Smarandachely k-Constrained Number of Paths and Cycles

P. Devadas Rao1, B. Sooryanarayana2, M. Jayalakshmi3

1Department of Mathematics, Srinivas Institute of Technology, Valachil, Mangalore. Karnataka State, INDIA, Pin 574 143
2Department of Mathematical and Computational Studies, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka State, INDIA, Pin 560 056
3Department of Mathematics, Dayanandasagara College Arts Science and Commerce, Bangalore, Karnataka State, INDIA, Pin 560 078,
Email: devadasrao@yahoo.co.in, drbsnrao@yahoo.co.in, jayachatra@yahoo.co.in

Abstract: A Smarandachely k-constrained labeling of a graph $G(V,E)$ is a bijective mapping $f : V \cup E \rightarrow \{1, 2, ... , |V| + |E|\}$ with the additional conditions that $|f(u) - f(v)| \geq k$ whenever $uv \in E$, $|f(u) - f(uv)| \geq k$ and $|f(uv) - f(vw)| \geq k$ whenever $u \neq w$, for an integer $k \geq 2$. A graph G which admits a such labeling is called a Smarandachely k-constrained total graph, abbreviated as k–CTG. The minimum number of isolated vertices required for a given graph G to make the resultant graph a k–CTG is called the k-constrained number of the graph G and is denoted by $t_k(G)$. In this paper we settle the open problems 3.4 and 3.6 in [4] by showing that $t_k(P_n) = 0$, if $k \leq k_0; 2(k - k_0)$, if $k > k_0$ and $2n \equiv 1$ or 2 (mod 3); $2(k - k_0) - 1$ if $k > k_0; 2n \equiv 0$(mod 3) and $t_k(C_n) = 0$, if $k \leq k_0; 2(k - k_0)$, if $k > k_0$ and $2n \equiv 0$ (mod 3); $3(k - k_0)$ if $k > k_0$ and $2n \equiv 1$ or 2 (mod 3), where $k_0 = \lfloor \frac{2n - 1}{3} \rfloor$.

Key Words: Smarandachely k-constrained labeling, Smarandachely k-constrained total graph, k-constrained number, minimal k-constrained total labeling.

AMS(2000): 05C78

§1. Introduction

All the graphs considered in this paper are simple, finite and undirected. For standard terminology and notations we refer [1], [3]. There are several types of graph labelings studied by various authors. We refer [2] for the entire survey on graph labeling. In [4], one such labeling called Smarandachely labeling is introduced. Let $G = (V,E)$ be a graph. A bijective mapping $f : V \cup E \rightarrow \{1, 2, ..., |V| + |E|\}$ is called a Smarandachely k–constrained labeling of G if it satisfies the following conditions for every $u, v, w \in V$ and $k \geq 2$;

1. $|f(u) - f(v)| \geq k$
2. $|f(u) - f(uv)| \geq k$,

1Received June 19, 2009. Accepted Aug 25, 2009.
Let \(S \) be the set of first \(k \) consecutive positive integers not in \(x \).

1. Let \(x \) be an edge \(1 \leq x \).
2. Lemma \(S \) is an edge whenever \(x \) is incident with \(2 \).
3. Let \(f \) be a minimal \(k \)-constrained total labeling of \(G \). Then for each \(l, 1 \leq l \leq k \), determine the value of \(f(l) - f(l_j) \) for some \(l_j \), where \(|f(l_i) - f(l_j)| < k < k \), a contradiction.

Further, if \(f(l_j) \neq i \) for any \(l, j \) with \(1 \leq l \leq k_0, 1 \leq j \leq 3 \) for some \(i \in S \), then \(i \) should be assigned to an isolated vertex. So, span of \(f \) will increase, hence \(f \) cannot be minimal. \(\square \)

Problem 1.1 For any integers \(n, k \geq 3 \), determine the value of \(t_k(P_n) \).

Problem 1.2 For any integers \(n, k \geq 3 \), determine the value of \(t_k(C_n) \).

\section*{2. \(k \)-Constrained Number of a Path}

Let \(V(P_n) = \{v_1, v_2, \ldots, v_n\} \) and \(E(P_n) = \{v_i v_{i+1} \mid 1 \leq i \leq n - 1\} \). Designate the vertex \(v_i \) of \(P_n \) as \(2i - 1 \) and the edge \(v_jv_{j+1} \) as \(2j \), for each \(i, 1 \leq i \leq n \) and \(1 \leq j \leq n - 1 \).

Lemma 2.1 Let \(k_0 = \left[\frac{2n - 1}{3} \right] \) and \(S_l = \{3l - 2, 3l - 1, 3l\} \) for \(1 \leq l \leq k_0 \). Let \(f \) be a minimal \(k \)-constrained total labeling of \(P_n \). Then for each \(i, 1 \leq i \leq k_0 \), there exist a \(l, 1 \leq l \leq k_0 \) and a \(x \in S_l \) such that \(f(x) = i \).

Proof For \(1 \leq l \leq k_0 \), let \(S_l = \{l_1, l_2, l_3\} \), where \(l_1 = 3l - 2, l_2 = 3l - 1, l_3 = 3l \). Let \(S = \{1, 2, 3, \ldots, k_0\} \) and \(S \) be a minimal \(k \)-constrained total labeling of \(P_n \). Then for each \(i, 1 \leq i \leq k_0 + 1 \), otherwise if \(f(l_i), f(l_j) \in S \) for \(1 \leq i, j \leq 3, i \neq j \), then \(|f(l_i) - f(l_j)| < k_0 < k \), a contradiction.

Further, if \(f(l_j) \neq i \) for any \(l, j \) with \(1 \leq l \leq k_0, 1 \leq j \leq 3 \) for some \(i \in S \), then \(i \) should be assigned to an isolated vertex. So, span of \(f \) will increase, hence \(f \) cannot be minimal. \(\square \)

Lemma 2.2 Let \(S_l = \{3l - 2, 3l - 1, 3l\} \) and \(f \) be a minimal \(k \)-constrained total labeling of \(P_n \). Let \(f(x) = s_1 \) and \(f(y) = s_2 \) for some \(x \in S_l \) and \(y \in S_{l+1} \) for some \(l, 1 \leq l < m \leq k_0 \) and \(1 \leq s_1, s_2 \leq k_0 \), where \(k_0 = \left[\frac{2n - 1}{3} \right] \). Then \(y = x + 3 \).

Proof Let \(x_1, x_2, x_3 \) be the elements of \(S_l \) and \(x_4, x_5, x_6 \) be that of \(S_{l+1} \) (i.e. if \(x_1 \) is a vertex of \(P_n \) then \(x_3, x_5 \) are vertices and \(x_2 \) is an edge \(x_1x_3 \); \(x_4 \) is an edge \(x_3x_5 \) and \(x_6 \) is incident with \(x_5 \) or if \(x_1 \) is an edge, then \(x_1 \) is incident with \(x_2 \); \(x_2, x_4, x_6 \) are vertices and \(x_3 \) is an edge \(x_2x_4 \), \(x_5 \) is an edge \(x_4x_6 \)).

