THE 57-TH SMARANDACHE’S PROBLEM II *

Liu Huaning
Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China
hnliu@nwu.edu.cn

Gao Jing
School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China

Abstract For any positive integer \(n \), let \(r \) be the positive integer such that: the set \{1, 2, \ldots, \(r \)\} can be partitioned into \(n \) classes such that no class contains integers \(x, y, z \) with \(x^y = z \). In this paper, we use the elementary methods to give a sharp lower bound estimate for \(r \).

Keywords: Smarandache-type multiplicative functions; Mangoldt function; Hybrid mean value.

§1. Introduction

For any positive integer \(n \), let \(r \) be a positive integer such that: the set \{1, 2, \ldots, \(r \)\} can be partitioned into \(n \) classes such that no class contains integers \(x, y, z \) with \(x^y = z \). In [1], Schur asks us to find the maximum \(r \). About this problem, Liu Hongyan [2] obtained that \(r \geq n^{m+1} \), where \(m \) is any integer with \(m \leq n + 1 \).

In this paper, we use the elementary methods to improve Liu Hongyan’s result. That is, we shall prove the following:

Theorem. For sufficiently large integer \(n \), let \(r \) be a positive integer such that: the set \{1, 2, \ldots, \(r \)\} can be partitioned into \(n \) classes such that no class contains integers \(x, y, z \) with \(x^y = z \). Then we have

\[
r \geq \left(n^{n^1} + 2 \right)^{n^{n^1}+1} - 1.
\]

*This work is supported by the N.S.F.(60472068) and the P.N.S.F. of P.R.China.
§2. Proof of the Theorem

In this section, we complete the proof of the theorem.

Let \(r = \left(n^{n!} + 2 \right)^{n!} \! \! + 1 \) and partition the set \(\{1, 2, \ldots, \left(n^{n!} + 2 \right)^{n!} \! \! + 1 - 1\} \) into \(n \) classes as follows:

Class 1: \(1, \ n^{n!} + 1, \ n^{n!} + 2, \ \ldots, \ \left(n^{n!} + 2 \right)^{n!} - 1 \).

Class 2: \(2, \ n + 1, \ n + 2, \ \ldots, \ n^2 \).

... Class \(k \): \(k, \ n^{(k-1)!} + 1, \ n^{(k-1)!} + 2, \ \ldots, \ n^k \).

... Class \(n \): \(n, \ n^{(n-1)!} + 1, \ n^{(n-1)!} + 2, \ \ldots, \ n^n \).

It is obvious that Class \(k (k \geq 2) \) contains no integers \(x, y, z \) with \(x^y = z \).

In fact for any integers \(x, y, z \in \text{Class } k, k = 2, 3, \ldots, n \), we have
\[
x^y \geq \left(n^{(k-1)!} + 1 \right)^k > n^k \geq z.
\]

Similarly, Class 1 also contains no integers \(x, y, z \) with \(x^y = z \).
This completes the proof of the theorem.

Reference
