
Scientia Magna
Vol. 6 (2010), No. 3, 84-88

Smarandachely antipodal signed digraphs

P. Siva Kota Reddy†, B. Prashanth† and M. Ruby Salestina‡

† Department of Mathematics Acharya Institute of Technology,
Bangalore 560090, India

‡ Department of Mathematics Yuvaraja’s College, University of Mysore,
Mysore 570005, India

E-mail: pskreddy@acharya.ac.in bbprashanth@yahoo.com
salestina@rediffmail.com

Abstract A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an or-

dered pair S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying digraph

of S and σ : A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.
Particularly, a Smarandachely 2-signed digraph or Smarandachely 2-marked digraph is called

abbreviated a signed digraph or a marked digraph. In this paper, we define the Smarandachely

antipodal signed digraph
−→
A (D) of a given signed digraph S = (D, σ) and offer a structural

characterization of antipodal signed digraphs. Further, we characterize signed digraphs S for

which S ∼ −→
A (S) and S ∼ −→

A (S) where ∼ denotes switching equivalence and
−→
A (S) and S are

denotes the Smarandachely antipodal signed digraph and complementary signed digraph of S

respectively.
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§1. Introduction

For standard terminology and notion in digraph theory, we refer the reader to the classic
text-books of Bondy and Murty [1] and Harary et al.[3]; the non-standard will be given in this
paper as and when required.

A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an ordered pair
S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying digraph of S and σ :
A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly,
a Smarandachely 2-signed digraph or Smarandachely 2-marked digraph is called abbreviated
a signed digraph or a marked digraph. A signed digraph is an ordered pair S = (D, σ), where
D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−} is a function.
A marking of S is a function µ : V (D) → {+,−}. A signed digraph S together with a
marking µ is denoted by Sµ. A signed digraph S = (D, σ) is balanced if every semicycle of S

is positive (Harary et al.[3]). Equivalently, a signed digraph is balanced if every semicycle has
an even number of negative arcs. The following characterization of balanced signed digraphs is
obtained by E. Sampathkumar et al.[5].
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Proposition 1.1.[5] A signed digraph S = (D, σ) is balanced if, and only if, there exist a
marking µ of its vertices such that each arc −→uv in S satisfies σ(−→uv) = µ(u)µ(v).

Let S = (D, σ) be a signed digraph. Consider the marking µ on vertices of S defined
as follows: each vertex v ∈ V , µ(v) is the product of the signs on the arcs incident at v.
Complement of S is a signed digraph S = (D, σ′), where for any arc e = −→uv ∈ D, σ′(−→uv) =
µ(u)µ(v). Clearly, S as defined here is a balanced signed digraph due to Proposition 1.1.

In [5], the authors define switching and cycle isomorphism of a signed digraph as follows:
Let S = (D, σ) and S′ = (D′, σ′), be two signed digraphs. Then S and S′ are said to be

isomorphic, if there exists an isomorphism φ : D → D′ (that is a bijection φ : V (D) → V (D′)
such that if −→uv is an arc in D then

−−−−−−→
φ(u)φ(v) is an arc in D′) such that for any arc −→e ∈ D,

σ(−→e ) = σ′(φ(−→e )). For switching in signed graphs and some results involving switching refer
the paper [4].

Given a marking µ of a signed digraph S = (D, σ), switching S with respect to µ is
the operation changing the sign of every arc −→uv of S′ by µ(u)σ(−→uv)µ(v). The signed digraph
obtained in this way is denoted by Sµ(S) and is called µ switched signed digraph or just switched
signed digraph.

Further, a signed digraph S switches to signed digraph S′ (or that they are switching
equivalent to each other), written as S ∼ S′, whenever there exists a marking of S such that
Sµ(S) ∼= S′.

Two signed digraphs S = (D, σ) and S′ = (D′, σ′) are said to be cycle isomorphic, if there
exists an isomorphism φ : D → D′ such that the sign σ(Z) of every semicycle Z in S equals to
the sign σ(φ(Z)) in S′.

Proposition 1.2.[4] Two signed digraphs S1 and S2 with the same underlying graph are
switching equivalent if, and only if, they are cycle isomorphic.

§2. Smarandachely antipodal signed digraphs

In [2], the authors introduced the notion antipodal digraph of a digraph as follows: For a
digraph D = (V,A), the antipodal digraph

−→
A (D) of D = (V,A) is the digraph with V (

−→
A (D)) =

V (D) and A(
−→
A (D)) = {(u, v) : u, v ∈ V (D) and dD(u, v) = diam(D)}.

We extend the notion of
−→
A (D) to the realm of signed digraphs. In a signed digraph

S = (D, σ), where D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−} is
a function. The Smarandachely antipodal signed digraph

−→
A (S) = (

−→
A (D), σ′) of a signed digraph

S = (D, σ) is a signed digraph whose underlying digraph is
−→
A (D) called antipodal digraph and

sign of any arc e = −→uv in
−→
A (S), σ′(e) = µ(u)µ(v), where for any v ∈ V , µ(v) =

∏

u∈N(v)

σ(uv).

Further, a signed digraph S = (D, σ) is called Smarandachely antipodal signed digraph, if
S ∼= −→

A (S′), for some signed digraph S′. The following result indicates the limitations of
the notion

−→
A (S) as introduced above, since the entire class of unbalanced signed digraphs is

forbidden to be antipodal signed digraphs.
Proposition 2.1. For any signed digraph S = (D, σ), its Smarandachely antipodal signed

graph A(S) is balanced.
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Proof. Since sign of any arc e = −→uv in
−→
A (S) is µ(u)µ(v), where µ is the canonical marking

of S, by Proposition 1.1,
−→
A (S) is balanced.