Let \(f \) be a minimal \(k \)-constrained total labeling of \(P_n \) and \(S_1, S_2, \ldots, S_{k_0} \) be the sets as defined in the Lemma 2.1. Let \(S_\alpha \) be the set of first \(k_0 \) consecutive positive integers required for labeling of exactly one element of \(S_l \) for each \(l, 1 \leq l \leq k_0 \) as in Lemma 2.1. Then each set \(S_l, 1 \leq l \leq k_0 \) contains exactly two unassigned elements. Again by Lemma 2.1 exactly one of these unassigned element can be assigned by the set \(S_\beta \) containing next possible \(k_0 \) consecutive positive integers not in \(S_\alpha \). After labeling the elements of the set \(S_l, 1 \leq l \leq k_0 \) by the labels in
$S_a \cup S_b$, each S_t contains exactly one element unassigned. Thus these elements can be assigned as per Lemma 2.1 again by the set S_γ having next possible k_0 consecutive positive integers not in $S_a \cup S_b$.

Let us now consider two consecutive sets S_i, S_{i+1} (Two sets S_i and S_j are said to be consecutive if they are disjoint and there exists $x \in S_i$ and $y \in S_j$ such that xy is an edge). Let $\alpha_1, \alpha_2 \in S_\alpha, x_i \in S_i$ and $x_j \in S_{i+1}$ such that $f(x_i) = \alpha_1$ and $f(x_j) = \alpha_2$ (such α_1, α_2, x_i and x_j exist by Lemma 2.1). Then, as f is a minimal k-constrained total labeling of P_n, it follows that $|j - i| > 2$ implies $j \geq i + 3$. Now we claim that $j = i + 3$. We note that if $i = 3$, then the claim is obvious. If $i \neq 3$, then we have the following cases.

Case 1 $i = 1$

If $j \neq 4$ then

Subcase 1 $j = 5$

By Lemma 2.1, there exists $\beta_1, \beta_2 \in S_\beta$ and $x_r \in S_i, x_s \in S_{i+1}$ such that $f(x_r) = \beta_1$ and $f(x_s) = \beta_2$. Now $f(x_1) = \alpha_1$, $f(x_5) = \alpha_2$ implies $r = 2$ or $r = 3$ (i.e. $f(x_2) = \beta_1$ or $f(x_3) = \beta_1$).

Subsubcase 1 $r = 2$ (i.e. $f(x_2) = \beta_1$)

In this case, $f(x_6) = \beta_2$ (since $f(x_2) = \beta_1$ and $f(x_3) = \beta_2$ implies $|j - i| > 2$) and hence by Lemma 2.1 $f(x_3) = \gamma_1$ and $f(x_4) = \gamma_2$ for some $\gamma_1, \gamma_2 \in S_\gamma$ which is inadmissible as x_3 and x_4 are incident to each other and $|\gamma_1 - \gamma_2| < k_0 < k$.

Subsubcase 2 $r = 3$ (i.e. $f(x_3) = \beta_1$)

Again in this case, $f(x_6) = \beta_2$. So $f(x_2) = \gamma_1$ and $f(x_4) = \gamma_2$ for some $\gamma_1, \gamma_2 \in S_\gamma$ which is contradiction as x_2 and x_4 are adjacent to each other and $|\gamma_1 - \gamma_2| < k_0 < k$.

Subcase 2 $j = 6$

Now $f(x_1) = \alpha_1, f(x_6) = \alpha_2$ implies $f(x_2) = \beta_1$ or $f(x_3) = \beta_1$.

Subsubcase 1 $f(x_2) = \beta_1$

In this case, $f(x_5) = \beta_2$ and hence by Lemma 2.1 $f(x_3) = \gamma_1$ and $f(x_4) = \gamma_2$ for some $\gamma_1, \gamma_2 \in S_\gamma$, which is a contradiction as x_3 and x_4 are incident to each other.

Subsubcase 2 $f(x_3) = \beta_1$

In this case, $f(x_4) = \beta_2$ or $f(x_5) = \beta_2$ none of them is possible.

Thus we conclude in Case 1 that if $i = 1$, then $j = 4$, so $j = i + 3$.

Case 2 $i = 2$

In this case we have $j \geq i + 3$, so $j \geq 5$. If $j \neq 5$ then $j = 6$. Now $f(x_2) = \alpha_1, f(x_6) = \alpha_2$ implies $f(x_1) = \beta_1$ or $f(x_3) = \beta_1$.

Subcase 1: $f(x_1) = \beta_1$

But then $f(x_4) = \beta_2$ or $f(x_5) = \beta_2$.

Subsubcase 1 $f(x_4) = \beta_2$
In this case, \(f(x_4) = \beta_2\) and by Lemma 2.1 \(f(x_3) = \gamma_1, f(x_5) = \gamma_2\), which is a contradiction as \(x_3\) and \(x_5\) are adjacent to each other.

Subsubcase 2 \(f(x_3) = \beta_2\)

In this case, \(f(x_5) = \beta_2\) and by Lemma 2.1 \(f(x_3) = \gamma_1, f(x_4) = \gamma_2\), which is not possible as \(x_3\) and \(x_4\) are incident to each other.

Subcase 2 \(f(x_3) = \beta_1\)

In this case, \(f(x_4) = \beta_2\) or \(f(x_5) = \beta_2\) none of them is possible.

Thus in this case 2, we conclude that if \(i = 2\), then \(j = 5\), so \(j = i + 3\).

Thus, we conclude that the labels in \(S_n\) preserves the position in \(S_i\). The similar argument can be extended for the sets \(S_\beta\) and \(S_\gamma\) also.

\[\square\]

Remark 2.3 Let \(k_0 = \left\lfloor \frac{2n-1}{3} \right\rfloor\) and \(l\) be an integer such that \(1 \leq l \leq k_0\). Let \(f\) be a minimal \(k\)-constrained total labeling of a path \(P_n\) and \(S_\alpha = \{\alpha, \alpha + 1, \alpha + 2, \ldots, \alpha + k_0 - 1\}\). Let \(S_l = \{3l - 2, 3l - 1, 3l\}\) and \(f(x) = \alpha + i\) for some \(x \in S_l\) then \(f(y) = \alpha + i + k\) implies \(y \in S_l\).

