Signed Graph Equation $L^K(S) \sim \overline{S}$

P. Siva Kota Reddy[†] and M. S. Subramanya^{††}

[†]Department of Mathematics, Rajeev Institute of Technology, Industrial Area, B-M Bypass Road, Hassan 573 201, India

^{††}Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India

 $E\text{-mail: } reddy_math@yahoo.com, subramanya_ms@rediffmail.com$

Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ $(S = (G, \mu))$, where G = (V, E) is a graph called the underlying graph of Sand $\sigma : E \to (\overline{e}_1, \overline{e}_2, \dots, \overline{e}_k)$ $(\mu : V \to (\overline{e}_1, \overline{e}_2, \dots, \overline{e}_k))$ is a function, where each $\overline{e}_i \in \{+, -\}$. Particularly, a Smarandachely 2-singed graph or 2-marked graph is called abbreviated to a singed graph or a marked graph. We characterize signed graphs S for which $L(S) \sim \overline{S}$, $\overline{S} \sim C_E(S)$ and $L^k(S) \sim \overline{S}$, where \sim denotes switching equivalence and L(S), \overline{S} and $C_E(S)$ are denotes line signed graph, complementary signed Graph and common-edge signed graph of S respectively.

Key Words: Smarandachely *k*-signed graph, Smarandachely *k*-marked graph, signed graphs, balance, switching, line signed graph, complementary signed graph, common-edge signed graph.

AMS(2000): 05C22.

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [7]; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ $(S = (G, \mu))$, where G = (V, E) is a graph called the underlying graph of S and $\sigma : E \to (\overline{e}_1, \overline{e}_2, \dots, \overline{e}_k)$ $(\mu : V \to (\overline{e}_1, \overline{e}_2, \dots, \overline{e}_k))$ is a function, where each $\overline{e}_i \in \{+, -\}$. Particularly, a Smarandachely 2-singed graph or 2-marked graph is called abbreviated to a singed graph or a marked graph. A signed graph $S = (G, \sigma)$ is balanced if every cycle in S has an even number of negative edges (See [8]). Equivalently a signed graph is balanced if product of signs of the edges on every cycle of S is positive.

A marking of S is a function $\mu: V(G) \to \{+, -\}$; A signed graph S together with a marking

¹Received Oct.8, 2009. Accepted Dec. 10, 2009.

 μ is denoted by S_{μ} .

The following characterization of balanced signed graphs is well known.

Proposition 1 (E. Sampathkumar [10]) A signed graph $S = (G, \sigma)$ is balanced if, and only if, there exist a marking μ of its vertices such that each edge uv in S satisfies $\sigma(uv) = \mu(u)\mu(v)$.

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed graph S as follows: L(S) is a signed graph such that $(L(S))^u \cong L(S^u)$ and an edge $e_i e_j$ in L(S)is negative if, and only if, both e_i and e_j are adjacent negative edges in S. Another notion of line signed graph introduced in [6], is as follows: The line signed graph of a signed graph $S = (G, \sigma)$ is a signed graph $L(S) = (L(G), \sigma')$, where for any edge ee' in L(S), $\sigma'(ee') = \sigma(e)\sigma(e')$ (see also, E. Sampathkumar et al. [11]. In this paper, we follow the notion of line signed graph defined by M. K. Gill [6].

Proposition 2 For any signed graph $S = (G, \sigma)$, its line signed graph $L(S) = (L(G), \sigma')$ is balanced.

Proof We first note that the labeling σ of S can be treated as a marking of vertices of L(S). Then by definition of L(S) we see that $\sigma'(ee') = \sigma(e)\sigma(e')$, for every edge ee' of L(S) and hence, by proposition-1, the result follows.

Remark: In [2], M. Acharya has proved the above result. The proof given here is different from that given in [2].

For any positive integer k, the k^{th} iterated line signed graph, $L^k(S)$ of S is defined as follows:

$$L^0(S) = S, L^k(S) = L(L^{k-1}(S))$$

Corollary For any signed graph $S = (G, \sigma)$ and for any positive integer k, $L^k(S)$ is balanced.

Let $S = (G, \sigma)$ be a signed graph. Consider the marking μ on vertices of S defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the signs on the edges incident at v. *Complement* of S is a signed graph $\overline{S} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, \overline{S} as defined here is a balanced signed graph due to Proposition 1.

