Signed Graph Equation $L^K(S) \sim S$

P. Siva Kota Reddy† and M. S. Subramanya††

†Department of Mathematics, Rajeev Institute of Technology, Industrial Area, B-M Bypass Road, Hassan 573 201, India

††Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India

E-mail: reddy_math@yahoo.com, subramanya_ms@rediffmail.com

Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ ($S = (G, \mu)$), where $G = (V, E)$ is a graph called the underlying graph of S and $\sigma : E \to (e_1, e_2, \cdots, e_k)$ ($\mu : V \to (\overline{e_1}, \overline{e_2}, \cdots, \overline{e_k})$) is a function, where each $e_i \in \{+,-\}$. Particularly, a Smarandachely 2-signed graph or 2-marked graph is called abbreviated to a signed graph or a marked graph. We characterize signed graphs S for which $L(S) \sim \overline{S}$, $\overline{S} \sim C_E(S)$ and $L^k(S) \sim \overline{S}$, where \sim denotes switching equivalence and $L(S)$, \overline{S} and $C_E(S)$ are denotes line signed graph, complementary signed graph and common-edge signed graph of S respectively.

Key Words: Smarandachely k-signed graph, Smarandachely k-marked graph, signed graphs, balance, switching, line signed graph, complementary signed graph, common-edge signed graph.

AMS(2000): 05C22.

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [7]; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ ($S = (G, \mu)$), where $G = (V, E)$ is a graph called the underlying graph of S and $\sigma : E \to (\overline{e_1}, \overline{e_2}, \cdots, \overline{e_k})$ ($\mu : V \to (\overline{e_1}, \overline{e_2}, \cdots, \overline{e_k})$) is a function, where each $e_i \in \{+,-\}$. Particularly, a Smarandachely 2-signed graph or 2-marked graph is called abbreviated to a signed graph or a marked graph. A signed graph $S = (G, \sigma)$ is balanced if every cycle in S has an even number of negative edges (See [8]). Equivalently a signed graph is balanced if product of signs of the edges on every cycle of S is positive.

A marking of S is a function $\mu : V(G) \to \{+,-\}$; A signed graph S together with a marking

\[1\text{Received Oct.8, 2009. Accepted Dec. 10, 2009.}\]
μ is denoted by \(S_\mu \).

The following characterization of balanced signed graphs is well known.

Proposition 1 (E. Sampathkumar [10]) A signed graph \(S = (G, \sigma) \) is balanced if, and only if, there exist a marking \(\mu \) of its vertices such that each edge \(uv \) in \(S \) satisfies \(\sigma(uv) = \mu(u)\mu(v) \).

Behzad and Chartrand [4] introduced the notion of line signed graph \(L(S) \) of a given signed graph \(S \) as follows: \(L(S) \) is a signed graph such that \((L(S))^n \cong L(S^n)\) and an edge \(e_i,e_j \) in \(L(S) \) is negative if, and only if, both \(e_i \) and \(e_j \) are adjacent negative edges in \(S \). Another notion of line signed graph introduced in [6], is as follows: The line signed graph of a signed graph \(S = (G, \sigma) \) is a signed graph \(L(S) = (L(G), \sigma') \), where for any edge \(ee' \) in \(L(S) \), \(\sigma'(ee') = \sigma(e)\sigma(e') \) (see also, E. Sampathkumar et al. [11]. In this paper, we follow the notion of line signed graph defined by M. K. Gill [6].

Proposition 2 For any signed graph \(S = (G, \sigma) \), its line signed graph \(L(S) = (L(G), \sigma') \) is balanced.

Proof We first note that the labeling \(\sigma \) of \(S \) can be treated as a marking of vertices of \(L(S) \). Then by definition of \(L(S) \) we see that \(\sigma'(ee') = \sigma(e)\sigma(e') \) for every edge \(ee' \) of \(L(S) \) and hence, by proposition-1, the result follows.

Remark: In [2], M. Acharya has proved the above result. The proof given here is different from that given in [2].