Proof After assigning the integers 1 to \(k_0\) one each for exactly one element of \(S_l\), for each \(l, 1 \leq l \leq k_0\), an unassigned element in the set containing the element labeled by 1 can be labeled by \(k + 1\). But no unassigned element of any other set can be labeled by \(k + 1\). Thus, if the label \(k + 1\) is not assigned to an element of the set whose one of the element is labeled by 1, then it should be excluded for the labeling of the elements of \(P_n\) and hence the number of isolated vertices required to make \(P_n\) a \(k\)-constrained graph will increase. Therefore, every minimal \(k\)-constrained total labeling should include label \(k + 1\) for an element of the set whose one of the element is labeled by 1. After including \(k + 1\), by continuing the same argument for \(k + 2, k + 3, \ldots, k + k_0\) one by one we can conclude that the label \(k + i\) (and then \(2k + i\)) can be labeled only for the element of the set whose one of the element is labeled by \(i\).

\[\square\]

Remark 2.4 If \(1 \in f(S_l)\), then from the above Lemmas 2.1, 2.2 and Remark 2.3, it is clear that \(l, l + k, l + 2k \in f(S_l)\) for every \(l, 1 \leq l \leq k_0\), where \(k_0 = \left\lfloor \frac{2n-1}{3} \right\rfloor\).

Lemma 2.5 Let \(S_l = \{3i - 2, 3i - 1, 3i\}\) and \(f\) be a minimal \(k\)-constrained total labeling of \(P_n\) such that \(f(x) = s\) for some \(x \in S_i\) for some \(i, 1 \leq i \leq k_0\), where \(k_0 = \left\lfloor \frac{2n-1}{3} \right\rfloor\). Then \(f(y) = s + 1\) implies \(y \in S_{l+1}\) or \(y \in S_{l-1}\) and hence by Lemma 2.2 we have \(|x - y| = 3\).

Proof Suppose the contrary that \(y \in S_j\) for some \(j\) where \(|j - i| > 1\) and \(1 \leq j \leq k_0\). Without loss of generality, we now assume that \(j > i + 1\) (otherwise relabel the set \(S_{k_0 - m}\) for each \(l, 1 \leq m \leq k_0\)). Now by repeated application of Lemma 2.1 we get the sequence of consecutive sets \(S_i, S_{i+1}, S_{i+2}, \ldots, S_j\) and the sequence of elements \(s = s_0, s_1 = s + 1, \ldots, s_{j-i} = s + 1\) where \(s_t \in S_{i+t}\) for each \(t, 0 \leq t \leq j\). As \(j > i + 1\), this sequence of elements (labels) is neither an increasing nor a decreasing sequence. So, there exists a positive integer \(l\) such that \(s_{l-1} < s_l \) and \(s_{l+1} < s_l\). Also, Remark 2.4 \(s_{l+k}, s_{l+2k} \in f(S_{l+i})\), \(s_{l+1+k}, s_{l+1+2k} \in f(S_{l+i+1})\) and \(s_{l-1+k}, s_{l-1+2k} \in f(S_{l+i-1})\). Let \(l_1 = 3(i + l) - 2, l_2 = 3(i + l) - 1, l_3 = 3(i + l)\). We now discuss the following 3! cases.

Case 1 \(f(l_1) = s_l, f(l_2) = s_l + k, f(l_3) = s_l + 2k\).
In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1}, f(l_2 - 3) = s_{l_1 - 1} + k, f(l_3 - 3) = s_{l_1 - 1} + 2k \) and \(f(l_1 + 3) = s_{l_1 + 1}, f(l_2 + 3) = s_{l_1 + 1} + k, f(l_3 + 3) = s_{l_1 + 1} + 2k \). So, \(|f(l_1 - 2) - f(l_1)| \geq k \Rightarrow |s_{l_1 - 1} + k - s_l| \geq k \Rightarrow |k - (s_l - s_{l_1 - 1})| \geq k \Rightarrow s_l - s_{l_1 - 1} \leq 0 \Rightarrow s_l \leq s_{l_1 - 1}, \) a contradiction.

Case 2 \(f(l_1) = s_l, f(l_2) = s_l + 2k, f(l_3) = s_l + k \).

In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1}, f(l_2 - 3) = s_{l_1 - 1} + 2k, f(l_3 - 3) = s_{l_1 - 1} + k \) and \(f(l_1 + 3) = s_{l_1 + 1}, f(l_2 + 3) = s_{l_1 + 1} + 2k, f(l_3 + 3) = s_{l_1 + 1} + k \). So, \(|f(l_1 - 1) - f(l_1)| \geq k \Rightarrow |(s_{l_1 - 1} + k) - (s_l + k)| \geq k \Rightarrow |k - (s_l - s_{l_1 - 1})| \geq k \Rightarrow s_l - s_{l_1 - 1} \leq 0 \Rightarrow s_l \leq s_{l_1 - 1}, \) a contradiction.

Case 3 \(f(l_1) = s_l + k, f(l_2) = s_l, f(l_3) = s_l + 2k \).

In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1} + k, f(l_2 - 3) = s_{l_1 - 1}, f(l_3 - 3) = s_{l_1 - 1} + 2k \) and \(f(l_1 + 3) = s_{l_1 + 1} + k, f(l_2 + 3) = s_{l_1 + 1}, f(l_3 + 3) = s_{l_1 + 1} + 2k \). So, \(|f(l_1 - 1) - f(l_1)| \geq k \Rightarrow |(s_{l_1 - 1} + k - (s_l + k))| \geq k \Rightarrow |k - (s_l - s_{l_1 - 1})| \geq k \Rightarrow s_l - s_{l_1 - 1} \leq 0 \Rightarrow s_l \leq s_{l_1 - 1}, \) a contradiction.

Case 4 \(f(l_1) = s_l + 2k, f(l_2) = s_l, f(l_3) = s_l + k \).

In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1} + 2k, f(l_2 - 3) = s_{l_1 - 1}, f(l_3 - 3) = s_{l_1 - 1} + k \) and \(f(l_1 + 3) = s_{l_1 + 1} + 2k, f(l_2 + 3) = s_{l_1 + 1}, f(l_3 + 3) = s_{l_1 + 1} + k \). So, \(|f(l_1 - 1) - f(l_2)| \geq k \Rightarrow |(s_{l_1 - 1} + k - s_l)| \geq k \Rightarrow |k - (s_l - s_{l_1 - 1})| \geq k \Rightarrow s_l - s_{l_1 - 1} \leq 0 \Rightarrow s_l \leq s_{l_1 - 1}, \) a contradiction.

Case 5 \(f(l_1) = s_l + k, f(l_2) = s_l + 2k, f(l_3) = s_l \).

