In this paper we will discuss about a problem that I asked about 8 years ago, when I was interested mainly in computer science. The computers can operate with 256 characters and all of them has an ASCII code which is an integer from 0 to 255. If you press ALT key and you type a number, the character of the number will appear. But if you type a number that is greater than 255, the computer will calculate the remainder after division by 256, and the corresponding character will appear. "Can you show each character by pressing the same number key k-times?" - asked I.

It is quite simple to solve this problem, and the answer is no. Before proving this we generalize the problem to t-size ASCII code-tables, the codes are from 0 to t-1.

We shall use the following notations: \(N \) is the set of the positive integers, \(N_0 = N \cup \{0\} \), \(Z \) is the set of the integers and \(Z_t = \{0, 1, \ldots, t-1\} \).

Now let us see the generalized problem. Define \(f : N \to N \) as

\[
f(t) = |H_t|
\]

where

\[
H_t = \left\{ x \in Z_t ; a \sum_{i=0}^{k} 10^i \equiv x \pmod{t} \text{ for some } k \in N_0 \text{ and } a \in \{0, 1, \ldots, 9\} \right\}
\]

Our first question was \(f(256) \), and the generalized problem is to calculate \(f(t) \) in generality.

It is clear that \(f(t) = t \) if \(t \leq 10 \), and \(f(t) \geq 10 \) if \(t > 10 \). Now let us examine some special cases.

Let \(t = 2^r 5^s \), \(r,s \in N_0 \) but at least one of them is not zero. Denote by \(w \) the maximum of \(r \) and \(s \). If \(k \geq w \), then \(\left\lfloor 10^k \right\rfloor \), because \(10^k = 2^k 5^k \). So

\[
a \sum_{i=0}^{k} 10^i \equiv a \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} 10^i \pmod{t},
\]

thus

\[
H_t = \left\{ x \in Z_t ; a \sum_{i=0}^{k} 10^i \equiv x \pmod{t} \text{ for some } k \in Z_w \text{ and } a \in \{0, 1, \ldots, 9\} \right\}
\]

So \(|H_t| \leq 10w \), moreover \(|H_t| \leq 9w + 1 \), because if \(a = 0 \), then the value of \(k \) is insignificant.
We got a sufficient condition for \(f(t) < t \), that is \(r > 9w + 1 \). It is satisfied if \(r \geq 6 \) or \(s \geq 2 \) or \(r=2,3,4,5 \) and \(s=1 \). If \(r=0,1 \) and \(s<2 \), or \(r=2,3 \) and \(s=0 \) then \(t \leq 10 \) so we have only 2 cases to examine: \(r=16 \) and \(r=32 \). In the former, \(f(16)=16 \), because \(10=666, 12=44, 13=77, 14=222, 15=111 \) (mod 16), but in the latter \(f(32)<32 \); for example anybody can verify that \(16 \not\in H_{32} \) (by the way \(f(32)=26 \)). Specially we got the answer for our first question: \(f(256)=f(2^8)<256 \), because \(256>9\cdot 8+1 \). In fact \(f(256)=60 \). (Some of these results are computed by a Pascal program.)

In the next case let \(r=10r+1, r \geq 1 \). Take a number \(d=a(1+10+100+...+10^i) \).

Now it is easy to see, that the remainder of \(d \) may be \(0, a, 10a, 10a+a, 100a, 100a+10a, 100a+10a+a, ...,10^{r-1}a+10^{r-2}a+...+a \), so the remainder is less than \(10^r \).

Thus \(10^r \not\in H_r \), so we got \(f(t) < t \).

Now we will show a simple algorithm to calculate \(f(t) \). Fix \(a \) and let \(R_i \) be the remainder of \(10^ia \) and \(S_i \) the sum of the first \(i \) elements of the sequence \(\{R_n\} \) (mod \(t \)). It is obvious that both \(\{R_n\} \) and \(\{S_n\} \) are periodic, so let \(l \) be the end of the first period of \(\{S_n\} \). \(S_l=S_i \) for some \(l<i \).

Then

\[
H_i = \left\{ x \in \mathbb{Z} : a \sum_{i=0}^{l} 10^i \equiv x \pmod{t} \quad k \in \mathbb{Z}, a \in \{0,1,...,9\} \right\}
\]

so it is easy to calculate \(|H_i| \). The time complexity of this algorithm is at most \(O(n^2) \).

Finally let us see a table of the values of the function \(f_i \), computed by a computer.

<table>
<thead>
<tr>
<th>(t)</th>
<th>1...10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>...</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>1...10</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>15</td>
<td>...</td>
<td>60</td>
</tr>
<tr>
<td>10=666 (mod 12)</td>
<td>10=88 (mod 13)</td>
<td>10=66 (mod 14)</td>
<td>10=55 (mod 15)</td>
<td></td>
</tr>
<tr>
<td>12=44 (mod 16)</td>
<td>12=77 (mod 16)</td>
<td>12=22 (mod 17)</td>
<td>12=88 (mod 18)</td>
<td></td>
</tr>
<tr>
<td>13=27 (mod 16)</td>
<td>13=99 (mod 17)</td>
<td>13=1111 (mod 18)</td>
<td></td>
</tr>
<tr>
<td>14=222 (mod 16)</td>
<td>14=99 (mod 17)</td>
<td>14=8888 (mod 18)</td>
<td></td>
</tr>
<tr>
<td>15=111 (mod 16)</td>
<td>15=66 (mod 17)</td>
<td>15=33 (mod 18)</td>
<td></td>
</tr>
<tr>
<td>16=33 (mod 17)</td>
<td>16=88 (mod 18)</td>
<td></td>
</tr>
<tr>
<td>17=77777 (mod 18)</td>
<td>17=55 (mod 19)</td>
<td></td>
</tr>
<tr>
<td>18=2222 (mod 19)</td>
<td></td>
</tr>
</tbody>
</table>
Now we still have the question: for which numbers $f(t) = t$? Are there finite or infinite many t with the property above? Is there a better (faster) algorithm to calculate $f(t)$? Is there an explicit formula? Can anyone answer?

BIBLIOGRAPHY

[1] GYARMATI Edit-TURÁN Pál: Szármelület

Address:
 József Attila Tudományegyetem
 Bolyai Intézet
 Aradi véréntanuk tere 1.
 6720 Szeged
 HUNGARY

E-mail:
 csabci@edge.stud.u-szeged.hu