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in connection with structural analysis of marking μ of a signed graph S. Switching S with respect to a marking μ is the operation of changing the sign of every edge of S to its opposite whenever its end vertices are of opposite signs. The signed graph obtained in this way is denoted by $S_{\mu}(S)$ and is called μ -switched signed graph or just switched signed graph. Two signed graphs $S_1 = (G, \sigma)$ and $S_2 = (G', \sigma')$ are said to be isomorphic, written as $S_1 \cong S_2$ if there exists a graph isomorphism $f: G \to G'$ (that is a bijection $f: V(G) \to V(G')$ such that if uv is an edge in G then f(u)f(v) is an edge in G') such that for any edge $e \in G$, $\sigma(e) = \sigma'(f(e))$. Further, a signed graph $S_1 = (G, \sigma)$ switches to a signed graph $S_2 = (G', \sigma')$ (or that S_1 and S_2 are switching equivalent) written $S_1 \sim S_2$, whenever there exists a marking μ of S_1 such that $S_{\mu}(S_1) \cong S_2$. Note that $S_1 \sim S_2$ implies that $G \cong G'$, since the definition of switching does not involve change of adjacencies in the underlying graphs of the respective signed graphs. Two signed graphs $S_1 = (G, \sigma)$ and $S_2 = (G', \sigma')$ are said to be *weakly isomorphic* (see [14]) or *cycle isomorphic* (see [15]) if there exists an isomorphism $\phi : G \to G'$ such that the sign of every cycle Z in S_1 equals to the sign of $\phi(Z)$ in S_2 . The following result is well known (See [15]).

Proposition 3 (T. Zaslavasky [15]) Two signed graphs S_1 and S_2 with the same underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Switching Equivalence of Iterated Line Signed Graphs and

Complementary Signed Graphs

In [12], we characterized signed graphs that are switching equivalent to their line signed graphs and iterated line signed graphs. In this paper, we shall solve the equation $L^k(S) \sim \overline{S}$.

We now characterize signed graphs whose complement and line signed graphs are switching equivalent. In the case of graphs the following result is due to Aigner [3] (See also [13] where $H \circ K$ denotes the corona of the graphs H and K [7].

Proposition 4 (M. Aigner [3]) The line graph L(G) of a graph G is isomorphic with \overline{G} if, and only if, G is either C_5 or $K_3 \circ K_1$.

Proposition 5 For any signed graph $S = (G, \sigma)$, $L(S) \sim \overline{S}$ if, and only if, G is either C_5 or $K_3 \circ K_1$.

Proof Suppose $L(S) \sim \overline{S}$. This implies, $L(G) \cong \overline{G}$ and hence by Proposition-4 we see that the graph G must be isomorphic to either C_5 or $K_3 \circ K_1$.

Conversely, suppose that G is a C_5 or $K_3 \circ K_1$. Then $L(G) \cong \overline{G}$ by Proposition-4. Now, if S any signed graph on any of these graphs, By Proposition-2 and definition of complementary signed graph, L(S) and \overline{S} are balanced and hence, the result follows from Proposition 3. \Box

In [5], the authors define path graphs $P_k(G)$ of a given graph G = (V, E) for any positive integer k as follows: $P_k(G)$ has for its vertex set the set $\mathcal{P}_k(G)$ of all distinct paths in G having k vertices, and two vertices in $\mathcal{P}_k(G)$ are adjacent if they represent two paths $P, Q \in \mathcal{P}_k(G)$ whose union forms either a path P_{k+1} or a cycle C_k in G.

Much earlier, the same observation as above on the formation of a line graph L(G) of a given graph G, Kulli [9] had defined the common-edge graph $C_E(G)$ of G as the intersection graph of the family $\mathcal{P}_3(G)$ of 2-paths (i.e., paths of length two) each member of which is treated as a set of edges of corresponding 2-path; as shown by him, it is not difficult to see that $C_E(G) \cong L^2(G)$, for any isolate-free graph G, where $L(G) := L^1(G)$ and $L^t(G)$ denotes the t^{th} iterated line graph of G for any integer $t \geq 2$.

