+-+-+-+-+-+-+-+-
1 1 1 1 1 1 

1 2 2 1 
100010011002100310031002100110005-457 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
111 1 1 1 1 1 

12332 1 

Continuing this way we find that the residues form the period 2,2,0,7,1,4,5,4,1,7,0. 
We needed a residue to be 9 in order to build sequences divisible by 9. We conclude 
that Sen) is not divisible by 11 in the interval l000<-1lS9999. 

Trying to do the above analysis with the computer programs used in the early part of 
this study causes overflow because the large integers involved. However, changing 
the approach and performing calculations modulus 11 posed no problems. The above 
method was preferred for clarity of presentation. 
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Epilog 

There are many other questions that may be interesting to look into. This is left to the 
reader. The author's main interest in this has been to develop means by which it is 
possible to identify some properties of large numbers other than the so frequently 
asked question as to whether a big number is a prime or not. There are two important 
ways to generate large numbers that I found particularly interesting - iteration and 
concatenation. In this article the author has drawn on work' done previously, 
references below. In both these areas very large numbers may be generated for which 
it may be impossible to find any practical use - the methods are often more important 
than the results. 
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