In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1} + k, f(l_2 - 3) = s_{l_1 - 1} + 2k, f(l_3 - 3) = s_{l_1 - 1} \) and \(f(l_1 + 3) = s_{l_1 + 1} + k, f(l_2 + 3) = s_{l_1 + 1}, f(l_3 + 3) = s_{l_1 + 1} + k \). So, \(|f(l_3 + 1) - f(l_3)| \geq k \Rightarrow |(s_{l_1 + 1} + k - s_l)| \geq k \Rightarrow |k - (s_l - s_{l_1 + 1})| \geq k \Rightarrow s_l - s_{l_1 + 1} \leq 0 \Rightarrow s_l \leq s_{l_1 + 1}, \) a contradiction.

Case 6 \(f(l_1) = s_l + 2k, f(l_2) = s_l + k, f(l_3) = s_l \).

In this case by Lemma 2.2 it follows that \(f(l_1 - 3) = s_{l_1 - 1} + 2k, f(l_2 - 3) = s_{l_1 - 1} + k, f(l_3 - 3) = s_{l_1 - 1} \) and \(f(l_1 + 3) = s_{l_1 + 1} + 2k, f(l_2 + 3) = s_{l_1 + 1} + k, f(l_3 + 3) = s_{l_1 + 1} \). So, \(|f(l_3 + 1) - f(l_2)| \geq k \Rightarrow |(s_{l_1 + 1} + 2k - (s_l + k))| \geq k \Rightarrow |k - (s_l - s_{l_1 + 1})| \geq k \Rightarrow s_l - s_{l_1 + 1} \leq 0 \Rightarrow s_l \leq s_{l_1 + 1}, \) a contradiction.

Lemma 2.6 Let \(P_n \) be a path on \(n \) vertices and \(k_0 = \lfloor \frac{2n-1}{3} \rfloor \). Then \(t_k(P_n) \geq 2(k - k_0) - 1 \) whenever \(2n \equiv 0 \pmod{3} \) and \(k > k_0 \).

Proof For \(1 \leq l \leq k_0 \), let \(S_l = \{l_1, l_2, l_3\} \), where \(l_1 = 3l - 2, l_2 = 3l - 1, l_3 = 3l \). Let \(S_{k_0 + 1} = \{2n - 2, 2n - 1\} \) and \(T = \{1, 2, 3, ..., k_0\} \). Let \(f \) be a minimal \(k \)-constrained total labeling of \(P_n \), \(2n \equiv 0 \pmod{3} \) and \(k > k_0 \), then by Lemma 2.1, we have \(|f(S_l) \cap T| = 1 \) for each \(i \) (i.e. exactly one element of \(S_l \) mapped to distinct element of \(T \) for each \(i, 1 \leq i \leq k_0 \)) and \(f(l_j) = m \in T \) for some \(j, 1 \leq j \leq 3 \), then for other element \(l_i \) of \(S_l, i \neq j \), we have \(|f(l_i) - f(l_j)| \geq k \) implies \(f(l_i) \geq k + m \). Thus \(f \) excludes the elements of the set \(T_1 = \{k_0 + 1, k_0 + 2, ..., k\} \) for the next assignments of the elements of \(S_l, i \neq k_0 + 1 \).

Let \(f(l_i) = t \) for some \(t \in T \), where \(l_i \in S_l \). Then for the minimum span \(f \), by Remark 2.3 \(f(l_j) = k + t \) for \(i \neq j \) and \(l_j \in S_l \).

Again by Lemma 2.3, we get \(|f(S_i) \cap T'\rangle = 1 \), for each \(i, 1 \leq i \leq k_0 \), where \(T' = \{k + 1, k + 1, k + 1, ..., k + k_0 - 1\} \).
Hence neither P_S the second elements of each of the sets similar way we can argue that either k f 2 in the first round of assignment and uses exactly one element of only for the element in f and hence f f. Lemma 2 of f leaves at least $2(k - k_0)$ elements which are in the set $T_1 \cup T_2$.

In view of Lemma 2.2, there are only two possibilities for the assignments of elements of S_{k_0+1} depending upon whether f assigns an element of T_1 to an element of S_{k_0+1} or not.

Let us now consider the first case. Let $x \in S_{k_0+1}$ such that $f(x) = t$ for some $t \in T_1$.

Claim $x = 2n - 1$

If not, $f(2n - 2) = t$, but then $f(2n - 3) \notin T \cup T_1$ and $f(2n - 4) \notin T \cup T_1$. Then by Lemma 2.2 $f(2n - 5) \in T \cup T_1$ and by Lemma 2.5 $f(2n - 5) = t - 1$. Then again as above $f(2n - 8) = t - 2$. Continuing this argument, we conclude that $f(1) = 1$ and $f(4) = 2$. But then, by above argument, we get $f(x) = k + 1$ and $f(x + 3) = k + 2$ for some $x \in S_1$ and $x \in \{2, 3\}$. So, $|f(x) - f(4)| = |k + 1 - 2| \geq k$ and $|4 - x| \leq 2$, a contradiction. Hence the claim.

By the above claim we get $f(2n - 1) \in T_1$. We now suppose that $f(2n - 2) \notin T_2$ (note that $f(2n - 2) \notin T \cup T_1$), then by above argument for the minimality of f we have $f(2n - 2) = k + k_0 + 1$ and hence $f(1) = k + 1$ and $f(2) = 1$. So, by Lemma 2.5, $f(4) = k + 2$ and $f(5) = 2$. So, $f(3) \neq 2k + 1$ (Since $|f(3) - f(4)| = |2k + 1 - (k + 2)| \geq k$, which is inadmissible). This shows that f includes either at most one element of $T_1 \cup T_2$ to label the elements of S_{k_0+1} or leaves one more element namely $2k + 1$ to label the elements of P_n (Since the label $2k + 1$ is possible only for the element in S_1. Thus f leaves at least $2(k - k_0) - 1$ elements.

If the second case follows then the result is immediate because f leaves $(k - k_0)$ elements in the first round of assignment and uses exactly one element of T_2 in the second round. □

Remark 2.7 In the above Lemma 2.6 if $2n \equiv 0 \pmod{3}$, then $t_k(P_n) \geq 2(k - k_0)$.