In [12], we extend the notion of $C_E(G)$ to realm of signed graphs: Given a signed graph $S = (G, \sigma)$ its common-edge signed graph $C_E(S) = (C_E(G), \sigma')$ is that signed graph whose underlying graph is $C_E(G)$, the common-edge graph of G, where for any edge (e_1e_2, e_2e_3) in $C_E(S)$, $\sigma'(e_1e_2, e_2e_3) = \sigma(e_1e_2)\sigma(e_2e_3)$.

Proposition 6(E. Sampathkumar et al. [12]) For any signed graph $S = (G, \sigma)$, its commonedge signed graph $C_E(S)$ is balanced.

We now characterize signed graph whose complement \overline{S} and common-edge signed graph $C_E(S)$ are switching equivalent. In the case of graphs the following result is due to Simic [13]. **Proposition 7**(S. K. Simic [13]) The common-edge graph $C_E(G)$ of a graph G is isomorphic with \overline{G} if, and only if, G is either C_5 or $K_2 \circ \overline{K_2}$.

Proposition 8 For any signed graph $S = (G, \sigma)$, $\overline{S} \sim C_E(S)$ if, and only if, G is either C_5 or $K_2 \circ \overline{K_2}$.

Proof Suppose $\overline{S} \sim C_E(S)$. This implies, $\overline{G} \cong C_E(G)$ and hence by Proposition-7, we see that the graph G must be isomorphic to either C_5 or $K_2 \circ \overline{K_2}$.

Conversely, suppose that G is a C_5 or $K_2 \circ \overline{K_2}$. Then $\overline{G} \cong C_E(G)$ by Proposition-7. Now, if S any signed graph on any of these graphs, By Proposition-6 and definition of complementary signed graph, $C_E(S)$ and \overline{S} are balanced and hence, the result follows from Proposition 3. \Box

We now characterize signed graphs whose complement and its iterated line signed graphs $L^k(S)$, where $k \geq 3$ are switching equivalent. In the case of graphs the following result is due to Simic [13].

Proposition 9(S. K. Simic [13]) For any positive integer $k \ge 3$, $L^k(G)$ is isomorphic with \overline{G} if, and only if, G is C_5 .

Proposition 10 For any signed graph $S = (G, \sigma)$ and for any positive integer $k \ge 3$, $L^k(S) \sim \overline{S}$ if, and only if, G is C_5 .

Proof Suppose $L^k(S) \sim \overline{S}$. This implies, $L^k(G) \cong \overline{G}$ and hence by Proposition-9 we see that the graph G is isomorphic to C_5 .

Conversely, suppose that G is isomorphic to C_5 . Then $L^k(G) \cong \overline{G}$ by Proposition-9. Now, if S any signed graph on C_5 , By Corollary-2.1 and definition of complementary signed graph, $L^k(S)$ and \overline{S} are balanced and hence, the result follows from Proposition 3.

References

- R. P. Abelson and M. J. Rosenberg, Symoblic psychologic: A model of attitudinal cognition, Behav. Sci., 3 (1958), 1-13.
- [2] M. Acharya, x-Line sigraph of a sigraph, J. Combin. Math. Combin. Comput., 69(2009), 103-111.
- [3] M. Aigner, Graph whose complement and line graph are isomorphic, J. Comb. Theory, 7 (1969), 273-275.
- [4] M. Behzad and G. T. Chartrand, Line coloring of signed graphs, *Element der Mathematik*, 24(3) (1969), 49-52.
- [5] H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory, 13(4) (1989), 427-444.
- [6] M. K. Gill, Contributions to some topics in graph theory and its applications, Ph.D. thesis,

The Indian Institute of Technology, Bombay, 1983.

- [7] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [8] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2(1953), 143-146.
- [9] V. R. Kulli, On common-edge graphs, The Karnatak University Journal: Science-Vol. XVIII(1973), 321-324.
- [10] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters, 7(3) (1984), 91-93.
- [11] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, The Line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, to appear.
- [12] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, Common-edge signed graph of a signed graph, Submitted.
- [13] S. K. Simic, Graph equation $L^n(G) \cong \overline{G}$, univ. Beograd publ. Electrostatic. Fak., Ser. Math Fiz, 498/541 (1975), 41-44.
- [14] T. Sozánsky, Enueration of weak isomorphism classes of signed graphs, J. Graph Theory, 4(2)(1980), 127-144.
- [15] T. Zaslavsky, Signed Graphs, *Discrete Appl. Math.*, 4(1)(1982), 47-74.