For any positive integer k, the kth iterated antipodal signed digraph
−→
A (S) of S is defined

as follows:
−→
A 0(S) = S, Ak(S) =

−→
A (
−→
Ak−1(S)).

Corollary 2.2. For any signed digraph S = (D, σ) and any positive integer k,
−→
Ak(S) is

balanced.
In [2], the authors characterized those digraphs that are isomorphic to their antipodal

digraphs.
Proposition 2.3.[2] For a digraph D = (V,A), D ∼= −→

A (D) if, and only if, D ∼= K∗
p .

Proof. First, suppose that D ∼= −→
A (D). If (u, v) ∈ A then (u, v) ∈ A(

−→
A (D)). Therefore,

dD(u, v) = 1 = diam(D). Since K∗
p is the only digraph of diameter 1, we have D ∼= K∗

p .
For the converse, if D ∼= K∗

p , then diam(D) = 1 and for every pair u, v of vertices in D,
the distance dD(u, v) = 1. Hence,

−→
A (D) ∼= K∗

p and D ∼= −→
A (D).

We now characterize the signed digraphs that are switching equivalent to their Smaran-
dachely antipodal signed graphs.

Proposition 2.4. For any signed digraph S = (D, σ), S ∼ −→
A (S) if, and only if, D ∼= K∗

p

and S is balanced signed digraph.
Proof. Suppose S ∼ −→

A (S). This implies, D ∼= −→
A (D) and hence D is K∗

p . Now, if S is any
signed digraph with underlying digraph as K∗

p , Proposition 2.1 implies that
−→
A (S) is balanced

and hence if S is unbalanced and its
−→
A (S) being balanced can not be switching equivalent to

S in accordance with Proposition 1.2. Therefore, S must be balanced.
Conversely, suppose that S is an balanced signed digraph and D is K∗

p . Then, since
−→
A (S)

is balanced as per Proposition 2.1 and since D ∼= −→
A (D), the result follows from Proposition 1.2

again.
Proposition 2.5. For any two signed digraphs S and S′ with the same underlying digraph,

their Smarandachely antipodal signed digraphs are switching equivalent.
Proposition 2.6.[2] For a digraph D = (V,A), D ∼= −→

A (D) if, and only if,
i) diam(D) = 2.
ii) D is not strongly connected and for every pair u, v of vertices of D, the distance

dD(u, v) = 1 or dD(u, v) = ∞.
In view of the above, we have the following result for signed digraphs:
Proposition 2.7. For any signed digraph S = (D, σ), S ∼ −→

A (S) if, and only if, D satisfies
conditions of Proposition 2.6.

Proof. Suppose that
−→
A (S) ∼ S. Then clearly we have

−→
A (D) ∼= D and hence D satisfies

conditions of Proposition 2.6.
Conversely, suppose that D satisfies conditions of Proposition 2.6. Then D ∼= −→

A (D) by
Proposition 2.6. Now, if S is a signed digraph with underlying digraph satisfies conditions of
Proposition 2.6, by definition of complementary signed digraph and Proposition 2.1, S and−→
A (S) are balanced and hence, the result follows from Proposition 1.2.

The notion of negation η(S) of a given signed digraph S defined in [6] as follows: η(S) has
the same underlying digraph as that of S with the sign of each arc opposite to that given to it
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in S. However, this definition does not say anything about what to do with nonadjacent pairs
of vertices in S while applying the unary operator η(.) of taking the negation of S.

Proposition 2.4 & 2.7 provides easy solutions to two other signed digraph switching equiv-
alence relations, which are given in the following results.

Corollary 2.8. For any signed digraph S = (D, σ), S ∼ −→
A (η(S)).

Corollary 2.9. For any signed digraph S = (D, σ), S ∼ −→
A (η(S)).

Problem. Characterize signed digraphs for which

i) η(S) ∼ −→
A (S).

ii) η(S) ∼ −→
A (S).

For a signed digraph S = (D, σ), the
−→
A (S) is balanced (Proposition 2.1). We now examine,

the conditions under which negation η(S) of
−→
A (S) is balanced.

Proposition 2.10. Let S = (D, σ) be a signed digraph. If
−→
A (G) is bipartite then η(

−→
A (S))

is balanced.

Proof. Since, by Proposition 2.1,
−→
A (S) is balanced, if each semicycle C in

−→
A (S) contains

even number of negative arcs. Also, since
−→
A (D) is bipartite, all semicycles have even length;

thus, the number of positive arcs on any semicycle C in
−→
A (S) is also even. Hence η(

−→
A (S)) is

balanced.

§3. Characterization of Smarandachely antipodal signed

graphs

The following result characterize signed digraphs which are Smarandachely antipodal signed
digraphs.

Proposition 3.1. A signed digraph S = (D, σ) is a Smarandachely antipodal signed
digraph if, and only if, S is balanced signed digraph and its underlying digraph D is an antipodal
graph.

Proof. Suppose that S is balanced and D is a
−→
A (D). Then there exists a digraph H such

that
−→
A (H) ∼= D. Since S is balanced, by Proposition 1.1, there exists a marking µ of D such

that each arc −→uv in S satisfies σ(−→uv) = µ(u)µ(v). Now consider the signed digraph S′ = (H, σ′),
where for any arc e in H, σ′(e) is the marking of the corresponding vertex in D. Then clearly,−→
A (S′) ∼= S. Hence S is an Smarandachely antipodal signed digraph.

Conversely, suppose that S = (D, σ) is a Smarandachely antipodal signed digraph. Then
there exists a signed digraph S′ = (H, σ′) such that

−→
A (S′) ∼= S. Hence D is the A(D) of H

and by Proposition 2.1, S is balanced.
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