Proof If the hypothesis hold, then $S_{k_0+1} = \emptyset$ or $S_{k_0+1} = \{2n - 1\}$. In the first case, if $S_{k_0+1} = \emptyset$, then by the proof of the Lemma we see that any minimal k-constrained total labeling f should leave exactly $2(k - k_0)$ integers for the labeling of the elements of the path P_n. In the second case when $S_{k_0+1} = 2n - 1$, by Lemma 2.5 $f(2n - 1) = k_0 + 1$ (we can assume that $f(1) \in f(S_1)$ because only other possibility by Lemma 2.5 is that the labeling of elements of P_n is in the reverse order, in such a case relabel the sets S_1 as S_{k_0+1}). But then, again by Lemma 2.2 and Lemma 2.5 it forces to take $f(1) = 1$ and $f(4) = 2$ hence by Remark 2.4, $f(x) = k + 1$ only if $x = 2$ or $x = 3$. In either of the cases $|f(4) - f(x)| \geq k$, a contradiction. Hence neither $k_0 + 1$ nor $k + 1$ can be assigned. Further, if $k_0 + 1$ is not assigned, then in the similar way we can argue that either $k + k_0 + 1$ or $2k + 1$ can not be assigned while assigning the second elements of each of the sets $S_1, 1 \leq l \leq k_0$. Thus, in both the cases f should leave at least $2(k - k_0)$ integers for the assignment of P_n, whenever $2n \equiv 0 \pmod{3}$. □

Theorem 2.8 Let P_n be a path on n vertices and $k_0 = \lfloor \frac{2n-1}{3} \rfloor$. Then

$$t_k(P_n) = \begin{cases}
0 & \text{if } k \leq k_0, \\
2(k - k_0) - 1 & \text{if } k > k_0 \text{ and } 2n \equiv 0(\text{mod } 3), \\
2(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 1 \text{ or } 2(\text{mod } 3).
\end{cases}$$
Proof If \(k \leq k_0 \), then the result follows by Theorem 3.3 of [4]. Consider the case \(k > k_0 \).

Case i \(2n \equiv 0 \) (mod 3)

By Lemma 2.6 we have \(t_k(P_n) \geq 2(k - k_0) - 1 \). Now, the function \(f : V(P_n) \cup E(P_n) \cup K_{2(k-k_0)-1} \rightarrow \{1, 2, \ldots, 2(n + k - k_0) - 2\} \) defined by \(f(1) = 2k + 1, f(2) = k + 1, f(3) = 1 \) and \(f(i) = f(i - 3) + 1 \) for all \(i, 4 \leq i \leq 2n - 3 \), \(f(2n - 2) = 2k + 1 + k_0, f(2n - 1) = k + 1 + k_0 \) and the vertices of \(K_{2(k-k_0)-1} \) to the remaining, is a Smarandachely \(k \)-constrained labeling of the graph \(P_n \cup K_{2(k-k_0)-1} \). Hence \(t_k(P_n) \leq 2(k - k_0) - 1 \).

Case ii \(2n \not\equiv 0 \) (mod 3)

By Remark 2.7 we have \(t_k(P_n) \geq 2(k - k_0) \). On the other hand, the function \(f : V(P_n) \cup E(P_n) \cup K_{2(k-k_0)} \rightarrow \{1, 2, \ldots, 2(n + k - k_0) - 1\} \) defined by \(f(1) = 2k + 1, f(2) = k + 1, f(3) = 1 \), \(f(i) = f(i - 3) + 1 \) for all \(i, 4 \leq i \leq 2n - 1 \) and the vertices of \(K_{2(k-k_0)} \) to the remaining, is a Smarandachely \(k \)-constrained labeling of the graph \(P_n \cup K_{2(k-k_0)} \). Hence \(t_k(P_n) \leq 2(k - k_0) \).

Figure 1: A \(k \)-constrained total labeling of the path \(P_n \cup K_{2(k-k_0)} \), where \(2n \equiv 2 \) (mod 3).

§3. \(k \)-Constrained Number of a Cycle

Let \(V(C_n) = \{v_1, v_2, \ldots, v_n\} \) and \(E(C_n) = \{v_iv_{i+1} | 1 \leq i \leq n - 1\} \cup \{v_nv_1\} \). Due to the symmetry in \(C_n \), without loss of generality, we assume that the integer 1 is labeled to the vertex \(v_1 \) of \(C_n \). Define \(S_\alpha = \{\alpha_1, \alpha_2, \alpha_3\} \), for all \(\alpha \in \mathbb{Z}^+, 1 \leq \alpha \leq k_0 \), where \(k_0 = \left\lfloor \frac{2n}{3} \right\rfloor \) and \(\alpha_1 = v_{2n-1}, \alpha_2 = v_{2n+1}, \alpha_3 = v_{2n+2} \) for all odd \(\alpha \) and if \(\alpha \) is even, then and \(\alpha_1 = v_{2n-1}, \alpha_2 = v_{2n}, \alpha_3 = v_{2n+1} \).

Case 1 \(2n \equiv 0 \) (mod 3)

In this case set of elements (edges and vertices) of \(C_n \) is \(S_1 \cup S_2 \cup \cdots \cup S_{k_0} \cup S_{k_0+1} \), where \(S_{k_0+1} = \{v_{n+1}, \ldots, v_{n+1}\} \).

We now assume the contrary that \(t_k(C_n) < 2(k - k_0) \). Then there exists a minimal \(k \)-constrained labeling \(f \) such that span \(f \) is less that \(k_0 + 2k + 3 \) (since span \(f \) = number of vertices + edges + \(t_k(C_n) < 3(k_0 + 1) + 2(k - k_0) \)). Now our proof is based on the following observations.

Observation 3.1 Let \(L_1 \) be the set of first possible consecutive integers (labels) that can be assigned for the elements of \(C_n \). Then exactly one element of each set \(S_\alpha, 1 \leq \alpha \leq k_0 + 1 \), can
receive one distinct label in \(L_1\) and for the minimum span all the labels in \(L_1\) to be assigned. Thus \(|L_1| = k_0 + 1\).

Observation 3.2 The labels in \(L_1\) can be assigned only for the elements of \(S_\alpha\) in identical places (i.e. \(\alpha_1 \in S_\alpha\) receives \(f(\alpha_i) \in L_1\) and \(\beta_j \in S_\beta\) receives \(f(\beta_j) \in L_1\) if and only if \(i = j\) for all \(\alpha, \beta\)). In fact, since \(\alpha_1 = 1\), when \(\alpha = 1\), we get \(f(\beta_1) \in L_1\), where \(\beta = k_0 + 1\), hence \(f(\gamma_1) \in L_1\), where \(\gamma = k_0\), and so on \(\cdots\).

Observation 3.3 The observation 3.2 holds for next labelings for the remaining unlabeled elements also.

Observation 3.4 Since the smallest label in \(L_1\) is 1, by observation 3.1, it follows that the largest label in \(L_1\) is \(k_0 + 1\) and next minimum possible integer(label) in the set \(L_2\), consisting of consecutive integers used for the labeling of elements unassigned by the set \(L_1\), is \(k + 2\) (we observe that \(k + i\), for \(k_0 - k + 1 < i < 1\) can not be used for the labeling of any element in the set \(S_\alpha\), \(1 \leq \alpha \leq k_0 + 1\) (since an element of each of \(S_\alpha\) has already received a label \(x\) in \(L_1\), \(1 \leq x \leq k_0 + 1\) and \((k + i) - (x) = k + (i - x) < k\). Also if \(k + 1\) is assigned, then \(k + 1\) is assigned only to \(2^{nd}\) or \(3^{rd}\) element (viz \(\alpha_2\) or \(\alpha_3\), where \(\alpha = 1\)) of \(S_1\), but then difference of labels of first element of \(S_\alpha\) labeled by an integer in \(L_1\) (which is greater than 1) with \(k + 1\) differs by at most by \(k - 1\).

