AND BACKWARD EXTENDED FIBONACCI SEQUENCE

Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad, - 380005 INDIA.

Given a sequence S_b (called the base sequence).

 $b_1, b_2, b_3, b_4, \ldots$

Then the Smarandache Pascal derived Sequence S_d

```
d_1, d_2, d_3, d_4, \dots is defined as follows: Ref [1]

d_1 = b_1

d_2 = b_1 + b_2

d_3 = b_1 + 2b_2 + b_3

d_4 = b_1 + 3b_2 + 3b_3 + b_4

...

d_{n+1} = \sum_{k=0}^{n} C_k . b_{k+1}
```

Now Given S_d the task ahead is to find out the base sequence S_b . We call the process of extracting the base sequence from the Pascal derived sequence as **Depascalisation**. The interesting observation is that this again involves the Pascal's triangle though with a difference.

We see that

 $b_1 = d_1$ $b_2 = -d_1 + d_2$ $b_3 = d_1 - 2d_2 + d_3$ $b_4 = -d_1 + 3d_2 - 3d_3 + d_4$...

which suggests the possibility of

$$b_{n+1} = \sum (-1)^{n+k} \cdot {}^{n}C_{k} \cdot d_{k+1}$$

k=0

This can be established by induction.

We shall see that the depascalised sequences also exhibit interesting patterns.

To begin with we define The Backward Extended Fibonacci Sequence (BEFS) as Follows:

The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

In which $T_1 = 1$, $T_2 = 1$, and $T_{n-2} = T_n - T_{n-1}$, n > 2 (A)

Now If we allow n to take values $0, -1, -2, \ldots$ also, we get

 $T_0 = T_2 - T_1 = 0$, $T_{-1} = T_1 - T_0 = 1$, $T_{-2} = T_0 - T_{-1} = -1$, etc. and we get the Fibonacci sequence extended backwards as follows { T_r is the r^{th} term }

 $\ldots T_{-6} T_{-5}, T_{-4}, T_{-3}, T_{-2}, T_{-1}, \underline{T}_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9, \ldots$

 \dots -8, 5, -3, 2, -1, 1 $\underline{0}$, 1, 1, 2, 3, 5 8, 13, 21, 34, \dots

1. Depascalisation of the Fibonacci sequence:

The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

The corresponding depascalised sequence $S_{d(-1)}$ comes out to be

 $S_{d(-1)} \rightarrow 1, 0, 1, -1, 2, -3, 5, -8, \ldots$

It can be noticed that, The resulting sequence is nothing but the BEFS rotated by 180° about T_1 . and then the terms to the left of T_1 omitted. { This has been generalised in the Proposition 2 below.}

It is not over here. If we further depascalise the above sequence we get the following sequence $S_{d(-2)}$ as

1, -1, 2, -5, 13, -34, 89, -233

This can be obtained alternately from the Fibonacci Sequence by:

(a) Removing even numbered terms.

(b) Multiplying alternate terms with (-1) in the thus obtained sequence.

Propositions:

Following two propositions are conjectured on Pascalisation and Depascalisation of Fibonacci Sequence.

(1) If the first r terms of the Fibonacci Sequence are removed and the remaining sequence is Pascalised, the resulting Derived Sequence is F_{2r+2} , F_{2r+4} , F_{2r+6} , F_{2r+8} , . . . where F_r is the rth term of the Fibonacci Sequence.

(2) In the FEBS If we take T_r as the first term and Depascalise the Right side of it then we get the resulting sequence as the left side of it (looking rightwards) with T_r as the first term.

As an example let r = 7, $T_7 = 13$

 $\dots T_{-6} T_{-5}, T_{-4}, T_{-3}, T_{-2}, T_{-1}, T_0, T_1, T_2, T_3, T_4, T_5, T_6, \underline{\mathbf{T}}_7, \mathbf{T}_8, \mathbf{T}_9, \dots$ $\dots -8, 5, -3, 2, -1, 1 0, 1, 1, 2, 3, 5 8, \underline{\mathbf{13}}, 21, 34, 55, 89, \dots$

depascalisation

The Depascalised sequence is

13, 8, 5, 3, 2, 1, 1, 0, 1, -1, 2, -3, 5, -8 . . .

which is obtained by rotating the FEBS around $13 (T_7)$ by 180^0 and then removing the terms on the left side of 13.

One can explore for more fascinating results.

References:

[1] "Amarnath Murthy", 'Smarandache Pascal derived Sequences', SNJ, 2000.