THE FIRST CONSTANT OF SMARANDACHE

by

Ion Cojocaru and Sorin Cojocaru

In this note we prove that the series \(\sum_{n=2}^{\infty} \frac{1}{S(n)!} \) is convergent to a real number \(s \in (0.717, 1.253) \) that we call the first constant constant of Smarandache.

It appears as an open problem, in [1], the study of the nature of the series \(\sum_{n=2}^{\infty} \frac{1}{S(n)!} \). We can write it as it follows:

\[
\frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{3!} + \cdots = \frac{1}{2!} + \frac{2}{3!} + \frac{4}{4!} + \frac{8}{5!} + \frac{14}{6!} + \cdots =
\]

\[
= \sum_{n=2}^{\infty} \frac{a(n)}{n!}, \text{ where } a(n) \text{ is the number of the equation } S(x) = n, n \in \mathbb{N}, n \geq 2 \text{ solutions}.
\]

It results from the equality \(S(x) = n \) that \(x \) is a divisor of \(n! \), so \(a(n) \) is smaller than \(d(n)! \).

So, \(a(n) < d(n)! \). (1)

Lemma 1. We have the inequality:

\[d(n) \leq n - 2, \text{ for each } n \in \mathbb{N}, n \geq 7. \] (2)

Proof. Be \(n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \) with \(p_1, p_2, \ldots, p_k \) prime numbers, and \(a_i \geq 1 \) for each \(i \in \{ 1, 2, \ldots, k \} \). We consider the function \(f : [1, \infty) \to \mathbb{R}, f(x) = a^x - x - 2, a \geq 2, \text{ fixed}. \) It is derivable on \([1, \infty) \) and \(f(x) = a^x \ln a - 1. \) Because \(a \geq 2, \text{ and } x \geq 1 \) it results that \(a^x \geq 2, \) so \(a^x \ln a \geq 2 \ln a = \ln a^2 \geq \ln 4 > \ln e = 1, \text{ i.e.}, f(x) > 0 \) for each \(x \in [1, \infty) \) and \(a \geq 2, \text{ fixed}. \) But \(f(1) = a - 3. \) It results that for \(a \geq 3 \) we have \(f(x) \geq 0, \text{ that means } a^x \geq x + 2. \)

Particularly, for \(a = p_i, i \in \{ 1, 2, \ldots, k \}, \) we obtain \(p_i^{a_i} \geq a_i + 2 \) for each \(p_i \geq 3. \)

If \(n = 2^s, s \in \mathbb{N}^*, \) then \(d(n) = s + 1 < 2^s - 2 = n - 2 \) for \(s \geq 3. \)

So we can assume \(k \geq 2, \text{ i.e. } p_2 \geq 3. \) It results the inequalities:
\[p_1^{a_1} \geq a_1 + 1 \]
\[p_2^{a_1} \geq a_2 + 2 \]
\[\ldots \]
\[p_k^{a_k} \geq a_k + 2, \]
et equivalent with
\[p_1^{a_1} \geq a_1 + 1, \ p_2^{a_1} - 1 \geq a_2 + 1, \ldots, \ p_k^{a_k} - 1 \geq a_k + 1. \] \hspace{1cm} (3)

Multiplying, member with member, the inequalities (3) we obtain:
\[p_1^{a_1} (p_2^{a_2} - 1) \cdots (p_k^{a_k} - 1) \geq (a_1 + 1)(a_2 + 1) \cdots (a_k + 1) = d(n). \] \hspace{1cm} (4)

Considering the obvious inequality:
\[n - 2 \geq p_1^{a_1} (p_2^{a_2} - 1) \cdots (p_k^{a_k} - 1) \] \hspace{1cm} (5)
and using (4) it results that:
\[n - 2 \geq d(n) \text{ for each } n \geq 7. \]

Lemma 2. \(d(n!) < (n - 2)! \) for each \(n \in \mathbb{N}, n \geq 7. \) \hspace{1cm} (6)

Proof. We ration through induction after \(n. \) So, for \(n = 7, \)
\[d(7!) = d(2^2 \cdot 3 \cdot 5 \cdot 7) = 60 < 120 = 5!. \]

We assume that \(d(n!) < (n - 2)!. \)
\[d((n+1)!) = d(n!(n + 1)) \leq d(n!) \cdot d(n + 1) < (n - 2)! \cdot d(n + 1) < (n-2)! \cdot (n - 1) = (n - 1)!, \]
because in accordance with Lemma 1, \(d(n + 1) < n - 1. \)
Proposition. The series \(\sum_{n=2}^{\infty} \frac{1}{S(n)!} \) is convergent to a number \(s \in (0.717, 1.253) \), that we call the first constant constant of Smarandache.

Proof. From Lemma 2 it results that \(a(n) < (n - 2)! \), so \(\frac{a(n)}{n!} < \frac{1}{n(n-1)} \) for every \(n \in \mathbb{N} \).

For \(n \geq 7 \) and \(\sum_{n=2}^{\infty} \frac{1}{S(n)!} = \sum_{n=2}^{\infty} \frac{a(n)}{n!} + \sum_{n=7}^{\infty} \frac{1}{(n-1)!} \).

Therefore \(\sum_{n=2}^{\infty} \frac{1}{S(n)!} < \frac{1}{2!} + \frac{2}{3!} + \frac{4}{4!} + \frac{8}{5!} + \frac{14}{6!} + \sum_{n=7}^{\infty} \frac{1}{n^5 - n} \). \(\tag{7} \)

Because \(\sum_{n=2}^{\infty} \frac{1}{n^5 - n} = 1 \) we have: it exists the number \(s > 0 \), that we call the Smarandache constant, \(s = \sum_{n=2}^{\infty} \frac{1}{S(n)!} \).

From (7) we obtain:

\[
\sum_{n=2}^{\infty} \frac{1}{S(n)!} < \frac{391}{360} + 1 - \frac{1}{2^1 - 2} - \frac{1}{3^2 - 3} - \frac{1}{4^2 - 4} + \\
\quad + \frac{1}{5^2 - 5} + \frac{1}{6^2 - 6} = \frac{751}{360} - \frac{5}{6} = \frac{451}{360} < 1.253.
\]

But, because \(S(n) = n \) for every \(n \in \mathbb{N}^* \), it results:

\[
\sum_{n=2}^{\infty} \frac{1}{S(n)!} \geq \sum_{n=2}^{\infty} \frac{1}{n!} = e - 2.
\]

Consequently, for this first constant we obtain the framing \(e - 2 < s < 1.253 \), i.e., \(0.717 < s < 1.253 \).

REFERENCES