Observation 3.5 By observation 3.4 it follows that the minimum integer label in \(L_2\) is \(k + 2\), so the maximum integer label is \(k + k_0 + 2\).

Observation 3.6 Let \(L_3\) be the set of next consecutive integers which can be used for the labeling of the elements not assigned by \(L_1 \cup L_2\). Then, as span is less than \(k_0 + 2k + 3\), the maximum label in \(L_3\) is at most \(k_0 + 2k + 2\) and hence the minimum is at most \(2k + 2\).

We now suppose that \(f(\alpha_i) \in L_3\) and \(f(\alpha_i) = \min L_3\), for some \(\alpha, 1 \leq \alpha \leq k_0 + 1\). Then, as \(f(\alpha_i) = \min L_3\), \(f(\alpha_i) = 2k + j\) for some \(j \leq 2\). Further, as \(f(\alpha_i) \notin L_2\), we have \(k_0 + 2 - k \leq j \leq 2\). Combining these two we get \(k_0 + 2 - k \leq j \leq 2\).

Subcase 1 \(i = 2\)

In this case \(f(\alpha_2) \in L_3\) and already \(f(\alpha_2) \in L_1\), so \(f(\alpha_3) \in L_2\) and hence \(f(\beta_1) \in L_2\) (by Observation 3.2), where \(\beta = \alpha - 1\) (or \(\beta = k_0 + 1\) if \(\alpha = 1\)). Thus, \(f(\beta_1) = k + l\) for some \(l, 2 \leq l \leq k + 2 + k_0\).

Now \(|f(\alpha_2) - f(\beta_3)| = |(2k + j) - (k + l)| = |k + (j - l)| \geq k| implies that \(j - l \geq 0\) hence \(j \geq l\). But \(j \leq 2 \leq l\) implies \(j = l = 2\). Therefore, \(f(\alpha_2) = 2k + 2\) and \(f(\beta_3) = k + l = k + 2 = \min L_2\).

In this case \(f(\alpha_3) \in L_2\) implies that \(f(\alpha_3) = k + m\), for some \(m > 2\). So, \(|f(\alpha_2) - f(\alpha_3)| = |(2k + 2) - (k + m)| = |k + (2 - m)| < k| as \(m > 2\), which is a contradiction.

Subcase 2 \(i = 3\)

In this case \(f(\alpha_3) \in L_3\) and already \(f(\alpha_1) \in L_1\), so \(f(\alpha_2) \in L_2\) and hence \(f(\beta_2) \in L_2\) (by Observation 3.2), where \(\beta = \alpha - 1\) (or \(\beta = 1\) if \(\alpha = k_0 + 1\)). Thus, \(f(\beta_2) = k + l\) for some \(l, 2 \leq l \leq k + 2 + k_0\).

Now \(|f(\alpha_3) - f(\beta_2)| = |(2k + j) - (k + l)| = |k + (j - l)| \geq k| implies that \(j - l \geq 0\) hence
Since f_{L_1} implies that $f(\alpha) = 2k + 2$ and $f(\beta_2) = k + l = k + 2 = \min L_2$.

In this case $f(\alpha_2) \in L_2$ implies that $f(\alpha_2) = k + m$, for some $m > 2$. So, $|f(\alpha_3) - f(\alpha_2)| = |(2k + 2) - (k + m)| = |k + (2 - m)| < k$ as $m > 2$, which is a contradiction.

Hence in either of the cases we get $t_k(C_n) \geq 2(k - k_0)$.

Case 2 $2n \not\equiv 0 \pmod{3}$

Let f be a minimal k-constrained total labeling of C_n. Let L_1, L_2, L_3 be the sets as defined as in Observations 3.1, 3.4 and 3.6 above. Let L_4 be the set of possible consecutive integers used for labeling the elements of C_n which are not assigned by the set $L_1 \cup L_2 \cup L_3$.

We first take the case $2n \equiv 1 \pmod{3}$. If possible we now again assume the contrary that $t_k(C_n) < 3(k - k_0)$. Then it follows that span f is less than $3k + 1$.

Observation 3.7 Since minimum label in L_1 is 1 and f is a minimal k-constrained labeling, we have $f(x) \geq k + 1$ for all x such that $f(x) \in L_2$.

We have $f(\alpha_1) = 1$ for $\alpha = 1$. Let β be the smallest index such that $f(\beta_1) \in L_1$ and $f(\gamma_1) \not\in L_1$, where $\gamma = \beta + 1$ (such index β exists because $f(\alpha_1) = 1$ for $\alpha = 1$ and γ exists because $2n \not\equiv 0 \pmod{3}$, the elements labeled by L_1 differ by its position by exactly multiples of 3 apart on either sides of the element labeled by 1). Now consider the set $S = \{\beta_2, \beta_3, \gamma_1\}$. None of the elements of S can be labeled by any the label in L_1 and no two of them receive the label for a single set L_i, for any $i, 2 \leq i \leq 4$. Let s_1, s_2, s_3 be the elements of S arranged accordingly $f(s_1) \in L_2, f(s_2) \in L_3, f(s_3) \in L_4$.

Since span $f \leq 3k$, we have $f(s_3) \leq 3k$, so $f(s_2) \leq 2k$ and hence $f(s_1) \leq k$, which is a contradiction (follows by Observation 3.7). Hence for any minimal k-constrained labeling f we get $t_k(C_n) \geq 3(k - k_0)$ whenever $2n \equiv 1 \pmod{3}$.

We now take the case $2n \equiv 2 \pmod{3}$. If possible we now again assume the contrary that $t_k(C_n) < 3(k - k_0)$. Then it follows that span f is less than or equal to $3k + 1$. The element of C_n is the set $S_1 \cup S_2 \cup \cdots \cup S_{k_0} \cup S_{k_0+1}$, where $S_{k_0+1} = \{v_n, v_n, v_1\}$. We now claim that the label of the first element namely α_1 of the set S_α is in the set L_1 for all $\alpha, 1 \leq \alpha \leq k_0$ if and only if $k_0 > 2$.

Suppose that α is the least positive index such that $f(\alpha_1) \not\in L_1$ and $1 < \alpha \leq k_0$. Then for all β such that $1 \leq \beta < \alpha, f(\beta_1) \in L_1$. Let $\beta = \alpha - 1$. Consider the set $S = \{\beta_2, \beta_3, \alpha_1\}$. Let s_1, s_2, s_3 be the rearrangements of the elements in the set S such that $f(s_1) \in L_2, f(s_2) \in L_3, f(s_3) \in L_4$ respectively.