For any positive integer \(k \), the \(k^{\text{th}} \) iterated line signed graph, \(L^k(S) \) of \(S \) is defined as follows:

\[
L^0(S) = S, \quad L^k(S) = L(L^{k-1}(S))
\]

Corollary For any signed graph \(S = (G, \sigma) \) and for any positive integer \(k \), \(L^k(S) \) is balanced.

Let \(S = (G, \sigma) \) be a signed graph. Consider the marking \(\mu \) on vertices of \(S \) defined as follows: each vertex \(v \in V \), \(\mu(v) \) is the product of the signs on the edges incident at \(v \). Complement of \(S \) is a signed graph \(\overline{S} = (\overline{G}, \sigma') \), where for any edge \(e = uv \in \overline{G} \), \(\sigma'(uv) = \mu(u)\mu(v) \). Clearly, \(\overline{S} \) as defined here is a balanced signed graph due to Proposition 1.

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in connection with structural analysis of marking \(\mu \) of a signed graph \(S \). Switching \(S \) with respect to a marking \(\mu \) is the operation of changing the sign of every edge of \(S \) to its opposite whenever its end vertices are of opposite signs. The signed graph obtained in this way is denoted by \(S_\mu(S) \) and is called \(\mu \)-switched signed graph or just switched signed graph. Two signed graphs \(S_1 = (G, \sigma) \) and \(S_2 = (G', \sigma') \) are said to be isomorphic, written as \(S_1 \cong S_2 \) if there exists a graph isomorphism \(f : G \rightarrow G' \) (that is a bijection \(f : V(G) \rightarrow V(G') \)) such that if \(uv \) is an edge in \(G \) then \(f(u)f(v) \) is an edge in \(G' \) such that for any edge \(e \in G \), \(\sigma(e) = \sigma'(f(e)) \).

Further, a signed graph \(S_1 = (G, \sigma) \) switches to a signed graph \(S_2 = (G', \sigma') \) (or that \(S_1 \) and \(S_2 \) are switching equivalent) written \(S_1 \sim S_2 \), whenever there exists a marking \(\mu \) of \(S_1 \) such that \(S_\mu(S_1) \cong S_2 \). Note that \(S_1 \sim S_2 \) implies that \(G \cong G' \), since the definition of switching does not involve change of adjacencies in the underlying graphs of the respective signed graphs.
Two signed graphs $S_1 = (G, \sigma)$ and $S_2 = (G', \sigma')$ are said to be \textit{weakly isomorphic} (see [14]) or \textit{cycle isomorphic} (see [15]) if there exists an isomorphism $\phi : G \to G'$ such that the sign of every cycle Z in S_1 equals to the sign of $\phi(Z)$ in S_2. The following result is well known (See [15]).

Proposition 3 (T. Zaslavasky [15]) Two signed graphs S_1 and S_2 with the same underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Switching Equivalence of Iterated Line Signed Graphs and Complementary Signed Graphs

In [12], we characterized signed graphs that are switching equivalent to their line signed graphs and iterated line signed graphs. In this paper, we shall solve the equation $L^k(S) \sim \overline{S}$.

We now characterize signed graphs whose complement and line signed graphs are switching equivalent. In the case of graphs the following result is due to Aigner [3] (See also [13] where $H \circ K$ denotes the corona of the graphs H and K [7].

Proposition 4 (M. Aigner [3]) The line graph $L(G)$ of a graph G is isomorphic with \overline{G} if, and only if, G is either C_5 or $K_3 \circ K_1$.

Proposition 5 For any signed graph $S = (G, \sigma)$, $L(S) \sim \overline{S}$ if, and only if, G is either C_5 or $K_3 \circ K_1$.

\textit{Proof} Suppose $L(S) \sim \overline{S}$. This implies, $L(G) \cong \overline{G}$ and hence by Proposition-4 we see that the graph G must be isomorphic to either C_5 or $K_3 \circ K_1$.

Conversely, suppose that G is a C_5 or $K_3 \circ K_1$. Then $L(G) \cong \overline{G}$ by Proposition-4. Now, if S any signed graph on any of these graphs, By Proposition-2 and definition of complementary signed graph, $L(S)$ and \overline{S} are balanced and hence, the result follows from Proposition 3. \qed

In [5], the authors define \textit{path graphs} $P_k(G)$ of a given graph $G = (V, E)$ for any positive integer k as follows: $P_k(G)$ has for its vertex set the set $\mathcal{P}_k(G)$ of all distinct paths in G having k vertices, and two vertices in $\mathcal{P}_k(G)$ are adjacent if they represent two paths $P, Q \in \mathcal{P}_k(G)$ whose union forms either a path P_{k+1} or a cycle C_k in G.

Much earlier, the same observation as above on the formation of a line graph $L(G)$ of a given graph G, Kulli [9] had defined the \textit{common-edge graph} $C_E(G)$ of G as the \textit{intersection graph} of the family $\mathcal{P}_3(G)$ of 2-paths (i.e., paths of length two) each member of which is treated as a set of edges of corresponding 2-path: as shown by him, it is not difficult to see that $C_E(G) \cong L^2(G)$, for any isolate-free graph G, where $L(G) := L^1(G)$ and $L^t(G)$ denotes the t^{th} \textit{iterated line graph} of G for any integer $t \geq 2$.

In [12], we extend the notion of $C_E(G)$ to realm of signed graphs: Given a signed graph $S = (G, \sigma)$ its \textit{common-edge signed graph} $C_E(S) = (C_E(G), \sigma')$ is that signed graph whose underlying graph is $C_E(G)$, the common-edge graph of G, where for any edge (e_1e_2, e_2e_3) in $C_E(S)$, $\sigma'(e_1e_2, e_2e_3) = \sigma(e_1e_2)\sigma(e_2e_3)$.
Proposition 6 (E. Sampathkumar et al. [12]) For any signed graph $S = (G, \sigma)$, its common-edge signed graph $C_E(S)$ is balanced.

We now characterize signed graph whose complement \overline{S} and common-edge signed graph $C_E(S)$ are switching equivalent. In the case of graphs the following result is due to Simic [13].

Proposition 7 (S. K. Simic [13]) The common-edge graph $C_E(G)$ of a graph G is isomorphic with \overline{G} if, and only if, G is either C_5 or $K_2 \circ K_2$.

Proposition 8 For any signed graph $S = (G, \sigma)$, $\overline{S} \sim C_E(S)$ if, and only if, G is either C_5 or $K_2 \circ K_2$.

Proof Suppose $\overline{S} \sim C_E(S)$. This implies, $\overline{G} \cong C_E(G)$ and hence by Proposition-7, we see that the graph G must be isomorphic to either C_5 or $K_2 \circ K_2$.

Conversely, suppose that G is a C_5 or $K_2 \circ K_2$. Then $\overline{G} \cong C_E(G)$ by Proposition-7. Now, if S any signed graph on any of these graphs, By Proposition-6 and definition of complementary signed graph, $C_E(S)$ and \overline{S} are balanced and hence, the result follows from Proposition 3. □

We now characterize signed graphs whose complement and its iterated line signed graphs $L^k(S)$, where $k \geq 3$ are switching equivalent. In the case of graphs the following result is due to Simic [13].

Proposition 9 (S. K. Simic [13]) For any positive integer $k \geq 3$, $L^k(G)$ is isomorphic with \overline{G} if, and only if, G is C_5.

Proposition 10 For any signed graph $S = (G, \sigma)$ and for any positive integer $k \geq 3$, $L^k(S) \sim \overline{S}$ if, and only if, G is C_5.

Proof Suppose $L^k(S) \sim \overline{S}$. This implies, $L^k(G) \cong \overline{G}$ and hence by Proposition-9 we see that the graph G is isomorphic to C_5.

Conversely, suppose that G is isomorphic to C_5. Then $L^k(G) \cong \overline{G}$ by Proposition-9. Now, if S any signed graph on C_5, By Corollary-2.1 and definition of complementary signed graph, $L^k(S)$ and \overline{S} are balanced and hence, the result follows from Proposition 3. □

References

The Indian Institute of Technology, Bombay, 1983.