Since $f(s_3) \in L_4$ and span f is less than or equal to $3k + 1$ it follows that $f(s_3) \leq 3k + 1$ and hence $f(s_2) \leq 2k + 1, f(s_1) \leq k + 1$. But, the least element in L_1 is 1 implies that the least element in L_2 is greater or equal to $k + 1$, so $f(s_1) \geq k + 1$. Therefore, $f(s_1) = k + 1$, so that $f(s_2) = 2k + 1$ and $f(s_3) = 3k + 1$. There are two possible cases depending on $s_3 \in S_\alpha$ or not. Before considering these cases we make the the following observations.

Observation 3.8 Since $f(\alpha_1) \in L_4$, we find $f(\alpha_1) = 3k + 1$ for any $\alpha > 1$. Suppose for any $\delta, \delta > \alpha$, if $f(\delta_1) \in L_1$, then for any $\gamma, \gamma > \delta$, we find $f(\gamma_1) \in L_1$. In fact, for $\gamma > \delta$, if $f(\gamma_1) \not\in L_1$ and $f(\eta_1) \in L_1$ for $\eta = \gamma - 1$, then sequence s_1, s_2, s_3 of the elements of the set $S = \{\eta_2, \eta_3, \gamma_1\}$
taken accordingly as \(f(s_1) \in L_2, f(s_2) \in L_3, f(s_3) \in L_4 \) as above, we get \(f(s_3) \leq 3k \) (since \(3k + 1 \) is already assigned). Therefore, \(f(s_2) \leq 2k \) and hence \(f(s_1) \leq k \), which is impossible (since \(f(s_1) \notin L_1 \)).

This shows that if \(f(\delta_1) \in L_4 \), where \(\delta = \alpha + 1 \), we arrive at the situation that \(f(\eta_1) \in L_1 \), where \(\eta = k_0 \).

Now taking the set \(\{\eta_2, \eta_3, v_n\} \) and rearranging these elements as \(s_1, s_2, s_3 \) such that \(f(s_1) \in L_2, f(s_2) \in L_3, f(s_3) \in L_4 \), we get \(f(s_1) \leq k \) which is again a contradiction.

Observation 3.9 Observation 3.8 shows that \(f(\delta_1) \notin L_1 \) for any \(\delta, \alpha < \delta \leq k_0 \).

Observation 3.10 Starting from the vertex \(v_1 \), consider the sets \(\hat{S}_1 = \{v_1, v_1v_n, v_n\}, \hat{S}_2 = S_{k_0}, \hat{S}_3 = S_{k_0-1}, \ldots, \hat{S}_{k_0-\delta+2} = S_\delta \). By taking these sets, we arrive at the conclusion, as in Observation 3.8, that \(f(\delta_3) \in L_1 \) for every \(\delta > \alpha \).

We now continue the main proof for the first case \(s_3 \in S_\alpha \). In this case \(s_3 = \alpha_1 \), therefore \(s_1 \in S_\beta \). But \(f(s_3) \in L_4 \) implies that \(f(s_3) \leq 3k + 1 \), so \(f(s_2) \leq 2k + 1 \) and hence \(f(s_1) \leq k + 1 \). On the other hand \(f(\beta_1) \in L_1 \) implies that \(f(\beta_2) \) or \(f(\beta_3) \) is greater than or equal to \(k + 1 \) (since \(\min L_1 = 1 \)), that is, \(f(\beta_1) \geq k + 1 \). Thus, \(f(s_1) = k + 1 \). This yields \(f(\beta_1) = 1 \), so \(\beta = 1 \) and \(\alpha = 2 \). Also \(f(s_2) = 2k + 1 \) and \(f(s_3) = 3k + 1 \).

Let us now suppose that \(\alpha < k_0 \). Then there exists an index \(\delta \) such that \(\delta = \alpha + 1 \leq k_0 \).

If \(f(\beta_2) = 2k + 1, f(\beta_3) = k + 1 \), then \(f(\alpha_2) \geq 2k + 1 \) (since \(f(\beta_3) = k + 1 \)) and \(f(\alpha_2) \leq 2k + 1 \) (since \(f(\alpha_1) = 3k + 1 \)). So, \(f(\alpha_2) = 2k + 1 \) and hence \(f(\alpha_2) = f(\beta_2) \) which is not possible (since \(\alpha \neq \beta \)).

If \(f(\beta_2) = k + 1, f(\beta_3) = 2k + 1 \), then \(f(\alpha_2) \leq k + 1 \) implies \(f(\alpha_2) \in L_1 \) (since \(f(\alpha_2) \neq k + 1 = f(\beta_2) \)). Further by Observation 3.10, we have \(f(\delta_3) \in L_1 \). Consider the set \(\{\alpha_3, \delta_1, \delta_2\} \) (we note that none of the elements of this set is labeled by the set \(L_1 \)) and let \(s_1, s_2, s_3 \) be the elements of this set taken in order such that \(f(s_1) \in L_2, f(s_2) \in L_3, f(s_3) \in L_4 \). Since \(3k + 1 \) is already assigned we get \(f(s_3) \leq 3k \) and hence as above \(f(s_1) \leq k \), which is a contradiction to the fact \(f(s_1) \notin L_1 \).

We now continue the main proof for the second case \(s_3 \notin S_\alpha \). In this case \(s_3 \in S_\beta \). Now by assumption we have \(f(\alpha_3) \in L_1 \) and \(k + 1 \) is already labeled for an element of \(S_\beta = S_1 \), therefore \(f(\alpha_1) = 2k + 1 \). Now by Observation 3.10, \(f(\delta_3) \in L_1 \), where \(\delta = \alpha + 1 \). If \(f(\alpha_2) \in L_1 \), then by taking the set \(\{\alpha_3, \delta_1, \delta_2\} \) and arranging as above we can show that one of these elements must be labeled by an element of the set \(L_4 \) and hence that label should be at most \(3k \), so the smallest label of the element of the set is less than or equal \(k \), a contradiction to the fact that the smallest label is not in \(L_1 \). Thus, \(f(\alpha_2) \notin L_1 \).

If \(f(\delta_3) = 3k + 1 \), then \(f(\alpha_2) \in L_2 \), and hence \(f(\alpha_2) \geq k + 2 \), which is not possible because \(f(\alpha_1) = 2k + 1 \). Therefore, \(f(\beta_2) = 3k + 1 \) and \(f(\beta_3) = k + 1 \). But then, only possibility is that \(f(\alpha_2) \in L_4 \) implies that \(f(\alpha_2) \leq 3k \), which is impossible because \(f(\alpha_1) = 2k + 1 \). Hence the claim.

By the above claim we have either first element of all the sets \(S_1, S_2, \ldots, S_{k_0} \) are labeled by the elements of the set \(L_1 \) or the graph is the cycle \(C_4 \). For the graph \(C_4 \), it is easy to observe that no three consecutive integers can be used for the labeling and hence each of the sets \(L_1, L_2, L_3 \) and \(L_4 \) should have at most two elements. Thus, \(\text{span } f \geq 3k + 2 \). The equality
holds by the following Figure 2.

\[\begin{array}{c}
1 & k+1 & 2k+2 \\
2k+1 & 3k+2 & k+2 \\
3k+1 & & \\
\end{array} \]

Figure 2: A k-constrained total labeling of the graph \(C_4 \cup \overline{K}_{3k-6}\)

If the graph is not \(C_4\), then consider the set \(T = \{v_{n-1}, v_{n-1}v_n, v_nv_1\}\). Since \(f(v_{n-2}v_{n-1}) \in L_1\) (follows by Observation 3.10) and \(f(v_1) = 1 \in L_1\) (follows by the assumption) none of the elements of the set \(T\) is labeled by the set \(L_1\) and exactly two elements namely \(v_{n-1}\) and \(v_nv_1\) are labeled by same set.

If \(f(v_{n-1})\) and \(f(v_nv_1)\) are in \(L_2\), then either \(f(v_{n-1}v_n)\) and \(f(v_n)\) is in \(L_4\). Suppose \(f(v_{n-1}v_n)\) (similarly \(f(v_n)\) \(\in L_4\)), then \(f(v_n) \in L_3\) (\(f(v_{n-1}v_n) \in L_3\)), so \(f(v_{n-1}v_n) \leq 3k+1\) and hence \(f(v_n) \leq 2k+1\). Therefore both \(f(v_{n-1})\) and \(f(v_nv_1)\) must be less than or equal to \(k+1\), which is not possible because minimum of \(L_2\) is \(k+1\).

If \(f(v_{n-1})\) and \(f(v_nv_1)\) are in \(L_3\), then \(f(v_n) \in L_4\) (or \(f(v_{n-1}v_n) \in L_4\)) so \(f(v_nv_1) \leq 2k+1\) and \(f(v_{n-1}) \leq 2k+1\) (since \(f(v_n) \leq 3k+1\)). Therefore, at least one of \(f(v_nv_1)\) or \(f(v_{n-1})\) is less than or equal to \(2k\), which yields that \(f(v_{n-1}v_n) \leq k\) (\(f(v_n) \leq k\)). Thus, either \(f(v_{n-1}v_n)\) or \(f(v_nv_1)\) are in \(L_1\), a contradiction.

If \(f(v_{n-1})\) and \(f(v_nv_1)\) are in \(L_4\), then at least one of them must be less than \(3k+1\). Hence either \(f(v_n)\) or \(f(v_{n-1}v_1)\) is less than or equal to \(k\) (as above), which is again a contradiction.

Thus, we conclude

Lemma 3.11 Let \(C_n\) be a cycle on \(n\) vertices and \(k_0 = \lfloor \frac{2n-1}{3} \rfloor\). Then

\[
t_k(C_n) \geq \begin{cases}
0 & \text{if } k \leq k_0, \\
2(k-k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 0 \text{ (mod 3)}, \\
3(k-k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 1 \text{ or } 2 \text{ (mod 3)}.
\end{cases}
\]

Now to prove the reverse inequality, designate the vertex \(v_i\) of \(C_n\) as \(2i-1\) and the edge \(v_iv_{j+1}\) as \(2j, v_nv_1\) as \(2n\). For each \(i, 1 \leq i \leq n\) and \(1 \leq j \leq n-1\) and for the case \(2n \equiv 0\) (mod 3), define a function \(f: V(C_n) \cup E(C_n) \cup V(\overline{K}_{2(k-k_0)}) \rightarrow \{1, 2, 3, \ldots, 2k+k_0+3\}\) by \(f(1) = 1, f(2) = k+2, f(3) = 2k+3, f(i) = f(i-3) + 1, 4 \leq i \leq 2n\) and the vertices of \(\overline{K}_{2(k-k_0)}\) to the remaining.
The function f serves as a Smarandachely k-constrained labeling of the graph $C_n \cup \overline{K}_{2(k-k_0)}$. Hence $t_k(C_n) \leq 2(k - k_0)$.

For the case $2n \equiv 1 \pmod{3}$, define a function $f : V(C_n) \cup V(C_n) \cup V(\overline{K}_{3(k-k_0)}) \to \{1, 2, 3, \ldots, 3k + 1\}$ by $f(1) = 1, f(2) = 2k + 2, f(3) = k + 2, f(i) = f(i - 3) + 1$ for $4 \leq i \leq 2n - 4, f(2n - 3) = k_0, f(2n - 2) = 3k + 1, f(2n - 1) = 2k + 1, f(2n) = k + 1$ and the vertices of $\overline{K}_{3(k-k_0)}$ to the remaining.

The function f serves as a Smarandachely k-constrained labeling of the graph $C_n \cup \overline{K}_{3(k-k_0)}$. Hence $t_k(C_n) \leq 3(k - k_0)$.

For the case $2n \equiv 2 \pmod{3}$, define a function $f : V(C_n) \cup V(C_n) \cup V(\overline{K}_{3(k-k_0)}) \to \{1, 2, 3, \ldots, 3k + 2\}$ by $f(1) = 1, f(2) = k + 2, f(3) = 2k + 3, f(i) = f(i - 3) + 1$ for $4 \leq i \leq 2n - 6, f(2n - 5) = 3k + 1, f(2n - 4) = k_0, f(2n - 3) = 2k + 1, f(2n - 2) = 3k + 2, f(2n - 1) = k + 1, f(2n) = 2k + 2$ the vertices of $\overline{K}_{3(k-k_0)}$ to the remaining.

The function f serves as a Smarandachely k-constrained labeling of the graph $C_n \cup \overline{K}_{3(k-k_0)}$. Hence $t_k(C_n) \leq 3(k - k_0)$.

Hence, in view of Lemma 3.11, we get

Theorem 3.12 Let C_n be a cycle on n vertices and $k_0 = \lfloor \frac{2n-1}{3} \rfloor$. Then

$$
t_k(C_n) = \begin{cases}
0 & \text{if } k \leq k_0, \\
2(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 0 \pmod{3}, \\
3(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 1 \text{ or } 2 \pmod{3}.
\end{cases}
$$

Acknowledgment

Authors are very much thankful to the Principals, Prof. Srinivasa Mayya D, Srinivas Institute of Technology, Mangalore and Prof. Martin Jebaraj P, Dr. Ambedkar Institute of Technology, Bangalore for their constant support and encouragement during the preparation of this paper.
References